ADPOW APT200GN60J

APT200GN60J
APT200GN60J
TYPICAL PERFORMANCE CURVES
600V
Utilizing the latest Field Stop and Trench Gate technologies, these IGBTs
have ultra low VCE(ON) and are ideal for low frequency applications that require
absolute minimum conduction loss. Easy paralleling is a result of very tight
parameter distribution and a slightly positive VCE(ON) temperature coefficient.
A built-in gate resistor ensures extremely reliable operation, even in the event
of a short circuit fault. Low gate charge simplifies gate drive design and
minimizes losses.
•
•
•
•
•
E
E
600V Field Stop
Trench Gate: Low VCE(on)
Easy Paralleling
10µs Short Circuit Capability
Intergrated Gate Resistor: Low EMI, High Reliability
27
-T 2
SO
C
G
"UL Recognized"
ISOTOP ®
C
G
E
Applications: welding, inductive heating, solar inverters, motor drives, UPS, pass transistor
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
I C1
Continuous Collector Current @ TC = 25°C
250
I C2
Continuous Collector Current @ TC = 110°C
110
I CM
SSOA
PD
TJ,TSTG
Pulsed Collector Current
UNIT
APT200GN60J
1
Volts
Amps
600
@ TC = 150°C
Switching Safe Operating Area @ TJ = 150°C
600A @600V
Total Power Dissipation
Operating and Storage Junction Temperature Range
568
Watts
-55 to 150
°C
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA)
600
VGE(TH)
Gate Threshold Voltage
(VCE = VGE, I C = 3.2mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 200A, Tj = 25°C)
VCE(ON)
I CES
I GES
RGINT
TYP
MAX
5
5.8
6.5
1.05
1.45
1.85
Collector-Emitter On Voltage (VGE = 15V, I C = 200A, Tj = 125°C)
1.65
Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 25°C)
1.15
Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 125°C)
1.19
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
4
2
600
2
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
mA
TBD
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
UNIT
nA
Ω
1-2005
MIN
Rev A
Characteristic / Test Conditions
050-7610
Symbol
APT200GN60J
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
SCSOA
td(on)
tr
td(off)
tf
Eon1
8.2
VGE = 15V
1180
VGE =
V
nC
A
10
µs
20
ns
1050
I C = 100A
50
RG = 5Ω 7
TBD
TJ = +25°C
5
pF
600
55
4
UNIT
660
7,
VCC = 400V
Current Fall Time
MAX
85
Inductive Switching (25°C)
Turn-off Delay Time
µJ
1720
6
2810
Turn-on Delay Time
Inductive Switching (125°C)
55
VCC =400V
20
Current Rise Time
Turn-off Delay Time
VGE = 15V
1150
RG = 5Ω 7
60
TBD
I C = 100A
Current Fall Time
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
Gate Charge
VGE = 15V
Eon1
Eoff
4000
TJ = 125°C, R G = 5Ω 7
Current Rise Time
Turn-off Switching Energy
tf
f = 1 MHz
VCC = 480V, VGE = 15V,
Turn-on Delay Time
Eoff
td(off)
4610
15V, L = 100µH,VCE = 600V
Turn-on Switching Energy (Diode)
tr
VGE = 0V, VCE = 25V
TJ = 150°C, R G = 5Ω
Eon2
td(on)
14100
I C = 100A
Short Circuit Safe Operating Area
TYP
Capacitance
VCE = 300V
Switching Safe Operating Area
Turn-on Switching Energy
MIN
44
55
TJ = +125°C
ns
1955
66
µJ
2865
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.22
RθJC
Junction to Case (DIODE)
N/A
VIsolation
WT
Torque
RMS Voltage (50-60Hz Sinusoidal
Wavefom from Terminals to Mounting Base for 1 Min.)
Package Weight
2500
1.03
oz
29.2
gm
For Combi devices, ICES includes both IGBT and FRED leackage.
Ib•in
1.1
N•m
See MIL-STD-750 Method 3471.
4
Eon1 is the clamped inductive tun-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24)
5
Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22)
6
Eoff is the clamped induvtive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23)
7
RG is external gate resistance, not including RGint nor gate driver impedance. (MIC4452)
APT Reserves the right to change, without notice, the specifications and information contained herein.
050-7610
3
1-2005
2
10
Rev A
Repetitive Rating: Pulse width limited by maximum junction temperature.
°C/W
Volts
Maximum Terminal & Mounting Torque
1
UNIT
TYPICAL PERFORMANCE CURVES
15 & 10V
300
250
6.5V
200
150
6V
100
5.5V
50
IC, COLLECTOR CURRENT (A)
300
TJ = -55°C
250
200
150
TJ = 25°C
100
TJ = 125°C
50
0
0
150
5.5V
100
5V
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
6V
200
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
350
6.5V
250
0
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
400
300
50
5V
0
7.5V
7V
350
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 100A
C
T = 25°C
14
0
200
IC = 200A
1.5
IC = 100A
1.0
IC = 50A
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
2.0
1.10
1.05
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
2.0
IC = 200A
1.5
IC = 100A
1.0
IC = 50A
0.5
0
25
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
300
IC, DC COLLECTOR CURRENT(A)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
2.5
400 600 800 1000 1200 1400
GATE CHARGE (nC)
250
200
150
Limited by Package
100
50
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
1-2005
7V
Rev A
350
15 & 10V
400
7.5V
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
400
APT200GN60J
450
050-7610
450
60
VGE = 15V
50
40
30
20
VCE = 400V
10 TJ = 25°C, TJ =125°C
0
RG = 5Ω
L = 100 µH
tf, FALL TIME (ns)
tr, RISE TIME (ns)
40
30
20
L = 100 µH
5
RG = 5Ω, L = 100µH, VCE = 400V
V
= 400V
CE
V
= +15V
GE
R = 5Ω
G
10000
TJ = 125°C,VGE =15V
8000
6000
4000
2000
TJ = 25°C,VGE =15V
0
Eon2,150A
40000
30000
Eoff,100A
20000
Eon2,100A
10000
Eoff,50A
Eon2,50A
50
40
30
20
10
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
G
TJ = 25°C, VGE = 15V
8000
6000
TJ = 125°C, VGE = 15V
4000
2000
7000
Eoff,150A
J
50000
10000
= 400V
V
CE
= +15V
V
GE
R = 5Ω
65 85 105 125 145 165
25 45
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
= 400V
V
CE
= +15V
V
GE
T = 125°C
TJ = 25°C, VGE = 15V
40
0
45 65 85 105 125 145 165
25
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
60000
60
12000
EOFF, TURN OFF ENERGY LOSS (µJ)
12000
TJ = 125°C, VGE = 15V
65 85 105 125 145 165
25 45
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
25 45 65 85 105 125 145 165
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
EON2, TURN ON ENERGY LOSS (µJ)
200 VCE = 400V
RG = 5Ω
0
0
SWITCHING ENERGY LOSSES (µJ)
400
20
10
1-2005
600
80
TJ = 25 or 125°C,VGE = 15V
Rev A
VGE =15V,TJ=25°C
800
100
RG = 5Ω, L = 100µH, VCE = 400V
50
050-7610
VGE =15V,TJ=125°C
25 45 65 85 105 125 145 165
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
5
60
1000
0
25 45 65 85 105 125 145 165
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
APT200GN60J
1200
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
70
6000
5000
= 400V
V
CE
= +15V
V
GE
R = 5Ω
Eoff,150A
G
Eon2,150A
4000
Eoff,100A
3000
2000
Eon2,100A
1000
Eoff,50A
0
0
Eon2,50A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
20,000
5000
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
10,000
1000
500
APT200GN60J
700
C0es
600
500
400
300
200
Cres
100
0
100
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.9
0.20
0.7
0.15
0.5
Note:
0.10
PDM
0.3
t2
0.05
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
50
0.0536
0.00826F
0.169
0.353F
Power
(watts)
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
RC MODEL
Junction
temp. (°C)
10
1
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 5Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
25
50
75
100 125 150 175 200
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
1-2005
10-5
Rev A
0.1
0
t1
050-7610
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT200GN60J
APT100DQ60
Gate Voltage
10%
TJ = 125°C
td(on)
V CE
IC
V CC
tr
Collector Current
90%
5%
A
10%
5%
Collector Voltage
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
A
TJ = 125°C
V CE
Collector Voltage
td(off)
100uH
IC
V CLAMP
90%
B
tf
10%
A
0
Switching Energy
DRIVER*
Collector Current
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
1-2005
14.9 (.587)
15.1 (.594)
Rev A
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
050-7610
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
1.95 (.077)
2.14 (.084)
* Emitter
30.1 (1.185)
30.3 (1.193)
Collector
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter
Gate
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.