APT50GN60B(G) 600V TYPICAL PERFORMANCE CURVES APT50GN60B APT50GN60BG* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive design and minimizes losses. TO -2 47 G C • 600V Field Stop • • • • Trench Gate: Low VCE(on) Easy Paralleling 6µs Short Circuit Capability 175°C Rated E C G E Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT50GN60B(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM Pulsed Collector Current SSOA PD TJ,TSTG TL 1 8 @ TC = 25°C UNIT Volts 107 64 Amps 150 @ TC = 175°C 150A @ 600V Switching Safe Operating Area @ TJ = 175°C 366 Total Power Dissipation Operating and Storage Junction Temperature Range Watts -55 to 175 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES RG(int) (VCE = VGE, I C = 800µA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) TYP MAX 5.0 5.8 6.5 1.05 1.45 1.85 25 2 600 N/A CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA TBD Gate-Emitter Leakage Current (VGE = ±20V) Intergrated Gate Resistor Volts 1.7 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) Units nA Ω 7-2005 MIN Rev B Characteristic / Test Conditions 050-7612 Symbol DYNAMIC CHARACTERISTICS Symbol APT50GN60B(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA SCSOA td(on) tr td(off) tf Eon1 9.0 VGE = 15V 325 VGE = µs 20 25 ns 230 100 1185 TJ = +25°C µJ 1275 1565 Inductive Switching (125°C) 20 VCC = 400V 25 Current Rise Time Turn-off Delay Time VGE = 15V 260 RG = 4.3Ω 7 140 1205 I C = 50A Current Fall Time Turn-on Switching Energy (Diode) nC 6 6 Eon2 V A I C = 50A Turn-on Switching Energy pF 150 VCC = 400V 5 UNIT 175 7, Inductive Switching (25°C) 4 MAX 25 RG = 4.3Ω 7 Turn-on Delay Time Turn-off Switching Energy Gate Charge VCC = 360V, VGE = 15V, Current Fall Time Eon1 Eoff 100 TJ = 150°C, R G = 4.3Ω 7 Turn-off Delay Time Turn-off Switching Energy tf f = 1 MHz VGE = 15V Eoff td(off) 125 15V, L = 100µH,VCE = 600V Current Rise Time Turn-on Switching Energy (Diode) tr VGE = 0V, VCE = 25V TJ = 175°C, R G = 4.3Ω Turn-on Delay Time Eon2 td(on) 3200 I C = 50A Short Circuit Safe Operating Area TYP Capacitance VCE = 300V Switching Safe Operating Area Turn-on Switching Energy MIN 44 55 TJ = +125°C ns 1850 66 µJ 2125 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .41 RθJC Junction to Case (DIODE) N/A WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 050-7612 Rev B 7-2005 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452) 8 Continuous current limited by package lead temperature. APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES = 15V TJ = 175°C 100 TJ = 125°C TJ = 25°C 60 40 TJ = -55°C 20 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 120 80 140 12V 120 11V 100 80 10V 60 9V 40 8V 30 25 20 15 10 5 0 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 250µs PULSE TEST<0.5 % DUTY CYCLE 140 TJ = -55°C TJ = 25°C 120 TJ = 125°C 100 TJ = 175°C 80 60 40 20 0 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 160 7V 0 5 4 3 2 1 0 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 13V 160 20 0 0 15V 180 J VCE = 120V 12 VCE = 300V 10 VCE =480V 8 6 4 2 0 14 12 10 8 6 4 2 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 50A C T = 25°C 14 0 50 IC = 100A 2.5 2.0 IC = 50A 1.5 IC = 25A 1.0 0.5 0 16 14 12 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 8 FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.0 1.05 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 150 175 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 3.0 2.5 IC = 100A 2.0 IC = 50A 1.5 IC = 25A 1.0 0.5 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 100 125 150 175 75 50 25 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 0 140 1.10 IC, DC COLLECTOR CURRENT(A) BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3.5 100 150 200 250 300 350 400 GATE CHARGE (nC) 120 100 80 Lead Temperature Limited 60 40 20 0 -50 -25 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 7-2005 GE 140 Rev B V APT50GN60B(G) 200 050-7612 160 APT50GN60B(G) 350 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 VGE = 15V 20 15 10 5 VCE = 400V TJ = 25°C, 125°C RG = 4.3Ω L = 100 µH 0 300 250 VGE =15V,TJ=125°C 200 VGE =15V,TJ=25°C 150 100 50 VCE = 400V RG = 4.3Ω L = 100 µH 0 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 120 160 RG = 4.3Ω, L = 100µH, VCE = 400V RG = 4.3Ω, L = 100µH, VCE = 400V 140 100 tf, FALL TIME (ns) tr, RISE TIME (ns) 120 80 60 40 TJ = 125°C, VGE = 15V 100 80 TJ = 25°C, VGE = 15V 60 40 20 20 TJ = 25 or 125°C,VGE = 15V 0 0 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 4000 V = 400V CE V = +15V GE R = 4.3Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 6000 G 5000 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 125°C 4000 3000 2000 1000 TJ = 25°C 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 12000 Eon2,100A 10000 Eoff,100A 8000 6000 Eon2,50A 4000 Eoff,50A 2000 0 Eoff,25A Eon2,25A 0 TJ = 125°C 3000 2500 2000 1500 TJ = 25°C 1000 500 10 30 50 70 90 110 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 7-2005 Rev B 050-7612 J G 6000 = 400V V CE = +15V V GE T = 125°C 14000 3500 0 0 16000 = 400V V CE = +15V V GE R = 4.3Ω = 400V V CE = +15V V GE R = 4.3Ω G 5000 Eon2,100A 4000 Eoff,100A 3000 Eoff,50A 2000 Eon2,50A 1000 0 Eoff,25A 0 Eon2,25A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) 1,000 500 C0es 100 Cres 50 APT50GN60B(G) 160 Cies P C, CAPACITANCE ( F) 5,000 140 120 100 80 60 40 20 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.45 D = 0.9 0.35 0.7 0.30 0.25 0.5 0.20 Note: 0.15 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.40 0.3 0.10 0 t2 SINGLE PULSE t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 0.05 0.05 10-5 t1 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.198 0.115 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 6 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 4.3Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 10 20 30 40 50 60 70 80 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 7-2005 0.00332 F Rev B 0.212 Power (watts) 50 050-7612 RC MODEL Junction temp. (°C) FMAX, OPERATING FREQUENCY (kHz) 110 APT50GN60B(G) 10% APT40DQ60 Gate Voltage TJ = 125°C td(on) Collector Current V CE IC V CC 90% tr 5% 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) 90% Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions TO-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC Collector 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) Rev B 7-2005 4.50 (.177) Max. 050-7612 5.38 (.212) 6.20 (.244) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.