ETC APT80GP60J

APT80GP60J
600V
®
POWER MOS 7 IGBT
E
E
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
27
2
T-
C
G
SO
"UL Recognized"
• Low Conduction Loss
• 50 kHz operation @ 400V, 50A
• Low Gate Charge
• 20 kHz operation @ 400V, 72A
• Ultrafast Tail Current shutoff
• SSOA rated
ISOTOP ®
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
I C1
Continuous Collector Current @ TC = 25°C
151
I C2
Continuous Collector Current @ TC = 110°C
68
I CM
Pulsed Collector Current
VGEM
SSOA
PD
TJ,TSTG
TL
UNIT
APT80GP60J
1
Volts
Amps
270
@ TC = 25°C
Switching Safe Operating Area @ TJ = 150°C
270A @ 600V
462
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
MIN
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.0mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 25°C)
2.5
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 125°C)
2.6
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
1.0
2
Gate-Emitter Leakage Current (VGE = ±20V)
UNIT
Volts
mA
5
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
nA
Rev - 8-2002
Characteristic / Test Conditions
APT Website - http://www.advancedpower.com
050-7426
Symbol
APT80GP60J
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Qgc
SSOA
Total Gate Charge
TYP
Capacitance
9860
VGE = 0V, VCE = 25V
722
f = 1 MHz
43
Gate Charge
VGE = 15V
6.3
286
VCE = 300V
49
I C = 80A
81
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching SOA
MIN
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
350
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
I C = 80A
103
4
Turn-on Switching Energy (Diode) 5
Eon1
159
µJ
1882
29
VGE = 15V
167
I C = 80A
117
Current Fall Time
Turn-off Switching Energy
1883
Inductive Switching (125°C)
VCC = 400V
Turn-off Delay Time
58
R G = 5Ω
4
Turn-on Switching Energy (Diode)
ns
TBD
TJ = +25°C
6
Current Rise Time
Turn-on Switching Energy
58
R G = 5Ω
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
29
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 400V
TBD
TJ = +125°C
5
ns
2633
6
µJ
2270
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.27
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
29.2
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.)
050-7426
Rev - 8-2002
APT Reserves the right to change, without notice, the specifications and information contained herein.
APT's devices are covered by one or more of the following U.S.patents:
4,895,810
5,256,583
5,045,903
4,748,103
5,089,434
5,283,202
5,182,234
5,231,474
5,019,522
5,434,095
5,262,336
5,528,058
APT80GP60J
TYPICAL PERFORMANCE CURVES
200
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
160
180
TC=-55°C
140
120
TC=25°C
100
TC=125°C
80
60
40
IC, COLLECTOR CURRENT (A)
180
60
40
200
150
TJ = 25°C
100
TJ = 125°C
50
14
IC = 80A
TJ = 25°C
VCE=120V
12
VCE=300V
10
8
VCE=480V
6
4
2
0
1
2
3
4
5
6
7
8
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
IC= 160A
IC= 120A
3
IC= 80A
2.5
IC= 40A
2
1.5
1
0.5
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.2
1.15
1.10
1.05
1.0
0.95
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
50
100
150
200
250
GATE CHARGE (nC)
FIGURE 4, Gate Charge
300
4
3.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC= 160A
3
IC= 80A
2.5
2
IC=40A
1.5
1
0.5
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
200
160
120
80
40
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev - 8-2002
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
4
0
FIGURE 2, Output Characteristics (VGE = 10V)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250
TC=125°C
80
0 0.5
1
1.5
2
2.5
3
3.5
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
300
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
100
0
TJ = -55°C
TC=25°C
120
20
250µs PULSE TEST
<0.5 % DUTY CYCLE
TC=-55°C
140
0
FIGURE 1, Output Characteristics(VGE = 15V)
350
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
160
20
0 0.5
1
1.5
2
2.5
3
3.5
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7426
IC, COLLECTOR CURRENT (A)
200
200
45
180
VGE= 10V
40
35
30
VGE= 15V
25
20
15
VCE = 400V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
10
5
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
APT80GP60J
50
160
140
VGE =15V,TJ=25°C
120
100
VGE =10V,TJ=125°C
VGE =10V,TJ=25°C
80
60
40
20
VCE = 400V
RG = 5Ω
L = 100 µH
0
10 20 30 40 50 60 70 80 90 100 110 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
10 20 30 40 50 60 70 80 90 100 110 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
250
160
0
RG =5Ω, L = 100µH, VCE = 400V
140
200
RG =5Ω, L = 100µH, VCE = 400V
TJ = 125°C, VGE = 10V or 15V
120
TJ = 25 or 125°C,VGE = 10V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
VGE =15V,TJ=125°C
150
100
100
80
60
TJ = 25°C, VGE = 10V or 15V
40
50
20
TJ = 25 or 125°C,VGE = 15V
0
10 20 30 40 50 60 70 80 90 100 110 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
050-7426
5000
TJ = 25°C, VGE=10V
3000 TJ =125°C,VGE=10V
2000
1000
TJ = 25°C, VGE=15V
EOFF, TURN OFF ENERGY LOSS (µJ)
TJ =125°C, VGE=15V
VCE = 400V
L = 100 µH
RG = 5 Ω
4000
10 20 30 40 50 60 70 80 90 100 110 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
VCE = 400V
L = 100 µH
RG = 5 Ω
TJ = 125°C, VGE = 10V or 15V
4000
3000
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
10 20 30 40 50 60 70 80 90 100 110 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10 20 30 40 50 60 70 80 90 100 110 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
8000
5000
VCE = 400V
VGE = +15V
TJ = 125°C
7000
Eoff 120A
6000
5000
Eon2 120A
Eoff 80A
4000
Eon2 80A
3000
2000
Eon2 40A
1000
0
Eoff40A
0
0
5
10
15
20
25
30
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
Rev - 8-2002
EON2, TURN ON ENERGY LOSS (µJ)
5000
0
VCE = 400V
VGE = +15V
RG = 5 Ω
Eoff 120A
4000
3000
Eon2 120A
2000
Eoff 80A
1000
Eon2 80A
Eon2 40A
Eoff 40A
0
-50 -25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
20,000
10,000
APT80GP60J
300
Cies
2m50
1,000
Coes
500
100
50
Cres
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
IC, COLLECTOR CURRENT (A)
5,000
200
150
100
50
0
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.3
0.2
0.05
0.1
0.01
0.02
Note:
0.005
0.01
PDM
0.05
t1
t2
SINGLE PULSE
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
0.001
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
170
100
50
Fmax = min(f max1 , f max 2 )
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
10
8
20
f max1 =
0.05
t d (on) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
Rev - 8-2002
40
60
80
100
120
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
050-7426
10-5
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
D=0.5
0.1
APT80GP60J
APT 80GP60JD3
10%
Gate Voltage
IC
V CC
T J = 125 C
t d(on)
18V
V CE
Collector Current
90%
tr
A
D.U.T.
10%
5%
5%
Switching
Energy
Figure 21, Inductive Switching Test Circuit
Collector Voltage
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
Gate Voltage
*DRIVER SAME TYPE AS D.U.T.
Collector Voltage
t d(off)
T J = 125 C
A
90%
V CE
Collector Current
IC
100uH
tf
V CLAMP
B
10%
0
A
Switching
Energy
D.U.T.
DRIVER*
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 24, EON1 Test Circuit
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
14.9 (.587)
15.1 (.594)
Rev - 8-2002
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
050-7426
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
1.95 (.077)
2.14 (.084)
* Emitter
Collector
30.1 (1.185)
30.3 (1.193)
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter
Gate
Dimensions in Millimeters and (Inches)
APT's devices are covered by one or more of the following U.S.patents:
4,895,810
5,256,583
5,045,903
4,748,103
5,089,434
5,283,202
5,182,234
5,231,474
5,019,522
5,434,095
5,262,336
5,528,058