TI SN74AVC8T245PWR

SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
FEATURES
•
•
DGV OR PW PACKAGE
(TOP VIEW)
VCCA
DIR
A1
A2
A3
A4
A5
A6
A7
A8
GND
GND
1
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
RHL PACKAGE
(TOP VIEW)
VCCB
VCCB
OE
B1
B2
B3
B4
B5
B6
B7
B8
GND
DIR
A1
A2
A3
A4
A5
A6
A7
A8
GND
VCCB
•
•
Max Data Rates
– 170 Mbps (VCCA < 1.8 V or VCCB < 1.8 V)
– 320 Mbps (VCCA ≥ 1.8 V and VCCB ≥ 1.8 V)
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 8000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
1
24
3
4
23 VCCB
22 OE
21 B1
5
6
20 B2
19 B3
7
8
18 B4
17 B5
9
10
16 B6
15 B7
2
14 B8
11
12
13
GND
•
•
VCCA
•
Control Inputs VIH/VIL Levels Are Referenced
to VCCA Voltage
VCC Isolation Feature – If Either VCC Input Is at
GND, All I/O Ports Are in the High-Impedance
State
Ioff Supports Partial Power-Down-Mode
Operation
Fully Configurable Dual-Rail Design Allows
Each Port to Operate Over the Full 1.4-V to
3.6-V Power-Supply Range
I/Os Are 4.6-V Tolerant
GND
•
DESCRIPTION/ORDERING INFORMATION
This 8-bit noninverting bus transceiver uses two separate configurable power-supply rails. The SN74AVC8T245
is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. The
A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to
track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage
bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.
ORDERING INFORMATION
PACKAGE (1)
TA
QFN – RHL
–40°C to 85°C
TSSOP – PW
TVSOP – DGV
(1)
ORDERABLE PART NUMBER
Reel of 1000
SN74AVC8T245RHLR
Tube of 60
SN74AVC8T245PW
Reel of 2000
SN74AVC8T245PWR
Reel of 2000
SN74AVC8T245DGVR
TOP-SIDE MARKING
WE245
WE245
WE245
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2003–2007, Texas Instruments Incorporated
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
The SN74AVC8T245 is designed for asynchronous communication between data buses. The device transmits
data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the
direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are
effectively isolated.
The SN74AVC8T245 is designed so the control pins (DIR and OE) are supplied by VCCA.
The SN74AVC8T245 solution is compatible with a single-supply system and can be replaced later with a '245
function, with minimal printed circuit board redesign.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
The VCC isolation feature ensures that if either VCC input is at GND, both ports are in the high-impedance state.
To ensure the high-impedance state during power up or power down, OE shall be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
FUNCTION TABLE
(each 8-bit section)
INPUTS
OPERATION
OE
DIR
L
L
B data to A bus
L
H
A data to B bus
H
X
All outputs Hi-Z
LOGIC DIAGRAM (POSITIVE LOGIC)
DIR
2
22
OE
A1
3
21
To Seven Other Channels
2
Submit Documentation Feedback
B1
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
VCCA
VCCB
VI
MIN
MAX
–0.5
4.6
I/O ports (A port)
–0.5
4.6
I/O ports (B port)
–0.5
4.6
Control inputs
–0.5
4.6
A port
–0.5
4.6
B port
–0.5
4.6
A port
–0.5 VCCA + 0.5
B port
–0.5 VCCB + 0.5
Supply voltage range
Input voltage range (2)
UNIT
V
V
VO
Voltage range applied to any output
in the high-impedance or power-off state (2)
VO
Voltage range applied to any output in the high or low state (2) (3)
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through VCCA, VCCB, or GND
θJA
Package thermal impedance (4)
Tstg
Storage temperature range
DGV package
86
PW package
88
RHL package
(1)
(2)
(3)
(4)
V
V
°C/W
43
–65
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
The package thermal impedance is calculated in accordance with JESD 51-7.
Submit Documentation Feedback
3
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
Recommended Operating Conditions (1) (2) (3)
VCCI
MIN
MAX
UNIT
VCCA
Supply voltage
1.2
3.6
V
VCCB
Supply voltage
1.2
3.6
V
High-level
input voltage
VIH
Low-level
input voltage
VIL
High-level
input voltage
VIH
VIL
Low-level
input voltage
VI
Input voltage
VO
Output voltage
IOH
Data inputs
Data inputs
DIR
(referenced to VCCA)
DIR
(referenced to VCCA)
VCCI × 0.65
1.95 V to 2.7 V
1.6
2.7 V to 3.6 V
2
V
1.2 V to 1.95 V
VCCI × 0.35
1.95 V to 2.7 V
0.7
2.7 V to 3.6 V
0.8
1.2 V to 1.95 V
VCCA × 0.65
1.95 V to 2.7 V
1.6
2.7 V to 3.6 V
2
1.2 V to 1.95 V
VCCA × 0.35
1.95 V to 2.7 V
0.7
2.7 V to 3.6 V
3.6
VCCO
3-state
0
3.6
Input transition rise or fall rate
TA
Operating free-air temperature
V
0.8
0
Low-level output current
V
V
Active state
∆t/∆v
(1)
(2)
(3)
1.2 V to 1.95 V
0
High-level output current
IOL
4
VCCO
1.2 V
–3
1.4 V to 1.6 V
–6
1.65 V to 1.95 V
–8
2.3 V to 2.7 V
–9
3 V to 3.6 V
–12
1.2 V
3
1.4 V to 1.6 V
6
1.65 V to 1.95 V
8
2.3 V to 2.7 V
9
3 V to 3.6 V
12
–40
V
V
mA
mA
5
ns/V
85
°C
VCCI is the VCC associated with the input port.
VCCO is the VCC associated with the output port.
All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Submit Documentation Feedback
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
Electrical Characteristics
(1) (2)
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
1.2 V to 3.6 V
1.2 V to 3.6 V
IOH = –3 mA
1.2 V
1.2 V
IOH = –6 mA
1.4 V
1.4 V
1.05
1.65 V
1.65 V
1.2
IOH = –9 mA
2.3 V
2.3 V
1.75
IOH = –12 mA
3V
3V
2.3
IOL = 100 µA
1.2 V to 3.6 V
1.2 V to 3.6 V
IOL = 3 mA
1.2 V
1.2 V
IOL = 6 mA
1.4 V
1.4 V
0.35
1.65 V
1.65 V
0.45
IOL = 9 mA
2.3 V
2.3 V
0.55
IOL = 12 mA
3V
3V
0.7
1.2 V to 3.6 V
1.2 V to 3.6 V
IOH = –8 mA
VOL
IOL = 8 mA
VI = VIH
VI = VIL
II
Control
inputs
VI = VCCA or GND
Ioff
A or B
port
VI or VO = 0 to 3.6 V
IOZ (3)
A or B
port
VO = VCCO or GND,
VI = VCCI or GND,
OE = VIH
ICCA
VI = VCCI or GND, IO = 0
ICCB
VI = VCCI or GND, IO = 0
I<Subscript>C
CA</Subscript
>+
I<Subscript>C
CB</Subscript
>
–40°C to 85°C
VCCB
IOH = –100 µA
VOH
TA = 25°C
VCCA
VI = VCCI or GND, IO = 0
MIN
TYP
MAX
MIN
MAX
UNIT
VCCO – 0.2
0.95
V
0.2
0.15
±0.025
±0.25
±1
0V
0 V to 3.6 V
±0.1
±1
±5
0 V to 3.6 V
0V
±0.1
±1
±5
3.6 V
3.6 V
±0.5
±2.5
±5
1.2 V to 3.6 V
1.2 V to 3.6 V
15
0V
3.6 V
–2
V
µA
µA
µA
µA
3.6 V
0V
15
1.2 V to 3.6 V
1.2 V to 3.6 V
15
0V
3.6 V
15
3.6 V
0V
–2
1.2 V to 3.6 V
1.2 V to 3.6 V
25
µA
µA
Ci
Control
inputs
VI = 3.3 V or GND
3.3 V
3.3 V
3.5
4.5
pF
Cio
A or B
port
VO = 3.3 V or GND
3.3 V
3.3 V
6
7
pF
(1)
(2)
(3)
VCCO is the VCC associated with the output port.
VCCI is the VCC associated with the input port.
For I/O ports, the parameter IOZ includes the input leakage current.
Submit Documentation Feedback
5
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
Switching Characteristics
over recommended operating free-air temperature range, VCCA = 1.2 V (see Figure 10)
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPZH
tPZL
tPZH
tPZL
tPHZ
tPLZ
tPHZ
tPLZ
FROM
(INPUT)
TO
(OUTPUT)
A
B
B
A
OE
A
OE
B
OE
A
OE
B
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
TYP
TYP
TYP
TYP
TYP
3.1
2.6
2.5
3
3.5
3.1
2.6
2.5
3
3.5
3.1
2.7
2.5
2.4
2.3
3.1
2.7
2.5
2.4
2.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.1
4
3.5
3.2
3.1
5.1
4
3.5
3.2
3.1
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.7
4
4.1
4.3
5.1
4.7
4
4.1
4.3
5.1
UNIT
ns
ns
ns
ns
ns
ns
Switching Characteristics
over recommended operating free-air temperature range, VCCA = 1.5 V ± 0.1 V (see Figure 10)
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPZH
tPZL
tPZH
tPZL
tPHZ
tPLZ
tPHZ
tPLZ
6
FROM
(INPUT)
TO
(OUTPUT)
A
B
B
A
OE
A
OE
B
OE
A
OE
B
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
2.7
0.5
5.4
0.5
4.6
0.5
4.9
0.5
6.8
2.7
0.5
5.4
0.5
4.6
0.5
4.9
0.5
6.8
2.6
0.5
5.4
0.5
5.1
0.5
4.7
0.5
4.5
2.6
0.5
5.4
0.5
5.1
0.5
4.7
0.5
4.5
3.7
1.1
8.7
1.1
8.7
1.1
8.7
1.1
8.7
3.7
1.1
8.7
1.1
8.7
1.1
8.7
1.1
8.7
4.8
1.1
7.6
1.1
7.1
1
5.6
1
5.2
4.8
1.1
7.6
1.1
7.1
1
5.6
1
5.2
3.1
0.5
8.6
0.5
8.6
0.5
8.6
0.5
8.6
3.1
0.5
8.6
0.5
8.6
0.5
8.6
0.5
8.6
4.1
0.5
8.4
0.5
7.6
0.5
7.2
0.5
7.8
4.1
0.5
8.4
0.5
7.6
0.5
7.2
0.5
7.8
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
ns
ns
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
Switching Characteristics
over recommended operating free-air temperature range, VCCA = 1.8 V ± 0.15 V (see Figure 10)
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPZH
tPZL
tPZH
tPZL
tPHZ
tPLZ
tPHZ
tPLZ
FROM
(INPUT)
TO
(OUTPUT)
A
B
B
A
OE
A
OE
B
OE
A
OE
B
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
UNIT
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
2.5
0.5
5.1
0.5
4.4
0.5
4
0.5
3.9
2.5
0.5
5.1
0.5
4.4
0.5
4
0.5
3.9
2.5
0.5
4.6
0.5
4.4
0.5
3.9
0.5
3.7
2.5
0.5
4.6
0.5
4.4
0.5
3.9
0.5
3.7
3
1
6.8
1
6.8
1
6.8
1
6.8
3
1
6.8
1
6.8
1
6.8
1
6.8
4.6
1.1
8.2
1
6.7
0.5
5.1
0.5
4.5
4.6
1.1
8.2
1
6.7
0.5
5.1
0.5
4.5
2.8
0.5
7.1
0.5
7.1
0.5
7.1
0.5
7.1
2.8
0.5
7.1
0.5
7.1
0.5
7.1
0.5
7.1
3.9
0.5
7.8
0.5
6.9
0.5
6
0.5
5.8
3.9
0.5
7.8
0.5
6.9
0.5
6
0.5
5.8
ns
ns
ns
ns
ns
ns
Switching Characteristics
over recommended operating free-air temperature range, VCCA = 2.5 V ± 0.2 V (see Figure 10)
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPZH
tPZL
tPZH
tPZL
tPHZ
tPLZ
tPHZ
tPLZ
FROM
(INPUT)
TO
(OUTPUT)
A
B
B
A
OE
A
OE
B
OE
A
OE
B
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
2.4
0.5
4.7
0.5
3.9
0.5
3.1
0.5
2.8
2.4
0.5
4.7
0.5
3.9
0.5
3.1
0.5
2.8
3
0.5
4.9
0.5
4
0.5
3.1
0.5
2.9
3
0.5
4.9
0.5
4
0.5
3.1
0.5
2.9
2.2
0.5
4.8
0.5
4.8
0.5
4.8
0.5
4.8
2.2
0.5
4.8
0.5
4.8
0.5
4.8
0.5
4.8
4.5
1.1
7.9
0.5
6.4
0.5
4.6
0.5
4
4.5
1.1
7.9
0.5
6.4
0.5
4.6
0.5
4
1.8
0.5
5.1
0.5
5.1
0.5
5.1
0.5
5.1
1.8
0.5
5.1
0.5
5.1
0.5
5.1
0.5
5.1
3.6
0.5
7.1
0.5
6.3
0.5
5.1
0.5
3.9
3.6
0.5
7.1
0.5
6.3
0.5
5.1
0.5
3.9
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
ns
ns
7
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
Switching Characteristics
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (see Figure 10)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
A
B
B
A
OE
A
OE
B
OE
A
OE
B
tPLH
tPHL
tPLH
tPHL
tPZH
tPZL
tPZH
tPZL
tPHZ
tPLZ
tPHZ
tPLZ
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
2.3
0.5
4.5
0.5
3.7
0.5
2.9
0.5
2.5
2.3
0.5
4.5
0.5
3.3
0.5
2.9
0.5
2.5
3.5
0.5
6.8
0.5
3.9
0.5
2.8
0.5
2.5
3.5
0.5
6.8
0.5
3.9
0.5
2.8
0.5
2.5
2
0.5
4
0.5
4
0.5
4
0.5
4
2
0.5
4
0.5
4
0.5
4
0.5
4
4.5
1.1
7.8
0.5
6.2
0.5
4.5
0.5
3.9
4.5
1.1
7.8
0.5
6.2
0.5
4.5
0.5
3.9
1.7
0.5
4
0.5
4
0.5
4
0.5
4
1.7
0.5
4
0.5
4
0.5
4
0.5
4
3.4
0.5
6.9
0.5
6
0.5
4.8
0.5
4.2
3.4
0.5
6.9
0.5
6
0.5
4.8
0.5
4.2
UNIT
ns
ns
ns
ns
ns
ns
Operating Characteristics
TA = 25°C
VCCA =
VCCB = 1.2 V
VCCA =
VCCB = 1.5 V
VCCA =
VCCB = 1.8 V
VCCA =
VCCB = 2.5 V
VCCA =
VCCB = 3.3 V
TYP
TYP
TYP
TYP
TYP
1
1
1
1
1
1
1
1
1
1
12
12
12
13
14
Outputs
disabled
1
1
1
1
1
Outputs
enabled
12
12
12
13
14
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TEST
CONDITIONS
PARAMETER
A to B
CpdA
(1)
B to A
A to B
CpdB
(1)
B to A
(1)
Outputs
enabled
Outputs
disabled
Outputs
enabled
Outputs
disabled
Outputs
enabled
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
pF
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
pF
Outputs
disabled
Power dissipation capacitance per transceiver
Table 1. Typical Total Static Power Consumption (ICCA + ICCB)
VCCB
8
UNIT
VCCA
0V
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V
0V
0
<0.5
<0.5
<0.5
<0.5
<0.5
1.2 V
<0.5
<1
<1
<1
<1
1
1.5 V
<0.5
<1
<1
<1
<1
1
1.8 V
<0.5
<1
<1
<1
<1
<1
2.5 V
<0.5
1
<1
<1
<1
<1
3.3 V
<0.5
1
<1
<1
<1
<1
Submit Documentation Feedback
UNIT
µA
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
TYPICAL CHARACTERISTICS
Typical Propagation Delay (A to B) vs Load Capacitance
TA = 25°C, VCCA = 1.2 V
6
5
tPD − ns
4
3
2
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
1
VCCB = 2.5 V
VCCB = 3.3 V
0
0
10
20
30
40
50
60
CL − pF
Figure 1.
6
6
5
5
4
4
tPHL − ns
tPLH − ns
Typical Propagation Delay (A to B) vs Load Capacitance
TA = 25°C, VCCA = 1.5 V
3
2
3
VCCB = 1.2 V
2
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 1.8 V
1
1
VCCB = 2.5 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 3.3 V
0
0
0
10
20
30
40
50
60
0
10
20
30
CL − pF
CL − pF
Figure 2.
Figure 3.
Submit Documentation Feedback
40
50
60
9
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
TYPICAL CHARACTERISTICS (continued)
Typical Propagation Delay (A to B) vs Load Capacitance
TA = 25°C, VCCA = 1.8 V
6
6
5
VCCB = 1.2 V
VCCB = 1.5 V
5
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
4
tPHL − ns
4
tPLH − ns
VCCB = 1.2 V
VCCB = 1.5 V
3
3
2
2
1
1
0
0
0
10
20
30
40
50
60
0
10
20
CL − pF
30
40
50
60
CL − pF
Figure 4.
Figure 5.
Typical Propagation Delay (A to B) vs Load Capacitance
TA = 25°C, VCCA = 2.5 V
6
6
5
VCCB = 1.2 V
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.5 V
5
VCCB = 1.8 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 2.5 V
VCCB = 3.3 V
4
VCCB = 3.3 V
tPHL − ns
tPLH − ns
4
3
3
2
2
1
1
0
0
0
10
20
30
40
50
60
0
CL − pF
20
30
CL − pF
Figure 6.
10
10
Figure 7.
Submit Documentation Feedback
40
50
60
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
TYPICAL CHARACTERISTICS (continued)
Typical Propagation Delay (A to B) vs Load Capacitance
TA = 25°C, VCCA = 3.3 V
6
6
5
VCCB = 1.2 V
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.5 V
5
VCCB = 1.8 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 2.5 V
VCCB = 3.3 V
4
VCCB = 3.3 V
tPHL − ns
tPLH − ns
4
3
3
2
2
1
1
0
0
0
10
20
30
40
50
60
0
10
20
30
CL − pF
CL − pF
Figure 8.
Figure 9.
Submit Documentation Feedback
40
50
60
11
SN74AVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES517H – DECEMBER 2003 – REVISED FEBRUARY 2007
PARAMETER MEASUREMENT INFORMATION
2 × VCCO
S1
RL
From Output
Under Test
Open
GND
CL
(see Note A)
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCCO
GND
RL
tw
LOAD CIRCUIT
VCCI
VCCI/2
Input
VCCO
CL
RL
VTP
1.2 V
1.5 V ± 0.1 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
15 pF
15 pF
15 pF
15 pF
15 pF
2 kΩ
2 kΩ
2 kΩ
2 kΩ
2 kΩ
0.1 V
0.1 V
0.15 V
0.15 V
0.3 V
VCCI/2
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VCCA
Output
Control
(low-level
enabling)
VCCA/2
VCCA/2
0V
tPZL
VCCI
Input
VCCI/2
VCCI/2
0V
tPLH
Output
tPHL
VOH
VCCO/2
VOL
VCCO/2
tPLZ
VCCO
Output
Waveform 1
S1 at 2 × VCCO
(see Note B)
VCCO/2
VOL + VTP
VOL
tPZH
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
tPHZ
VCCO/2
VOH − VTP
VOH
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRRv10 MHz, ZO = 50 Ω, dv/dt ≥ 1 V/ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. VCCI is the VCC associated with the input port.
I. VCCO is the VCC associated with the output port.
Figure 10. Load Circuit and Voltage Waveforms
12
Submit Documentation Feedback
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless
www.ti.com/lpw
Telephony
www.ti.com/telephony
Mailing Address:
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated