ADPOW APT20GN60B

APT20GN60B(G)
600V
TYPICAL PERFORMANCE CURVES
APT20GN60B
APT20GN60BG*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and a
slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive
design and minimizes losses.
TO
-2
47
G
C
E
• 600V Field Stop
•
•
•
•
Trench Gate: Low VCE(on)
Easy Paralleling
6µs Short Circuit Capability
175°C Rated
C
G
E
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT20GN60B(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
40
I C2
Continuous Collector Current @ TC = 110°C
24
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
60
@ TC = 175°C
Switching Safe Operating Area @ TJ = 175°C
60A @ 600V
Total Power Dissipation
136
Operating and Storage Junction Temperature Range
Watts
-55 to 175
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
RG(int)
(VCE = VGE, I C = 290µA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 125°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
TYP
MAX
5.0
5.8
6.5
1.1
1.5
1.9
25
2
300
N/A
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
TBD
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
Volts
1.7
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
Units
nA
Ω
7-2005
MIN
Rev A
Characteristic / Test Conditions
050-7614
Symbol
APT20GN60B(G)
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
SCSOA
td(on)
tr
td(off)
tf
Eon1
120
VGE =
µs
10
ns
140
95
RG = 4.3Ω 7
230
TJ = +25°C
µJ
260
580
Inductive Switching (125°C)
9
VCC = 400V
10
Turn-off Delay Time
VGE = 15V
160
RG = 4.3Ω 7
130
250
I C = 20A
Current Fall Time
Turn-on Switching Energy (Diode)
nC
6
VCC = 400V
Current Rise Time
Turn-on Switching Energy
V
A
6
Eon2
pF
60
9
5
UNIT
70
7,
Inductive Switching (25°C)
4
MAX
10
I C = 20A
Turn-on Delay Time
Turn-off Switching Energy
9.5
VGE = 15V
VCC = 360V, VGE = 15V,
Current Fall Time
Eon1
Eoff
Gate Charge
VGE = 15V
Turn-off Switching Energy
tf
35
TJ = 150°C, R G = 4.3Ω 7
Turn-off Delay Time
Eoff
tr
50
f = 1 MHz
15V, L = 100µH,VCE = 600V
Current Rise Time
Turn-on Switching Energy (Diode)
td(off)
VGE = 0V, VCE = 25V
TJ = 175°C, R G = 4.3Ω
Turn-on Delay Time
Eon2
td(on)
1110
I C = 20A
Short Circuit Safe Operating Area
TYP
Capacitance
VCE = 300V
Switching Safe Operating Area
Turn-on Switching Energy
MIN
44
55
TJ = +125°C
ns
450
66
µJ
750
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
1.1
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7614
Rev A
7-2005
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
= 15V
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
TJ = 25°C
30
25
TJ = 125°C
20
15
TJ = 175°C
10
TJ = -55°C
5
TJ = 175°C
10
2.0
IC = 20A
IC = 10A
1.0
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
10V
20
9V
6
1.20
1.10
1.00
0.90
0.80
-50 -25 0 25 50 75 100 125 150 175
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
I = 20A
C
T = 25°C
J
14
VCE = 120V
12
VCE = 300V
10
VCE = 480V
8
6
4
2
0
20
40
60
80 100
GATE CHARGE (nC)
120
140
3.0
2.5
IC = 40A
2.0
IC = 20A
1.5
IC = 10A
1.0
0.5
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75 100 125 150 175
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
1.40
1.30
8V
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 40A
1.5
30
0
5
10
15
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.0
2.5
11V
40
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
TJ = 25°C
TJ = 125°C
0
12V
50
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
TJ = -55°C
20
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
30
60
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
40
13V
70
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
50
14V
10
0
60
15V
80
50
40
30
20
10
0
-50 -25
0 25 50 75 100 125 150 175
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
7-2005
GE
35
Rev A
V
APT20GN60B(G)
90
050-7614
40
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VGE = 15V
10
8
6
4
VCE = 400V
2 T = 25°C, T =125°C
J
J
RG = 4.3Ω
L = 100 µH
0
25
tf, FALL TIME (ns)
tr, RISE TIME (ns)
15
10
TJ = 25 or 125°C,VGE = 15V
VCE = 400V
RG = 4.3Ω
L = 100 µH
TJ = 125°C, VGE = 15V
100
80
TJ = 25°C, VGE = 15V
60
40
0
5
1400
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
1200
G
1000
TJ = 125°C
800
600
400
200
RG = 4.3Ω, L = 100µH, VCE = 400V
5
10 15
20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
50
20
1400
TJ = 25°C
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
1200
G
TJ = 125°C
1000
800
600
TJ = 25°C
400
200
0
0
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
3500
1400
V
= 400V
CE
V
= +15V
GE
T = 125°C
3000
J
Eon2,40A
2500
2000
Eoff,40A
1500
1000
500
0
Eoff,20A
Eon2,20A
Eoff,10A
Eon2,10A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=25°C
120
10
15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
7-2005
VGE =15V,TJ=125°C
100
140
RG = 4.3Ω, L = 100µH, VCE = 400V
5
Rev A
150
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
20
050-7614
200
0
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
APT20GN60B(G)
250
12
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
1200
G
Eon2,40A
Eoff,40A
1000
800
600
Eoff,20A
400
Eoff,10A
Eon2,20A
200
0
0
Eon2,10A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
100
Coes
50
APT20GN60B(G)
70
2,000
60
50
40
30
20
10
Cres
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
1.00
D = 0.9
0.80
0.7
0.60
0.5
Note:
0.40
0.3
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
1.20
SINGLE PULSE
t1
t2
0.20
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
0
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.324
0.323
0.00288
0.0501
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
50
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
7
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 4.3Ω
G
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
7-2005
Power
(watts)
0.00078
Rev A
0.451
100
050-7614
Junction
temp. (°C)
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
140
APT20GN60B(G)
APT15DQ60
Gate Voltage
10%
TJ = 125°C
td(on)
IC
V CC
tr
V CE
Collector Current
90%
5%
10%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
Collector Voltage
90%
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
Rev A
7-2005
4.50 (.177) Max.
050-7614
5.38 (.212)
6.20 (.244)
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.