APT200GN60J APT200GN60J TYPICAL PERFORMANCE CURVES 600V Utilizing the latest Field Stop and Trench Gate technologies, these IGBTs have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low gate charge simplifies gate drive design and minimizes losses. • • • • • E E 600V Field Stop Trench Gate: Low VCE(on) Easy Paralleling 10µs Short Circuit Capability Intergrated Gate Resistor: Low EMI, High Reliability 27 -T 2 SO C G "UL Recognized" ISOTOP ® C G E Applications: welding, inductive heating, solar inverters, motor drives, UPS, pass transistor MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 I C1 Continuous Collector Current @ TC = 25°C 250 I C2 Continuous Collector Current @ TC = 110°C 110 I CM SSOA PD TJ,TSTG Pulsed Collector Current UNIT APT200GN60J 1 Volts Amps 600 @ TC = 150°C Switching Safe Operating Area @ TJ = 150°C 600A @600V Total Power Dissipation Operating and Storage Junction Temperature Range 568 Watts -55 to 150 °C STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA) 600 VGE(TH) Gate Threshold Voltage (VCE = VGE, I C = 3.2mA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 200A, Tj = 25°C) VCE(ON) I CES I GES RGINT TYP MAX 5 5.8 6.5 1.05 1.45 1.85 Collector-Emitter On Voltage (VGE = 15V, I C = 200A, Tj = 125°C) 1.65 Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 25°C) 1.15 Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 125°C) 1.19 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 4 2 600 2 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts mA TBD Gate-Emitter Leakage Current (VGE = ±20V) Intergrated Gate Resistor UNIT nA Ω 1-2005 MIN Rev A Characteristic / Test Conditions 050-7610 Symbol APT200GN60J DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA SCSOA td(on) tr td(off) tf Eon1 8.2 VGE = 15V 1180 VGE = V nC A 10 µs 20 ns 1050 I C = 100A 50 RG = 5Ω 7 TBD TJ = +25°C 5 pF 600 55 4 UNIT 660 7, VCC = 400V Current Fall Time MAX 85 Inductive Switching (25°C) Turn-off Delay Time µJ 1720 6 2810 Turn-on Delay Time Inductive Switching (125°C) 55 VCC =400V 20 Current Rise Time Turn-off Delay Time VGE = 15V 1150 RG = 5Ω 7 60 TBD I C = 100A Current Fall Time Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Turn-off Switching Energy Gate Charge VGE = 15V Eon1 Eoff 4000 TJ = 125°C, R G = 5Ω 7 Current Rise Time Turn-off Switching Energy tf f = 1 MHz VCC = 480V, VGE = 15V, Turn-on Delay Time Eoff td(off) 4610 15V, L = 100µH,VCE = 600V Turn-on Switching Energy (Diode) tr VGE = 0V, VCE = 25V TJ = 150°C, R G = 5Ω Eon2 td(on) 14100 I C = 100A Short Circuit Safe Operating Area TYP Capacitance VCE = 300V Switching Safe Operating Area Turn-on Switching Energy MIN 44 55 TJ = +125°C ns 1955 66 µJ 2865 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .22 RθJC Junction to Case (DIODE) N/A VIsolation WT Torque RMS Voltage (50-60Hz Sinusoidal Wavefom from Terminals to Mounting Base for 1 Min.) Package Weight 2500 1.03 oz 29.2 gm For Combi devices, ICES includes both IGBT and FRED leackage. Ib•in 1.1 N•m See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive tun-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22) 6 Eoff is the clamped induvtive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23) 7 RG is external gate resistance, not including RGint nor gate driver impedance. (MIC4452) APT Reserves the right to change, without notice, the specifications and information contained herein. 050-7610 3 1-2005 2 10 Rev A Repetitive Rating: Pulse width limited by maximum junction temperature. °C/W Volts Maximum Terminal & Mounting Torque 1 UNIT TYPICAL PERFORMANCE CURVES 15 & 10V 300 250 6.5V 200 150 6V 100 5.5V 50 IC, COLLECTOR CURRENT (A) 300 TJ = -55°C 250 200 150 TJ = 25°C 100 TJ = 125°C 50 0 0 150 5.5V 100 5V FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 6V 200 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 350 6.5V 250 0 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 400 300 50 5V 0 7.5V 7V 350 J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 100A C T = 25°C 14 0 200 IC = 200A 1.5 IC = 100A 1.0 IC = 50A 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 2.0 1.10 1.05 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 2.0 IC = 200A 1.5 IC = 100A 1.0 IC = 50A 0.5 0 25 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 300 IC, DC COLLECTOR CURRENT(A) BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 2.5 400 600 800 1000 1200 1400 GATE CHARGE (nC) 250 200 150 Limited by Package 100 50 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 1-2005 7V Rev A 350 15 & 10V 400 7.5V IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 400 APT200GN60J 450 050-7610 450 60 VGE = 15V 50 40 30 20 VCE = 400V 10 TJ = 25°C, TJ =125°C 0 RG = 5Ω L = 100 µH tf, FALL TIME (ns) tr, RISE TIME (ns) 40 30 20 L = 100 µH 5 RG = 5Ω, L = 100µH, VCE = 400V V = 400V CE V = +15V GE R = 5Ω G 10000 TJ = 125°C,VGE =15V 8000 6000 4000 2000 TJ = 25°C,VGE =15V 0 Eon2,150A 40000 30000 Eoff,100A 20000 Eon2,100A 10000 Eoff,50A Eon2,50A 50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 G TJ = 25°C, VGE = 15V 8000 6000 TJ = 125°C, VGE = 15V 4000 2000 7000 Eoff,150A J 50000 10000 = 400V V CE = +15V V GE R = 5Ω 65 85 105 125 145 165 25 45 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (µJ) = 400V V CE = +15V V GE T = 125°C TJ = 25°C, VGE = 15V 40 0 45 65 85 105 125 145 165 25 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 60000 60 12000 EOFF, TURN OFF ENERGY LOSS (µJ) 12000 TJ = 125°C, VGE = 15V 65 85 105 125 145 165 25 45 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 25 45 65 85 105 125 145 165 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current EON2, TURN ON ENERGY LOSS (µJ) 200 VCE = 400V RG = 5Ω 0 0 SWITCHING ENERGY LOSSES (µJ) 400 20 10 1-2005 600 80 TJ = 25 or 125°C,VGE = 15V Rev A VGE =15V,TJ=25°C 800 100 RG = 5Ω, L = 100µH, VCE = 400V 50 050-7610 VGE =15V,TJ=125°C 25 45 65 85 105 125 145 165 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 5 60 1000 0 25 45 65 85 105 125 145 165 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 APT200GN60J 1200 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 70 6000 5000 = 400V V CE = +15V V GE R = 5Ω Eoff,150A G Eon2,150A 4000 Eoff,100A 3000 2000 Eon2,100A 1000 Eoff,50A 0 0 Eon2,50A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 20,000 5000 P C, CAPACITANCE ( F) IC, COLLECTOR CURRENT (A) Cies 10,000 1000 500 APT200GN60J 700 C0es 600 500 400 300 200 Cres 100 0 100 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.9 0.20 0.7 0.15 0.5 Note: 0.10 PDM 0.3 t2 0.05 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 50 0.0536 0.00826F 0.169 0.353F Power (watts) Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) RC MODEL Junction temp. (°C) 10 1 F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 5Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 25 50 75 100 125 150 175 200 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 1-2005 10-5 Rev A 0.1 0 t1 050-7610 ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT200GN60J APT100DQ60 Gate Voltage 10% TJ = 125°C td(on) V CE IC V CC tr Collector Current 90% 5% A 10% 5% Collector Voltage Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage A TJ = 125°C V CE Collector Voltage td(off) 100uH IC V CLAMP 90% B tf 10% A 0 Switching Energy DRIVER* Collector Current Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 1-2005 14.9 (.587) 15.1 (.594) Rev A 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 050-7610 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) 1.95 (.077) 2.14 (.084) * Emitter 30.1 (1.185) 30.3 (1.193) Collector * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Emitter Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.