APT80GP60J 600V ® POWER MOS 7 IGBT E E The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. 27 2 T- C G SO "UL Recognized" • Low Conduction Loss • 50 kHz operation @ 400V, 50A • Low Gate Charge • 20 kHz operation @ 400V, 72A • Ultrafast Tail Current shutoff • SSOA rated ISOTOP ® C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 I C1 Continuous Collector Current @ TC = 25°C 151 I C2 Continuous Collector Current @ TC = 110°C 68 I CM Pulsed Collector Current VGEM SSOA PD TJ,TSTG TL UNIT APT80GP60J 1 Volts Amps 270 @ TC = 25°C Switching Safe Operating Area @ TJ = 150°C 270A @ 600V 462 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS MIN BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.0mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 25°C) 2.5 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 125°C) 2.6 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 1.0 2 Gate-Emitter Leakage Current (VGE = ±20V) UNIT Volts mA 5 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. nA Rev - 8-2002 Characteristic / Test Conditions APT Website - http://www.advancedpower.com 050-7426 Symbol APT80GP60J DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Qge Qgc SSOA Total Gate Charge TYP Capacitance 9860 VGE = 0V, VCE = 25V 722 f = 1 MHz 43 Gate Charge VGE = 15V 6.3 286 VCE = 300V 49 I C = 80A 81 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Switching SOA MIN TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 350 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff I C = 80A 103 4 Turn-on Switching Energy (Diode) 5 Eon1 159 µJ 1882 29 VGE = 15V 167 I C = 80A 117 Current Fall Time Turn-off Switching Energy 1883 Inductive Switching (125°C) VCC = 400V Turn-off Delay Time 58 R G = 5Ω 4 Turn-on Switching Energy (Diode) ns TBD TJ = +25°C 6 Current Rise Time Turn-on Switching Energy 58 R G = 5Ω Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 29 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 400V TBD TJ = +125°C 5 ns 2633 6 µJ 2270 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .27 RΘJC Junction to Case (DIODE) N/A Package Weight 29.2 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.) 050-7426 Rev - 8-2002 APT Reserves the right to change, without notice, the specifications and information contained herein. APT's devices are covered by one or more of the following U.S.patents: 4,895,810 5,256,583 5,045,903 4,748,103 5,089,434 5,283,202 5,182,234 5,231,474 5,019,522 5,434,095 5,262,336 5,528,058 APT80GP60J TYPICAL PERFORMANCE CURVES 200 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 160 180 TC=-55°C 140 120 TC=25°C 100 TC=125°C 80 60 40 IC, COLLECTOR CURRENT (A) 180 60 40 200 150 TJ = 25°C 100 TJ = 125°C 50 14 IC = 80A TJ = 25°C VCE=120V 12 VCE=300V 10 8 VCE=480V 6 4 2 0 1 2 3 4 5 6 7 8 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics IC= 160A IC= 120A 3 IC= 80A 2.5 IC= 40A 2 1.5 1 0.5 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.2 1.15 1.10 1.05 1.0 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 50 100 150 200 250 GATE CHARGE (nC) FIGURE 4, Gate Charge 300 4 3.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE IC= 160A 3 IC= 80A 2.5 2 IC=40A 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 200 160 120 80 40 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev - 8-2002 3.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 4 0 FIGURE 2, Output Characteristics (VGE = 10V) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250 TC=125°C 80 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 300 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 100 0 TJ = -55°C TC=25°C 120 20 250µs PULSE TEST <0.5 % DUTY CYCLE TC=-55°C 140 0 FIGURE 1, Output Characteristics(VGE = 15V) 350 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 160 20 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7426 IC, COLLECTOR CURRENT (A) 200 200 45 180 VGE= 10V 40 35 30 VGE= 15V 25 20 15 VCE = 400V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 10 5 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) APT80GP60J 50 160 140 VGE =15V,TJ=25°C 120 100 VGE =10V,TJ=125°C VGE =10V,TJ=25°C 80 60 40 20 VCE = 400V RG = 5Ω L = 100 µH 0 10 20 30 40 50 60 70 80 90 100 110 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 10 20 30 40 50 60 70 80 90 100 110 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 250 160 0 RG =5Ω, L = 100µH, VCE = 400V 140 200 RG =5Ω, L = 100µH, VCE = 400V TJ = 125°C, VGE = 10V or 15V 120 TJ = 25 or 125°C,VGE = 10V tf, FALL TIME (ns) tr, RISE TIME (ns) VGE =15V,TJ=125°C 150 100 100 80 60 TJ = 25°C, VGE = 10V or 15V 40 50 20 TJ = 25 or 125°C,VGE = 15V 0 10 20 30 40 50 60 70 80 90 100 110 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 050-7426 5000 TJ = 25°C, VGE=10V 3000 TJ =125°C,VGE=10V 2000 1000 TJ = 25°C, VGE=15V EOFF, TURN OFF ENERGY LOSS (µJ) TJ =125°C, VGE=15V VCE = 400V L = 100 µH RG = 5 Ω 4000 10 20 30 40 50 60 70 80 90 100 110 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current VCE = 400V L = 100 µH RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 4000 3000 2000 1000 TJ = 25°C, VGE = 10V or 15V 0 10 20 30 40 50 60 70 80 90 100 110 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 10 20 30 40 50 60 70 80 90 100 110 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 8000 5000 VCE = 400V VGE = +15V TJ = 125°C 7000 Eoff 120A 6000 5000 Eon2 120A Eoff 80A 4000 Eon2 80A 3000 2000 Eon2 40A 1000 0 Eoff40A 0 0 5 10 15 20 25 30 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) Rev - 8-2002 EON2, TURN ON ENERGY LOSS (µJ) 5000 0 VCE = 400V VGE = +15V RG = 5 Ω Eoff 120A 4000 3000 Eon2 120A 2000 Eoff 80A 1000 Eon2 80A Eon2 40A Eoff 40A 0 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 20,000 10,000 APT80GP60J 300 Cies 2m50 1,000 Coes 500 100 50 Cres 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage IC, COLLECTOR CURRENT (A) 5,000 200 150 100 50 0 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.3 0.2 0.05 0.1 0.01 0.02 Note: 0.005 0.01 PDM 0.05 t1 t2 SINGLE PULSE Duty Factor D = t1/t2 Peak TJ = PDM x ZθJC + TC 0.001 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 170 100 50 Fmax = min(f max1 , f max 2 ) TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 10 8 20 f max1 = 0.05 t d (on) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC Rev - 8-2002 40 60 80 100 120 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 050-7426 10-5 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) D=0.5 0.1 APT80GP60J APT 80GP60JD3 10% Gate Voltage IC V CC T J = 125 C t d(on) 18V V CE Collector Current 90% tr A D.U.T. 10% 5% 5% Switching Energy Figure 21, Inductive Switching Test Circuit Collector Voltage Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage *DRIVER SAME TYPE AS D.U.T. Collector Voltage t d(off) T J = 125 C A 90% V CE Collector Current IC 100uH tf V CLAMP B 10% 0 A Switching Energy D.U.T. DRIVER* Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) 14.9 (.587) 15.1 (.594) Rev - 8-2002 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 050-7426 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) 1.95 (.077) 2.14 (.084) * Emitter Collector 30.1 (1.185) 30.3 (1.193) * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Emitter Gate Dimensions in Millimeters and (Inches) APT's devices are covered by one or more of the following U.S.patents: 4,895,810 5,256,583 5,045,903 4,748,103 5,089,434 5,283,202 5,182,234 5,231,474 5,019,522 5,434,095 5,262,336 5,528,058