APT20GN60B(G) 600V TYPICAL PERFORMANCE CURVES APT20GN60B APT20GN60BG* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive design and minimizes losses. TO -2 47 G C E • 600V Field Stop • • • • Trench Gate: Low VCE(on) Easy Paralleling 6µs Short Circuit Capability 175°C Rated C G E Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT20GN60B(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 40 I C2 Continuous Collector Current @ TC = 110°C 24 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 60 @ TC = 175°C Switching Safe Operating Area @ TJ = 175°C 60A @ 600V Total Power Dissipation 136 Operating and Storage Junction Temperature Range Watts -55 to 175 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES RG(int) (VCE = VGE, I C = 290µA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 125°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) TYP MAX 5.0 5.8 6.5 1.1 1.5 1.9 25 2 300 N/A CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA TBD Gate-Emitter Leakage Current (VGE = ±20V) Intergrated Gate Resistor Volts 1.7 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) Units nA Ω 7-2005 MIN Rev A Characteristic / Test Conditions 050-7614 Symbol APT20GN60B(G) DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA SCSOA td(on) tr td(off) tf Eon1 120 VGE = µs 10 ns 140 95 RG = 4.3Ω 7 230 TJ = +25°C µJ 260 580 Inductive Switching (125°C) 9 VCC = 400V 10 Turn-off Delay Time VGE = 15V 160 RG = 4.3Ω 7 130 250 I C = 20A Current Fall Time Turn-on Switching Energy (Diode) nC 6 VCC = 400V Current Rise Time Turn-on Switching Energy V A 6 Eon2 pF 60 9 5 UNIT 70 7, Inductive Switching (25°C) 4 MAX 10 I C = 20A Turn-on Delay Time Turn-off Switching Energy 9.5 VGE = 15V VCC = 360V, VGE = 15V, Current Fall Time Eon1 Eoff Gate Charge VGE = 15V Turn-off Switching Energy tf 35 TJ = 150°C, R G = 4.3Ω 7 Turn-off Delay Time Eoff tr 50 f = 1 MHz 15V, L = 100µH,VCE = 600V Current Rise Time Turn-on Switching Energy (Diode) td(off) VGE = 0V, VCE = 25V TJ = 175°C, R G = 4.3Ω Turn-on Delay Time Eon2 td(on) 1110 I C = 20A Short Circuit Safe Operating Area TYP Capacitance VCE = 300V Switching Safe Operating Area Turn-on Switching Energy MIN 44 55 TJ = +125°C ns 450 66 µJ 750 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) 1.1 RθJC Junction to Case (DIODE) N/A WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 050-7614 Rev A 7-2005 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES = 15V IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) TJ = 25°C 30 25 TJ = 125°C 20 15 TJ = 175°C 10 TJ = -55°C 5 TJ = 175°C 10 2.0 IC = 20A IC = 10A 1.0 0.5 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 10V 20 9V 6 1.20 1.10 1.00 0.90 0.80 -50 -25 0 25 50 75 100 125 150 175 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature I = 20A C T = 25°C J 14 VCE = 120V 12 VCE = 300V 10 VCE = 480V 8 6 4 2 0 20 40 60 80 100 GATE CHARGE (nC) 120 140 3.0 2.5 IC = 40A 2.0 IC = 20A 1.5 IC = 10A 1.0 0.5 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 175 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 60 1.40 1.30 8V FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE IC = 40A 1.5 30 0 5 10 15 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3.0 2.5 11V 40 FIGURE 2, Output Characteristics (TJ = 125°C) VGE, GATE-TO-EMITTER VOLTAGE (V) TJ = 25°C TJ = 125°C 0 12V 50 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) TJ = -55°C 20 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 30 60 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 40 13V 70 0 0 0.5 1.0 1.5 2.0 2.5 3.0 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 50 14V 10 0 60 15V 80 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 7-2005 GE 35 Rev A V APT20GN60B(G) 90 050-7614 40 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) VGE = 15V 10 8 6 4 VCE = 400V 2 T = 25°C, T =125°C J J RG = 4.3Ω L = 100 µH 0 25 tf, FALL TIME (ns) tr, RISE TIME (ns) 15 10 TJ = 25 or 125°C,VGE = 15V VCE = 400V RG = 4.3Ω L = 100 µH TJ = 125°C, VGE = 15V 100 80 TJ = 25°C, VGE = 15V 60 40 0 5 1400 V = 400V CE V = +15V GE R = 4.3Ω 1200 G 1000 TJ = 125°C 800 600 400 200 RG = 4.3Ω, L = 100µH, VCE = 400V 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 50 20 1400 TJ = 25°C V = 400V CE V = +15V GE R = 4.3Ω 1200 G TJ = 125°C 1000 800 600 TJ = 25°C 400 200 0 0 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 3500 1400 V = 400V CE V = +15V GE T = 125°C 3000 J Eon2,40A 2500 2000 Eoff,40A 1500 1000 500 0 Eoff,20A Eon2,20A Eoff,10A Eon2,10A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) VGE =15V,TJ=25°C 120 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 7-2005 VGE =15V,TJ=125°C 100 140 RG = 4.3Ω, L = 100µH, VCE = 400V 5 Rev A 150 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 20 050-7614 200 0 5 10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 APT20GN60B(G) 250 12 V = 400V CE V = +15V GE R = 4.3Ω 1200 G Eon2,40A Eoff,40A 1000 800 600 Eoff,20A 400 Eoff,10A Eon2,20A 200 0 0 Eon2,10A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 500 P C, CAPACITANCE ( F) IC, COLLECTOR CURRENT (A) Cies 1,000 100 Coes 50 APT20GN60B(G) 70 2,000 60 50 40 30 20 10 Cres 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 1.00 D = 0.9 0.80 0.7 0.60 0.5 Note: 0.40 0.3 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 1.20 SINGLE PULSE t1 t2 0.20 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 0 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.324 0.323 0.00288 0.0501 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 50 F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 7 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 4.3Ω G max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 5 10 15 20 25 30 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 7-2005 Power (watts) 0.00078 Rev A 0.451 100 050-7614 Junction temp. (°C) RC MODEL FMAX, OPERATING FREQUENCY (kHz) 140 APT20GN60B(G) APT15DQ60 Gate Voltage 10% TJ = 125°C td(on) IC V CC tr V CE Collector Current 90% 5% 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) Collector Voltage 90% tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions TO-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC Collector 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) Rev A 7-2005 4.50 (.177) Max. 050-7614 5.38 (.212) 6.20 (.244) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.