ETC APT25GP120B

APT25GP120B
1200V
®
POWER MOS 7 IGBT
A new generation of high voltage power IGBTs. Using punch-through
technology and a proprietary metal gate, this IGBT has been optimized for
very fast switching, making it ideal for high frequency, high voltage switchmode power supplies and tail current sensitive applications. In many cases,
the POWER MOS 7® IGBT provides a lower cost alternative to a Power
MOSFET.
• Low Conduction Loss
• 100 kHz operation @ 800V,11A
• Low Gate Charge
• 50 kHz operation @ 800V, 20A
• Ultrafast Tail Current shutoff
• RBSOA Rated
MAXIMUM RATINGS
Symbol
TO-247
G
C
E
C
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT25GP120B
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
75
I C2
Continuous Collector Current @ TC = 110°C
36
I CM
Pulsed Collector Current
RBSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
Amps
144
@ TC = 25°C
Reverse Bias Safe Operating Area @ TJ = 150°C
144
Total Power Dissipation
462
Watts
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
MIN
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C)
3.6
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C)
3.1
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
1200
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
2
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
nA
Rev A 7-2002
BVCES
UNIT
050-7411
Symbol
APT25GP120B
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Qgc
RBSOA
Total Gate Charge
TYP
Capacitance
2140
VGE = 0V, VCE = 25V
232
f = 1 MHz
44
Gate Charge
VGE = 15V
7.3
110
VCE = 600V
15
I C = 25A
50
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
MIN
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
144
A
15V, L = 100µH,VCE = 960V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
I C = 25A
52
4
Turn-on Switching Energy (Diode) 5
Eon1
70
µJ
584
12
VGE = 15V
109
I C = 25A
117
Current Fall Time
Turn-off Switching Energy
1456
Inductive Switching (125°C)
VCLAMP(Peak) = 800V
Turn-off Delay Time
18
R G = 5Ω
4
Turn-on Switching Energy (Diode)
ns
670
TJ = +25°C
6
Current Rise Time
Turn-on Switching Energy
18
R G = 5Ω
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
12
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCLAMP(Peak) = 800V
670
TJ = +125°C
5
ns
2103
6
µJ
1582
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.27
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.)
050-7411
Rev A 7-2002
APT Reserves the right to change, without notice, the specifications and information contained herein.
APT's devices are covered by one or more of the following U.S.patents:
4,895,810
5,256,583
5,045,903
4,748,103
5,089,434
5,283,202
5,182,234
5,231,474
5,019,522
5,434,095
5,262,336
5,528,058
TYPICAL PERFORMANCE CURVES
APT25GP120B
100
100
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
90
80
70
60
50
40
TC=25°C
30
TC=125°C
20
IC, COLLECTOR CURRENT (A)
50
40
30
80
70
60
50
TJ = -55°C
40
TJ = 125°C
30
TJ = 25°C
20
10
IC = 25A
TJ = 25°C
14
VCE= 240V
VCE= 600V
12
10
8
VCE= 960V
6
4
2
0
1
2 3
4 5 6
7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
IC= 50A
4.5
4
IC= 25A
IC= 12.5A
3.5
3
2.5
2
1.5
1
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0.5
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
0
1.10
1.05
1.0
0.95
0.90
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
40
60
80
100
GATE CHARGE (nC)
FIGURE 4, Gate Charge
120
5
4.5
IC= 50A
4
IC= 25A
3.5
3
IC=12.5A
2.5
2
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-25
0
25
50
75
100
125
TJ, JUNCTION TRMPERATURE (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
1.2
1.15
20
90
80
70
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev A 7-2002
0
5
0
FIGURE 2, Output Characteristics (VGE = 10V)
16
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
TC=25°C
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
TC=125°C
20
0
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
60
0
90
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
70
10
FIGURE 1, Output Characteristics(VGE = 15V)
100
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
80
10
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7411
IC, COLLECTOR CURRENT (A)
90
APT25GP120B
140
20
VGE= 10V
VGE= 15V
15
10
VCE = 800V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
0
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
VGE =15V,TJ=125°C
120
VCE = 800V
RG = 5Ω
L = 100 µH
100
VGE =15V,TJ=25°C
80
VGE =10V,TJ=125°C
60
VGE =10V,TJ=25°C
40
20
0
10
15
20 25 30 35
40 45 50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
120
RG = 5Ω, L = 100µH, VCE = 800V
10 15 20 25 30
35 40 45 50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
160
RG = 5Ω, L = 100µH, VCE = 800V
140
TJ = 25° or 125°C,VGE = 10V
120
tf, FALL TIME (ns)
tr, RISE TIME (ns)
100
80
60
40
TJ = 125°C, VGE = 10V or 15V
100
80
60
40
TJ = 25°C, VGE = 10V or 15V
20
20
TJ = 25° or 125°C,VGE =15V
0
0
10
15 20 25 30 35 40 45 50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3500
VCE = 800V
VGE = +15V
RG = 5 Ω
4000
TJ = 25°C,VGE =10V
TJ = 125°C,VGE =10V
3000
2000
TJ = 125°C,VGE =15V
1000
TJ = 25°C,VGE =15V
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
5000
10 15 20 25 30 35 40 45
50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ = 125°C, VGE = 10V or 15V
2500
2000
1500
1000
500
TJ = 25°C, VGE = 10V or 15V
10 15 20 25 30
35 40 45 50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10 15 20 25 30 35 40
45 50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
5000
VCE = 800V
VGE = +15V
RG = 5 Ω
5000
4000
Eon2, 50A
Eoff, 50A
3000
Eon2, 25A
2000
Eoff, 25A
Eon2, 12.5A
1000
Eoff, 12.5A
0
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
Rev A 7-2002
3000
0
0
050-7411
VCE = 800V
VGE = +15V
RG = 5 Ω
VCE = 800V
VGE = +15V
RG = 5 Ω
Eon2,50A
4000
3000
Eon2,25A
2000
Eoff,50A
Eoff, 25A
1000 E 12.5A
on2,
Eoff,12.5A
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT25GP120B
160
10,000
5,000
140
120
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
Cies
1,000
500
Coes
100
Cres
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
100
80
60
40
20
0
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.30
0.2
0.05
0.1
0.05
0.02
0.005
0.01
Note:
PDM
0.01
t1
t2
SINGLE PULSE
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
0.001
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
202
100
50
Fmax = min(f max1 , f max 2 )
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
10
0.05
t d(on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
10
15 20 25 30 35 40 45 50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
Rev A 7-2002
5
f max1 =
050-7411
10-5
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
D=0.5
0.1
APT25GP120B
APT 25GP120BD1
Gate Voltage
10%
V CE
IC
V CC
T J = 125 C
t d(on)
18V
tr
A
Collector Current
90%
D.U.T.
5%
5%
10%
Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
Gate Voltage
*DRIVER SAME TYPE AS D.U.T.
T J = 125 C
td(off)
A
tf
Collector Voltage
V CE
IC
90%
100uH
0
V CLAMP
10%
A
Switching Energy
D.U.T.
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
Collector
6.15 (.242) BSC
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
2.87 (.113)
3.12 (.123)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
Rev A 7-2002
1.01 (.040)
1.40 (.055)
050-7411
B
Collector Current
2.21 (.087)
2.59 (.102)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT's devices are covered by one or more of the following U.S.patents:
4,895,810
5,256,583
5,045,903
4,748,103
5,089,434
5,283,202
5,182,234
5,231,474
5,019,522
5,434,095
5,262,336
5,528,058