APT35GP120B 1200V ® POWER MOS 7 IGBT TO-247 The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 800V, 12A • Low Gate Charge • 50 kHz operation @ 800V, 20A • Ultrafast Tail Current shutoff • RBSOA rated MAXIMUM RATINGS Symbol G C E C G E All Ratings: TC = 25°C unless otherwise specified. Parameter APT35GP120B VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 96 I C2 Continuous Collector Current @ TC = 110°C 46 I CM Pulsed Collector Current RBSOA PD TJ,TSTG TL 1 UNIT Volts Amps 140 @ TC = 25°C 140A @ 960V Reverse Bias Safe Operating Area @ TJ = 150°C Watts 540 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Characteristic / Test Conditions MIN TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C) 2.9 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C) 2.8 Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES 1200 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts nA Rev B 7-2002 BVCES UNIT 050-7406 Symbol APT35GP120B DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 3423 VGE = 0V, VCE = 25V 252 Reverse Transfer Capacitance f = 1 MHz 30 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7 150 VCE = 600V 21 I C = 35A 62 Input Capacitance Coes Output Capacitance Cres VGEP Qge Qgc RBSOA TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Reverse Bias Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 140 A 15V, L = 100µH,VCE = 960V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff I C = 35A 77 4 Turn-on Switching Energy (Diode) 5 Eon1 99 25 R G = 5Ω Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 14 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 800V 1000 TJ = +25°C 2262 6 14 VGE = 15V 155 Current Fall Time I C = 35A 128 Turn-on Switching Energy R G = 5Ω Current Rise Time Turn-off Delay Time Turn-off Switching Energy µJ 1185 Inductive Switching (125°C) VCC = 800V 4 Turn-on Switching Energy (Diode) ns 5 25 ns 1000 TJ = +125°C 4027 6 µJ 3016 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .23 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.) 050-7406 Rev B 7-2002 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT35GP120B 50 50 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 45 IC, COLLECTOR CURRENT (A) 35 30 25 TC=25°C 20 TC=125°C 15 10 25 15 0 1 2 3 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 60 TJ = 25°C 40 TJ = 125°C 20 TJ = -55°C 0 IC= 70A 4 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 IC= 35A 3 IC=17.5A 2.5 2 1.5 1 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 8 4 2 0 0 4.5 0.85 0.8 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.90 40 60 80 100 120 140 160 GATE CHARGE (nC) FIGURE 4, Gate Charge VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 IC=70A 3.5 3 IC= 35A 2.5 2 IC= 17.5A 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 120 0.95 20 5 1.15 1.0 VCE= 960V 6 140 1.05 VCE= 600V 10 1.2 1.1 VCE= 240V 12 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4.5 IC = 35A TJ = 25°C 14 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 FIGURE 2, Output Characteristics (VGE = 10V) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 80 TC=125°C 10 0 100 TC=25°C 20 5 250µs PULSE TEST <0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 50 0 FIGURE 1, Output Characteristics(VGE = 15V) 120 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 35 5 0 1 2 3 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 40 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev B 7-2002 40 050-7406 IC, COLLECTOR CURRENT (A) 45 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT35GP120B 180 25 VGE= 10V 20 VGE= 15V 15 10 VCE = 800V 5 TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 30 VCE = 800V 160 RG = 5Ω L = 100 µH 140 VGE =10V,TJ=125°C 120 VGE =15V,TJ=25°C 100 80 VGE =10V,TJ=25°C 60 40 20 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 70 180 TJ = 25 or125°C,VGE = 10V 60 VGE =15V,TJ=125°C TJ = 125°C, VGE = 10V or 15V 160 tf, FALL TIME (ns) tr, RISE TIME (ns) 140 50 40 30 20 TJ = 25 or 125°C,VGE =10V 8000 TJ=125°C,VGE=15V 7000 TJ=125°C,VGE=10V 6000 5000 4000 3000 TJ= 25°C,VGE=15V 2000 TJ= 25°C,VGE=10V 1000 EOFF, TURN OFF ENERGY LOSS (µJ) 7000 VCE = 800V VGE = +15V RG = 5 Ω RG = 5Ω, L = 100µH, VCE = 800V 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 6000 VCE = 800V VGE = +15V RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 5000 4000 3000 2000 1000 TJ = 25°C, VGE = 10V or 15V 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 12000 9000 VCE = 800V VGE = +15V RG = 5 Ω 10000 Eon2 70A 8000 Eoff 70A 6000 Eon2 35A 4000 Eoff 35A Eon2 17.5A 2000 Eoff 17.5A 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) TJ = 25°C, VGE = 10V or 15V 60 0 9000 SWITCHING ENERGY LOSSES (µJ) 80 20 RG = 5Ω, L = 100µH, VCE = 800V 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current Rev B 7-2002 100 40 10 050-7406 120 8000 VCE = 800V VGE = +15V RG = 5 Ω Eon2 70A 7000 6000 5000 4000 Eoff70A Eon2 35A 3000 2000 1000 Eoff 35A 0 -25 Eon2 17.5A Eoff 17.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT35GP120B 160 10,000 140 Cies 1,000 500 Coes 100 50 Cres 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage IC, COLLECTOR CURRENT (A) 120 P C, CAPACITANCE ( F) 5,000 100 80 60 40 20 0 0 200 400 600 800 1000 1200 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Reverse Bias Safe Operating Area D=0.5 0.1 0.05 0.2 0.1 0.05 0.01 PDM Note: 0.02 0.005 t1 0.01 t2 SINGLE PULSE Duty Factor D = t1/t2 Peak TJ = PDM x ZθJC + TC 0.001 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 140 50 Fmax = min(f max1 , f max 2 ) 10 f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off 5 Pdiss = TJ − TC R θJC 10 20 30 40 50 60 70 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Rev B 7-2002 1 TJ = 125°C TC = 75°C D = 50 % VCE = 800V RG = 5 Ω 050-7406 10-5 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT35GP120B APT 35GP120B2D2 Gate Voltage 10% 18V TJ = 125 C t d(on) V CE IC V CC tr A Collector Current 90% D.U.T. 10% 5% 5% Collector Voltage Figure 21, Inductive Switching Test Circuit Switching Energy Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage T J = 125 C t d(off) *DRIVER SAME TYPE AS D.U.T. Collector Voltage 90% A V CE tf IC 100uH V CLAMP 10% A Collector Current Switching Energy D.U.T. DRIVER* Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit T0-247 Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 5.38 (.212) 6.20 (.244) Collector 6.15 (.242) BSC 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 2.87 (.113) 3.12 (.123) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) Rev B 7-2002 1.01 (.040) 1.40 (.055) 050-7406 B 0 2.21 (.087) 2.59 (.102) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT's devices are covered by one or more of the following U.S.patents: 4,895,810 5,256,583 5,045,903 4,748,103 5,089,434 5,283,202 5,182,234 5,231,474 5,019,522 5,434,095 5,262,336 5,528,058