APT25GP120B 1200V ® POWER MOS 7 IGBT A new generation of high voltage power IGBTs. Using punch-through technology and a proprietary metal gate, this IGBT has been optimized for very fast switching, making it ideal for high frequency, high voltage switchmode power supplies and tail current sensitive applications. In many cases, the POWER MOS 7® IGBT provides a lower cost alternative to a Power MOSFET. • Low Conduction Loss • 100 kHz operation @ 800V,11A • Low Gate Charge • 50 kHz operation @ 800V, 20A • Ultrafast Tail Current shutoff • RBSOA Rated MAXIMUM RATINGS Symbol TO-247 G C E C G E All Ratings: TC = 25°C unless otherwise specified. Parameter APT25GP120B VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 75 I C2 Continuous Collector Current @ TC = 110°C 36 I CM Pulsed Collector Current RBSOA PD TJ,TSTG TL 1 UNIT Volts Amps 144 @ TC = 25°C Reverse Bias Safe Operating Area @ TJ = 150°C 144 Total Power Dissipation 462 Watts -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Characteristic / Test Conditions MIN TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C) 3.6 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C) 3.1 Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES 1200 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 2 250 2 Gate-Emitter Leakage Current (VGE = ±20V) µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts nA Rev A 7-2002 BVCES UNIT 050-7411 Symbol APT25GP120B DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Qge Qgc RBSOA Total Gate Charge TYP Capacitance 2140 VGE = 0V, VCE = 25V 232 f = 1 MHz 44 Gate Charge VGE = 15V 7.3 110 VCE = 600V 15 I C = 25A 50 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Reverse Bias Safe Operating Area MIN TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 144 A 15V, L = 100µH,VCE = 960V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff I C = 25A 52 4 Turn-on Switching Energy (Diode) 5 Eon1 70 µJ 584 12 VGE = 15V 109 I C = 25A 117 Current Fall Time Turn-off Switching Energy 1456 Inductive Switching (125°C) VCLAMP(Peak) = 800V Turn-off Delay Time 18 R G = 5Ω 4 Turn-on Switching Energy (Diode) ns 670 TJ = +25°C 6 Current Rise Time Turn-on Switching Energy 18 R G = 5Ω Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 12 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCLAMP(Peak) = 800V 670 TJ = +125°C 5 ns 2103 6 µJ 1582 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .27 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.) 050-7411 Rev A 7-2002 APT Reserves the right to change, without notice, the specifications and information contained herein. APT's devices are covered by one or more of the following U.S.patents: 4,895,810 5,256,583 5,045,903 4,748,103 5,089,434 5,283,202 5,182,234 5,231,474 5,019,522 5,434,095 5,262,336 5,528,058 TYPICAL PERFORMANCE CURVES APT25GP120B 100 100 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 90 80 70 60 50 40 TC=25°C 30 TC=125°C 20 IC, COLLECTOR CURRENT (A) 50 40 30 80 70 60 50 TJ = -55°C 40 TJ = 125°C 30 TJ = 25°C 20 10 IC = 25A TJ = 25°C 14 VCE= 240V VCE= 600V 12 10 8 VCE= 960V 6 4 2 0 1 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics IC= 50A 4.5 4 IC= 25A IC= 12.5A 3.5 3 2.5 2 1.5 1 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 0.5 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 0 1.10 1.05 1.0 0.95 0.90 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 40 60 80 100 GATE CHARGE (nC) FIGURE 4, Gate Charge 120 5 4.5 IC= 50A 4 IC= 25A 3.5 3 IC=12.5A 2.5 2 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -25 0 25 50 75 100 125 TJ, JUNCTION TRMPERATURE (°C) FIGURE 6, On State Voltage vs Junction Temperature 100 1.2 1.15 20 90 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev A 7-2002 0 5 0 FIGURE 2, Output Characteristics (VGE = 10V) 16 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 TC=25°C 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE TC=125°C 20 0 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 60 0 90 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 70 10 FIGURE 1, Output Characteristics(VGE = 15V) 100 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 80 10 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7411 IC, COLLECTOR CURRENT (A) 90 APT25GP120B 140 20 VGE= 10V VGE= 15V 15 10 VCE = 800V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 0 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 VGE =15V,TJ=125°C 120 VCE = 800V RG = 5Ω L = 100 µH 100 VGE =15V,TJ=25°C 80 VGE =10V,TJ=125°C 60 VGE =10V,TJ=25°C 40 20 0 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 120 RG = 5Ω, L = 100µH, VCE = 800V 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 160 RG = 5Ω, L = 100µH, VCE = 800V 140 TJ = 25° or 125°C,VGE = 10V 120 tf, FALL TIME (ns) tr, RISE TIME (ns) 100 80 60 40 TJ = 125°C, VGE = 10V or 15V 100 80 60 40 TJ = 25°C, VGE = 10V or 15V 20 20 TJ = 25° or 125°C,VGE =15V 0 0 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 3500 VCE = 800V VGE = +15V RG = 5 Ω 4000 TJ = 25°C,VGE =10V TJ = 125°C,VGE =10V 3000 2000 TJ = 125°C,VGE =15V 1000 TJ = 25°C,VGE =15V EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 5000 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 125°C, VGE = 10V or 15V 2500 2000 1500 1000 500 TJ = 25°C, VGE = 10V or 15V 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 15 20 25 30 35 40 45 50 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 6000 5000 VCE = 800V VGE = +15V RG = 5 Ω 5000 4000 Eon2, 50A Eoff, 50A 3000 Eon2, 25A 2000 Eoff, 25A Eon2, 12.5A 1000 Eoff, 12.5A 0 SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) Rev A 7-2002 3000 0 0 050-7411 VCE = 800V VGE = +15V RG = 5 Ω VCE = 800V VGE = +15V RG = 5 Ω Eon2,50A 4000 3000 Eon2,25A 2000 Eoff,50A Eoff, 25A 1000 E 12.5A on2, Eoff,12.5A 0 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT25GP120B 160 10,000 5,000 140 120 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) Cies 1,000 500 Coes 100 Cres 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 100 80 60 40 20 0 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.30 0.2 0.05 0.1 0.05 0.02 0.005 0.01 Note: PDM 0.01 t1 t2 SINGLE PULSE Duty Factor D = t1/t2 Peak TJ = PDM x ZθJC + TC 0.001 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 202 100 50 Fmax = min(f max1 , f max 2 ) TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 10 0.05 t d(on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 10 15 20 25 30 35 40 45 50 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Rev A 7-2002 5 f max1 = 050-7411 10-5 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) D=0.5 0.1 APT25GP120B APT 25GP120BD1 Gate Voltage 10% V CE IC V CC T J = 125 C t d(on) 18V tr A Collector Current 90% D.U.T. 5% 5% 10% Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage *DRIVER SAME TYPE AS D.U.T. T J = 125 C td(off) A tf Collector Voltage V CE IC 90% 100uH 0 V CLAMP 10% A Switching Energy D.U.T. DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions T0-247 Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 5.38 (.212) 6.20 (.244) Collector 6.15 (.242) BSC 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 2.87 (.113) 3.12 (.123) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) Rev A 7-2002 1.01 (.040) 1.40 (.055) 050-7411 B Collector Current 2.21 (.087) 2.59 (.102) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT's devices are covered by one or more of the following U.S.patents: 4,895,810 5,256,583 5,045,903 4,748,103 5,089,434 5,283,202 5,182,234 5,231,474 5,019,522 5,434,095 5,262,336 5,528,058