ST Sitronix ST7732 262K Color Single-Chip TFT Controller/Driver 1. Introduction The ST7732 is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 396 source line and 162 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial Peripheral Interface (SPI), 8-bits/9-bits/16-bits/18-bits parallel interface. Display data can be stored in the on-chip display data RAM of 132 x 162 x 18 bits. It can perform display data RAM read/write operation with no external operation clock to minimize power consumption. In addition, because of the integrated power supply circuits necessary to drive liquid crystal, it is possible to make a display system with fewer components. 2. Features Single chip TFT-LCD controller/driver with display data RAM Display resolution: 132 (H) x RGB x 162 (V) Display data RAM (frame memory): 132 x 162 x 18-bits = 384,912 bits Output: - 396 ch source outputs (132RGB) - 162 ch gate outputs - Common electrode output Display mode (color mode) - Full color mode (idle mode off): 262K-colors - Reduce color mode (idle mode on): 8-colors (1-bit for individual R, G, B color depth) Display resolution option - 128 x 160 display with 128 x 18-bits x 160 display RAM - 120 x 160 display with 120 x 18-bits x 160 display RAM - 132 x 162 display with 132 x 18-bits x 162 display RAM Supported LC type option - Transflective (TR) LC type (When LCM1,LCM0 = “00”) - Transmissive (TM) LC type (When LCM1,LCM0 = “01”) - Low voltage (LV) LC type (When LCM1,LCM0 = “10”) - MVA LC type (When LCM1, LCM0 = “11”) Supported data format on display host interface - 12-bits/pixel: RGB= (444) using the 384k-bits frame memory and LUT - 16-bits/pixel: RGB= (565) using the 384k-bits frame memory and LUT - 18-bits/pixel: RGB= (666) using the 384k-bits frame memory Supported MCU Interface - 3-line serial interface - 4-line serial interface - 8-bits, 9-bits, 16-bits, 18-bits interface with 8080-series MCU - 8-bits, 9-bits, 16-bits, 18-bits interface with 6800-series MCU - 6-bits, 16-bits, 18-bits RGB interface with graphic controller Display features - Area scrolling - Partial display mode - Software programmable color depth mode Build-in circuit - DC/DC converter - Adjustable VCOM generation - Non-volatile (NV) memory to store initial register setting - Oscillator for display clock generation - Timing controller - supporting transflective, transmissive, low voltage, MVA type LC - Factory default value (module ID, module version, etc) are stored in NV memory - Line inversion, frame inversion NV Memory - 7-bits for ID2 - 8-bits for ID3 - 7-bits for VCOM adjustment Sitronix Technology Corp. reserves the right to change 1 the contents in this document without prior notice. ST7732 Supply voltage range - Analog supply voltage range for VDD to AGND: 2.5V to 3.3V - I/O supply voltage range for VDDI to DGND: 1.6V to 3.3V Output voltage level - Source output voltage range (GVDD to AGND): 3.0V to 5.0V - Power supply range for driver circuit (AVDD to AGND): 4.55V to 6.0V - Output range of HIGH level of VCOM (VCOMH to AGND): 2.5V to 5.0V - Output range of LOW level of VCOM (VCOML to AGND): -2.5V to 0.0V - Output range of HIGH level of gate driver (VGH to AGND): +9.4V to 16.2V - Output range of LOW level of gate driver (VGL to AGND): -13.5V to –7.0V Lower power consumption, suitable for battery operated systems - CMOS compatible inputs - Optimized layout for COG assembly - Operate temperature range: -30℃ to +70℃ Ver 1.5.2 2 2007-12 ST7732 3. Pad arrangement View point: bump view Chip size (um): 13500 x 700 PAD coordinate: pad center Coordinate origin: chip center Chip thickness (um): 300±15 Bump height (um): 15±3 Bump hardness (HV): 75±25 Pad arrangement (Unit: um): Output: pad No. 1 ~ 585 = 21 x 96 21 23 96 22 35 96 Input: pad No. 586 ~ 760 = 55 x 96 Alignment mark (unit: um): (-6627.5, -195.5) Ver 1.5.2 3 (6627.5, -195.5) 2007-12 ST7732 4. Pad Center Coordinates PAD No. PIN Name X Y PAD No. PIN Name X Y 1 PADA3 6424 239 41 G92 5544 239 2 DUMMY 6402 108 42 G90 5522 108 3 PADB3 6380 239 43 G88 5500 239 4 DUMMY 6358 108 44 G86 5478 108 5 DUMMY 6336 239 45 G84 5456 239 6 G162 6314 108 46 G82 5434 108 7 G160 6292 239 47 G80 5412 239 8 G158 6270 108 48 G78 5390 108 9 G156 6248 239 49 G76 5368 239 10 G154 6226 108 50 G74 5346 108 11 G152 6204 239 51 G72 5324 239 12 G150 6182 108 52 G70 5302 108 13 G148 6160 239 53 G68 5280 239 14 G146 6138 108 54 G66 5258 108 15 G144 6116 239 55 G64 5236 239 16 G142 6094 108 56 G62 5214 108 17 G140 6072 239 57 G60 5192 239 18 G138 6050 108 58 G58 5170 108 19 G136 6028 239 59 G56 5148 239 20 G134 6006 108 60 G54 5126 108 21 G132 5984 239 61 G52 5104 239 22 G130 5962 108 62 G50 5082 108 23 G128 5940 239 63 G48 5060 239 24 G126 5918 108 64 G46 5038 108 25 G124 5896 239 65 G44 5016 239 26 G122 5874 108 66 G42 4994 108 27 G120 5852 239 67 G40 4972 239 28 G118 5830 108 68 G38 4950 108 29 G116 5808 239 69 G36 4928 239 30 G114 5786 108 70 G34 4906 108 31 G112 5764 239 71 G32 4884 239 32 G110 5742 108 72 G30 4862 108 33 G108 5720 239 73 G28 4840 239 34 G106 5698 108 74 G26 4818 108 35 G104 5676 239 75 G24 4796 239 36 G102 5654 108 76 G22 4774 108 37 G100 5632 239 77 G20 4752 239 38 G98 5610 108 78 G18 4730 108 39 G96 5588 239 79 G16 4708 239 40 G94 5566 108 80 G14 4686 108 Ver 1.5.2 4 2007-12 ST7732 PAD No. PIN Name X Y PAD No. PIN Name X Y 81 G12 4664 239 121 S368 3784 239 82 G10 4642 108 122 S367 3762 108 83 G8 4620 239 123 S366 3740 239 84 G6 4598 108 124 S365 3718 108 85 G4 4576 239 125 S364 3696 239 86 G2 4554 108 126 S363 3674 108 87 DUMMY 4532 239 127 S362 3652 239 88 DUMMY 4510 108 128 S361 3630 108 89 DUMMY 4488 239 129 S360 3608 239 90 DUMMY 4466 108 130 S359 3586 108 91 DUMMY 4444 239 131 S358 3564 239 92 DUMMY 4422 108 132 S357 3542 108 93 S396 4400 239 133 S356 3520 239 94 S395 4378 108 134 S355 3498 108 95 S394 4356 239 135 S354 3476 239 96 S393 4334 108 136 S353 3454 108 97 S392 4312 239 137 S352 3432 239 98 S391 4290 108 138 S351 3410 108 99 S390 4268 239 139 S350 3388 239 100 S389 4246 108 140 S349 3366 108 101 S388 4224 239 141 S348 3344 239 102 S387 4202 108 142 S347 3322 108 103 S386 4180 239 143 S346 3300 239 104 S385 4158 108 144 S345 3278 108 105 S384 4136 239 145 S344 3256 239 106 S383 4114 108 146 S343 3234 108 107 S382 4092 239 147 S342 3212 239 108 S381 4070 108 148 S341 3190 108 109 S380 4048 239 149 S340 3168 239 110 S379 4026 108 150 S339 3146 108 111 S378 4004 239 151 S338 3124 239 112 S377 3982 108 152 S337 3102 108 113 S376 3960 239 153 S336 3080 239 114 S375 3938 108 154 S335 3058 108 115 S374 3916 239 155 S334 3036 239 116 S373 3894 108 156 S333 3014 108 117 S372 3872 239 157 S332 2992 239 118 S371 3850 108 158 S331 2970 108 119 S370 3828 239 159 S330 2948 239 120 S369 3806 108 160 S329 2926 108 Ver 1.5.2 5 2007-12 ST7732 PAD No. PIN Name X Y PAD No. PIN Name X Y 161 S328 2904 239 201 S288 2024 239 162 S327 2882 108 202 S287 2002 108 163 S326 2860 239 203 S286 1980 239 164 S325 2838 108 204 S285 1958 108 165 S324 2816 239 205 S284 1936 239 166 S323 2794 108 206 S283 1914 108 167 S322 2772 239 207 S282 1892 239 168 S321 2750 108 208 S281 1870 108 169 S320 2728 239 209 S280 1848 239 170 S319 2706 108 210 S279 1826 108 171 S318 2684 239 211 S278 1804 239 172 S317 2662 108 212 S277 1782 108 173 S316 2640 239 213 S276 1760 239 174 S315 2618 108 214 S275 1738 108 175 S314 2596 239 215 S274 1716 239 176 S313 2574 108 216 S273 1694 108 177 S312 2552 239 217 S272 1672 239 178 S311 2530 108 218 S271 1650 108 179 S310 2508 239 219 S270 1628 239 180 S309 2486 108 220 S269 1606 108 181 S308 2464 239 221 S268 1584 239 182 S307 2442 108 222 S267 1562 108 183 S306 2420 239 223 S266 1540 239 184 S305 2398 108 224 S265 1518 108 185 S304 2376 239 225 S264 1496 239 186 S303 2354 108 226 S263 1474 108 187 S302 2332 239 227 S262 1452 239 188 S301 2310 108 228 S261 1430 108 189 S300 2288 239 229 S260 1408 239 190 S299 2266 108 230 S259 1386 108 191 S298 2244 239 231 S258 1364 239 192 S297 2222 108 232 S257 1342 108 193 S296 2200 239 233 S256 1320 239 194 S295 2178 108 234 S255 1298 108 195 S294 2156 239 235 S254 1276 239 196 S293 2134 108 236 S253 1254 108 197 S292 2112 239 237 S252 1232 239 198 S291 2090 108 238 S251 1210 108 199 S290 2068 239 239 S250 1188 239 200 S289 2046 108 240 S249 1166 108 Ver 1.5.2 6 2007-12 ST7732 PAD No. PIN Name X Y PAD No. PIN Name X Y 241 S248 1144 239 281 S208 264 239 242 S247 1122 108 282 S207 242 108 243 S246 1100 239 283 S206 220 239 244 S245 1078 108 284 S205 198 108 245 S244 1056 239 285 S204 176 239 246 S243 1034 108 286 S203 154 108 247 S242 1012 239 287 S202 132 239 248 S241 990 108 288 S201 110 108 249 S240 968 239 289 S200 88 239 250 S239 946 108 290 S199 66 108 251 S238 924 239 291 DUMMY 44 239 252 S237 902 108 292 DUMMY 22 108 253 S236 880 239 293 DUMMY 0 239 254 S235 858 108 294 DUMMY -22 108 255 S234 836 239 295 DUMMY -44 239 256 S233 814 108 296 S198 -66 108 257 S232 792 239 297 S197 -88 239 258 S231 770 108 298 S196 -110 108 259 S230 748 239 299 S195 -132 239 260 S229 726 108 300 S194 -154 108 261 S228 704 239 301 S193 -176 239 262 S227 682 108 302 S192 -198 108 263 S226 660 239 303 S191 -220 239 264 S225 638 108 304 S190 -242 108 265 S224 616 239 305 S189 -264 239 266 S223 594 108 306 S188 -286 108 267 S222 572 239 307 S187 -308 239 268 S221 550 108 308 S186 -330 108 269 S220 528 239 309 S185 -352 239 270 S219 506 108 310 S184 -374 108 271 S218 484 239 311 S183 -396 239 272 S217 462 108 312 S182 -418 108 273 S216 440 239 313 S181 -440 239 274 S215 418 108 314 S180 -462 108 275 S214 396 239 315 S179 -484 239 276 S213 374 108 316 S178 -506 108 277 S212 352 239 317 S177 -528 239 278 S211 330 108 318 S176 -550 108 279 S210 308 239 319 S175 -572 239 280 S209 286 108 320 S174 -594 108 Ver 1.5.2 7 2007-12 ST7732 PAD No. PIN Name X Y PAD No. PIN Name X Y 321 S173 -616 239 361 S133 -1496 239 322 S172 -638 108 362 S132 -1518 108 323 S171 -660 239 363 S131 -1540 239 324 S170 -682 108 364 S130 -1562 108 325 S169 -704 239 365 S129 -1584 239 326 S168 -726 108 366 S128 -1606 108 327 S167 -748 239 367 S127 -1628 239 328 S166 -770 108 368 S126 -1650 108 329 S165 -792 239 369 S125 -1672 239 330 S164 -814 108 370 S124 -1694 108 331 S163 -836 239 371 S123 -1716 239 332 S162 -858 108 372 S122 -1738 108 333 S161 -880 239 373 S121 -1760 239 334 S160 -902 108 374 S120 -1782 108 335 S159 -924 239 375 S119 -1804 239 336 S158 -946 108 376 S118 -1826 108 337 S157 -968 239 377 S117 -1848 239 338 S156 -990 108 378 S116 -1870 108 339 S155 -1012 239 379 S115 -1892 239 340 S154 -1034 108 380 S114 -1914 108 341 S153 -1056 239 381 S113 -1936 239 342 S152 -1078 108 382 S112 -1958 108 343 S151 -1100 239 383 S111 -1980 239 344 S150 -1122 108 384 S110 -2002 108 345 S149 -1144 239 385 S109 -2024 239 346 S148 -1166 108 386 S108 -2046 108 347 S147 -1188 239 387 S107 -2068 239 348 S146 -1210 108 388 S106 -2090 108 349 S145 -1232 239 389 S105 -2112 239 350 S144 -1254 108 390 S104 -2134 108 351 S143 -1276 239 391 S103 -2156 239 352 S142 -1298 108 392 S102 -2178 108 353 S141 -1320 239 393 S101 -2200 239 354 S140 -1342 108 394 S100 -2222 108 355 S139 -1364 239 395 S99 -2244 239 356 S138 -1386 108 396 S98 -2266 108 357 S137 -1408 239 397 S97 -2288 239 358 S136 -1430 108 398 S96 -2310 108 359 S135 -1452 239 399 S95 -2332 239 360 S134 -1474 108 400 S94 -2354 108 Ver 1.5.2 8 2007-12 ST7732 PAD No. PIN Name X Y PAD No. PIN Name X Y 401 S93 -2376 239 441 S53 -3256 239 402 S92 -2398 108 442 S52 -3278 108 403 S91 -2420 239 443 S51 -3300 239 404 S90 -2442 108 444 S50 -3322 108 405 S89 -2464 239 445 S49 -3344 239 406 S88 -2486 108 446 S48 -3366 108 407 S87 -2508 239 447 S47 -3388 239 408 S86 -2530 108 448 S46 -3410 108 409 S85 -2552 239 449 S45 -3432 239 410 S84 -2574 108 450 S44 -3454 108 411 S83 -2596 239 451 S43 -3476 239 412 S82 -2618 108 452 S42 -3498 108 413 S81 -2640 239 453 S41 -3520 239 414 S80 -2662 108 454 S40 -3542 108 415 S79 -2684 239 455 S39 -3564 239 416 S78 -2706 108 456 S38 -3586 108 417 S77 -2728 239 457 S37 -3608 239 418 S76 -2750 108 458 S36 -3630 108 419 S75 -2772 239 459 S35 -3652 239 420 S74 -2794 108 460 S34 -3674 108 421 S73 -2816 239 461 S33 -3696 239 422 S72 -2838 108 462 S32 -3718 108 423 S71 -2860 239 463 S31 -3740 239 424 S70 -2882 108 464 S30 -3762 108 425 S69 -2904 239 465 S29 -3784 239 426 S68 -2926 108 466 S28 -3806 108 427 S67 -2948 239 467 S27 -3828 239 428 S66 -2970 108 468 S26 -3850 108 429 S65 -2992 239 469 S25 -3872 239 430 S64 -3014 108 470 S24 -3894 108 431 S63 -3036 239 471 S23 -3916 239 432 S62 -3058 108 472 S22 -3938 108 433 S61 -3080 239 473 S21 -3960 239 434 S60 -3102 108 474 S20 -3982 108 435 S59 -3124 239 475 S19 -4004 239 436 S58 -3146 108 476 S18 -4026 108 437 S57 -3168 239 477 S17 -4048 239 438 S56 -3190 108 478 S16 -4070 108 439 S55 -3212 239 479 S15 -4092 239 440 S54 -3234 108 480 S14 -4114 108 Ver 1.5.2 9 2007-12 ST7732 PAD No. PIN Name X Y PAD No. PIN Name X Y 481 S13 -4136 239 521 G43 -5016 239 482 S12 -4158 108 522 G45 -5038 108 483 S11 -4180 239 523 G47 -5060 239 484 S10 -4202 108 524 G49 -5082 108 485 S9 -4224 239 525 G51 -5104 239 486 S8 -4246 108 526 G53 -5126 108 487 S7 -4268 239 527 G55 -5148 239 488 S6 -4290 108 528 G57 -5170 108 489 S5 -4312 239 529 G59 -5192 239 490 S4 -4334 108 530 G61 -5214 108 491 S3 -4356 239 531 G63 -5236 239 492 S2 -4378 108 532 G65 -5258 108 493 S1 -4400 239 533 G67 -5280 239 494 DUMMY -4422 108 534 G69 -5302 108 495 DUMMY -4444 239 535 G71 -5324 239 496 DUMMY -4466 108 536 G73 -5346 108 497 DUMMY -4488 239 537 G75 -5368 239 498 DUMMY -4510 108 538 G77 -5390 108 499 DUMMY -4532 239 539 G79 -5412 239 500 G1 -4554 108 540 G81 -5434 108 501 G3 -4576 239 541 G83 -5456 239 502 G5 -4598 108 542 G85 -5478 108 503 G7 -4620 239 543 G87 -5500 239 504 G9 -4642 108 544 G89 -5522 108 505 G11 -4664 239 545 G91 -5544 239 506 G13 -4686 108 546 G93 -5566 108 507 G15 -4708 239 547 G95 -5588 239 508 G17 -4730 108 548 G97 -5610 108 509 G19 -4752 239 549 G99 -5632 239 510 G21 -4774 108 550 G101 -5654 108 511 G23 -4796 239 551 G103 -5676 239 512 G25 -4818 108 552 G105 -5698 108 513 G27 -4840 239 553 G107 -5720 239 514 G29 -4862 108 554 G109 -5742 108 515 G31 -4884 239 555 G111 -5764 239 516 G33 -4906 108 556 G113 -5786 108 517 G35 -4928 239 557 G115 -5808 239 518 G37 -4950 108 558 G117 -5830 108 519 G39 -4972 239 559 G119 -5852 239 520 G41 -4994 108 560 G121 -5874 108 Ver 1.5.2 10 2007-12 ST7732 PAD No. PIN Name X Y PAD No. PIN Name X Y 561 G123 -5896 239 601 RCM[1] -5280 -239 562 G125 -5918 108 602 DGNDO -5200 -239 563 G127 -5940 239 603 SRGB -5120 -239 564 G129 -5962 108 604 VDDIO -5040 -239 565 G131 -5984 239 605 SMX -4960 -239 566 G133 -6006 108 606 DGNDO -4880 -239 567 G135 -6028 239 607 SMY -4800 -239 568 G137 -6050 108 608 VDDIO -4720 -239 569 G139 -6072 239 609 IDM -4640 -239 570 G141 -6094 108 610 DGNDO -4560 -239 571 G143 -6116 239 611 REV -4480 -239 572 G145 -6138 108 612 VDDIO -4400 -239 573 G147 -6160 239 613 RL -4320 -239 574 G149 -6182 108 614 DGNDO -4240 -239 575 G151 -6204 239 615 TB -4160 -239 576 G153 -6226 108 616 VDDIO -4080 -239 577 G155 -6248 239 617 SHUT -4000 -239 578 G157 -6270 108 618 DGNDO -3920 -239 579 G159 -6292 239 619 GM[1] -3840 -239 580 G161 -6314 108 620 GM[0] -3760 -239 581 DUMMY -6336 239 621 LCM[0] -3680 -239 582 DUMMY -6358 108 622 VDDIO -3600 -239 583 PADA4 -6380 239 623 LCM[1] -3520 -239 584 DUMMY -6402 108 624 DGNDO -3440 -239 585 PADB4 -6424 239 625 D[17] -3360 -239 586 PADA1 -6464 -239 626 D[16] -3280 -239 587 PADB1 -6400 -239 627 D[15] -3200 -239 588 PADA0 -6320 -239 628 D[14] -3120 -239 589 EXTC -6240 -239 629 D[13] -3040 -239 590 DGNDO -6160 -239 630 D[12] -2960 -239 591 IM[0] -6080 -239 631 D[11] -2880 -239 592 VDDIO -6000 -239 632 D[10] -2800 -239 593 IM[1] -5920 -239 633 D[9] -2720 -239 594 DGNDO -5840 -239 634 D[8] -2640 -239 595 IM[2] -5760 -239 635 DGNDO -2560 -239 596 VDDIO -5680 -239 636 TESEL -2480 -239 597 P68 -5600 -239 637 D[7] -2400 -239 598 DGNDO -5520 -239 638 D[6] -2320 -239 599 RCM[0] -5440 -239 639 D[5] -2240 -239 600 VDDIO -5360 -239 640 D[4] -2160 -239 Ver 1.5.2 11 2007-12 ST7732 PAD No. PIN Name X Y PAD No. PIN Name X Y 641 D[3] -2080 -239 681 VDDI 960 -239 642 D[2] -2000 -239 682 VDDI 1024 -239 643 D[1] -1920 -239 683 VCC 1104 -239 644 D[0] (SDA) -1840 -239 684 VCC 1168 -239 645 TPO[8] -1760 -239 685 VCC 1232 -239 646 TPO[7] -1680 -239 686 VCI1 1312 -239 647 TPO[6] -1600 -239 687 VCI1 1376 -239 648 TPO[5] -1520 -239 688 VCI1 1440 -239 649 TPO[4] -1440 -239 689 AGND 1520 -239 650 OSC -1360 -239 690 AGND 1584 -239 651 TE -1280 -239 691 AGND 1648 -239 652 CSX -1200 -239 692 AGND 1712 -239 653 RDX (E) -1120 -239 693 AGND 1776 -239 654 WRX (D/CX) -1040 -239 694 AGND 1840 -239 655 SDA -960 -239 695 VDD 1920 -239 656 GS -880 -239 696 VDD 1984 -239 657 4WSPI -800 -239 697 VDD 2048 -239 658 RESX -720 -239 698 VDD 2112 -239 659 DGND -640 -239 699 VDD 2176 -239 660 D/CX(SCL) -560 -239 700 VREF 2256 -239 661 DGND -480 -239 701 VREF 2320 -239 662 PCLK -400 -239 702 VREF 2384 -239 663 DGND -320 -239 703 TPI[1] 2464 -239 664 DE -240 -239 704 TPI[2] 2544 -239 665 HS -160 -239 705 AVDD 2624 -239 666 VS -80 -239 706 AVDD 2688 -239 667 TPO[3] 0 -239 707 AVDD 2752 -239 668 TPO[2] 80 -239 708 AVDD_O 2816 -239 669 TPO[1] 160 -239 709 AVDD_O 2880 -239 670 DGND 240 -239 710 GVDD 2960 -239 671 DGND 304 -239 711 GVDD 3024 -239 672 DGND 368 -239 712 GVDD 3088 -239 673 DGND 432 -239 713 C11P 3168 -239 674 DGND 496 -239 714 C11P 3232 -239 675 DGND 560 -239 715 C11P 3296 -239 676 DGND 624 -239 716 C11N 3376 -239 677 VDDI 704 -239 717 C11N 3440 -239 678 VDDI 768 -239 718 C11N 3504 -239 679 VDDI 832 -239 719 C12P 3584 -239 680 VDDI 896 -239 720 C12P 3648 -239 Ver 1.5.2 12 2007-12 ST7732 PAD No. PIN Name X Y 721 C12P 3712 -239 722 C12N 3792 -239 723 C12N 3856 -239 724 C12N 3920 -239 725 AGND 4000 -239 726 AGND 4064 -239 727 AGND 4128 -239 728 VCL 4208 -239 729 VCL 4272 -239 730 VCL_O 4336 -239 731 C21P 4416 -239 732 C21P 4480 -239 733 C21N 4560 -239 734 C21N 4624 -239 735 C22P 4704 -239 736 C22P 4768 -239 737 C22N 4848 -239 738 C22N 4912 -239 739 C23P 4992 -239 740 C23P 5056 -239 741 C23N 5136 -239 742 C23N 5200 -239 743 VGL 5280 -239 744 VGL 5344 -239 745 VGL 5408 -239 746 VGH_O 5488 -239 747 VGH 5552 -239 748 VGH 5616 -239 749 VCOMH 5696 -239 750 VCOMH 5760 -239 751 VCOMH 5824 -239 752 VCOML 5904 -239 753 VCOML 5968 -239 754 VCOML 6032 -239 755 PADB0 6112 -239 756 VCOM 6192 -239 757 VCOM 6256 -239 758 VCOM 6320 -239 759 PADA2 6400 -239 760 PADB2 6464 -239 Ver 1.5.2 PAD No. 13 PIN Name X Y 2007-12 ST7732 5 Block diagram Ver 1.5.2 14 2007-12 ST7732 6 Pin Description 6.1 Power supply pin Name VDD VDDI AGND DGND I/O I I I I Description Power supply for analog, digital system and booster circuit. Power supply for I/O system. System ground for analog system and booster circuit. System ground for I/O system and digital system. Count 5 6 9 10 Connect pin VDD VDDI GND GND Count Connect pin 1 DGND/VDDI 3 DGND/VDDI 1 DGND/VDDI 1 MCU 1 MCU 1 MCU 1 MCU 1 MCU 1 MCU DGND/VDDI 1 - 18 MCU 1 MCU 1 RGB interface 1 RGB interface 1 RGB interface 1 RGB interface 6.2 Interface logic pin Name Description -8080/6800 MCU interface mode select. -P68=’1’, select 6800 MCU parallel interface. P68 I -P68=’0’, select 8080 MCU parallel interface. -If not used, please connect this pin to VDDI or DGND level. -Selection for MCU parallel interface or serial interface. IM0~IM2 I -If not used, please connect this pin to VDDI or DGND. - 4-line SPI enable. 4WSPI I -If not used, please fix this pin to DGND. -This signal will reset the device and it must be applied to properly RESX I initialize the chip. -Signal is active low. -Chip selection pin CSX I -Low enable. -Display data/command selection pin in MCU interface. -D/CX=’1’: display data or parameter. D/CX I -D/CX=’0’: command data. (SCL) -In serial interface, this is used as SCL. -If not used, please connect this pin to VDDI or DGND. -Read enable in 8080 MCU parallel interface. RDX I -Read/write operation enable pin in 6800 MCU parallel interface. (E) -If not used, please connect this pin to VDDI or DGND. -Write enable in MCU parallel interface. WRX I -In 4-line SPI, this pin is used as D/CX (data/ command selection). (D/CX) -If not used, please connect this pin to VDDI or DGND. -When RCM1, RCM0=’1X’ (RGB interface), this pin is used as serial input/output pin. SDA I -When RCM1, RCM0=’0X’ (MCU interface), this pin is not used and please connect to VDDI or DGND level. The serial input/output pin in MCU interface mode is D0. -Monitoring pin of internal oscillator clock and is turned ON/OFF by S/W command. OSC O -When this pin is inactive (function OFF), this pin is DGND level. -If not used, please open this pin. -When RCM=”1” (RGB interface), D[17:0] are used as RGB interface data bus. -When RCM=”0” (MCU interface), D[17:0] are used as MCU parallel interface data bus. D[17:0] I/O -D0 is the serial input/output signal in serial interface mode. -In serial interface, D[17:1] are not used and should be connected to VDDI or DGND. -Tearing effect output pin to synchronies MCU to frame rate, activated TE I/O by S/W command. -If not used, please open this pin. -Pixel clock signal in RGB interface mode. PCLK I -If not used, please fix this pin at VDDI or DGND. -Vertical sync. signal in RGB interface mode. VS I -If not used, please fix this pin at VDDI or DGND. -Horizontal sync. signal in RGB interface mode. HS I -If not used, please fix this pin at VDDI or DGND. -Data enable signal in RGB interface mode. DE I -If not used, please fix this pin at VDDI or DGND. Note1. When in parallel mode, no use data pin must be connected to “1” or “0”. Note2. When CSX=”1”, there is no influence to the parallel and serial interface. Ver 1.5.2 I/O 15 2007-12 ST7732 6.3 Mode selection pin Name I/O EXTC I Count Connect pin 1 VDDI/DGND 1 VDDI/DGND 1 VDDI/DGND I -Panel resolution selection pins. GM[1:0] Selection of panel resolution 00 128RGB x 160 01 120RGB x 160 11 132RGB x 162 2 VDDI/DGND I -Liquid crystal (LC) type selection pins. LCM[1:0] Selection of LC type 00 0 TR (transflective) type LC 01 1 TM (transmissive) type LC 10 2 LV (low voltage) type LC 11 3 MVA (multi-domain vertical alignment) type LC 2 VDDI/DGND I -RGB or MCU interface mode selection pins. RCM[1:0] Selection of MCU or RGB interface 00 0 MCU Interface 01 1 MCU Interface 10 2 RGB Interface (1) 11 3 RGB Interface (2) 2 VDDI/DGND I -RGB arrangement selection pin for color filter design. SRGB RGB arrangement S1, S2, S3 filter order = ’R’, ’G’, ’B’ 0 S1, S2, S3 filter order = ‘B’, ‘G’, ‘R’ 1 1 VDDI/DGND I -Scanning direction of source output selection pin. Scanning direction of source output SMX GM=”00” GM=”01” GM=”11” 0 S7 -> S390 S7 -> S366 S1 -> S396 1 S390 -> S7 S366 -> S7 S396 -> S1 1 VDDI/DGND I -Scanning direction of gate output selection pin. Scanning direction of gate output SMY GM=”00” GM=”01” GM=”11” 0 G2 -> G161 G2 -> G161 G1 -> G162 1 G161 -> G2 G161 -> G2 G162 -> G1 1 VDDI/DGND I -Polarity of source output selection pin. REV Command Polarity of source output INVON(21h) Data reverse 0 INVOFF(20h) Data not reverse INVON(21h) Data not reverse 1 INVOFF(20h) Data reverse 1 VDDI/DGND I -Display On/Off control pin In RGB interface. -Only used in RGB2 mode. If not used, please fix this pin at VDDI or DGND. SHUT Display On/Off 0 Display On 1 Display Off 1 VDDI/DGND GS I IDM I GM1, GM0 LCM1, LCM0 RCM1, RCM0 SRGB SMX SMY REV SHUT Ver 1.5.2 Description -To use extended command set, please connect this pin to VDDI. -During normal operation, please open this pin (internal Rpull-down=2MΩ). EXTC Enable/disable modification of extend command 0 Only use default command set 1 Use extended command set -Gamma curve selection pin. GS Selection of gamma curve 0 GC0=1.0, GC1=2.5, GC2=2.2, GC3=1.8 1 GC0=2.2, GC1=1.8, GC2=2.5, GC3=1.0 -Normal mode and idle mode selection pin. IDM Enable/disable idle mode 0 Normal display (can be changed to Idle mode by S/W) 1 Idle mode enable 16 2007-12 ST7732 -Scanning direction of source output selection pin in RGB interface. Scanning direction of source output RL SMX GM=”00” GM=”01” GM=”11” 0 0 S7 -> S390 S7 -> S366 S1 -> S396 0 1 S390 -> S7 S366 -> S7 S396 -> S1 1 0 S390 -> S7 S366 -> S7 S396 -> S1 1 1 S7 -> S390 S7 -> S366 S1 -> S396 -Scanning direction of gate output selection pin in RGB interface. Scanning direction of gate output TB SMY GM=”00” GM=”01” GM=”11” G2 -> G161 G2 -> G161 G1 -> G162 0 0 G161 -> G2 G161 -> G2 G162 -> G1 0 1 G161 -> G2 G161 -> G2 G162 -> G1 1 0 G2 -> G161 G2 -> G161 G1 -> G162 1 1 RL I TB I TESEL I/O -Input mode: Please fix this pin at VDDI or DGND level. -Output mode: If this pin neither fix on panel internally nor FPC, it must be changed to output mode. (refer to the application note) 1 VDDI/DGND 1 VDDI/DGND 1 VDDI/DGND 6.4 Driver output pin Name S1 to S396 G1 to G162 I/O O O Description Count Connect pin - Source driver output pins. 396 - - Gate driver output pins. 162 - 3 Capacitor 3 AVDDO 2 Capacitor 2 VCLO 1 Capacitor 2 VGHO 1 Capacitor 3 VGLO 3 Capacitor 3 Capacitor 3 Capacitor 3 Capacitor - A reference voltage for step-up circuit 1. - Connect a capacitor for stabilization. - Power input pin for analog circuits. - In normal usage, connect it to AVDDO. - Output of step-up circuit 1 - Connect a capacitor for stabilization. - Power input pin for VCOM circuit. - In normal usage, connect it to VCLO. - A power output pin of step-up circuit 4. - When VCOML is higher than AGND, VCLO=AGND. - Connect a capacitor for stabilization. - Power input pin for gate driver circuit. - In normal usage, connect it to VGHO. - Positive output pin of the step-up circuit 2. - Connect a capacitor for stabilization. - Power input pin for gate driver circuit. - Negative output of the step-up circuit 2 is connected inside the driver. - Connect a capacitor for stabilization. - A reference voltage for power system. - Connect a capacitor for stabilization. - A power output of grayscale voltage generator. - Connect a capacitor for stabilization. - When internal GVDD generator is not used, connect an external power supply (AVDD-0.5V) to this pin. - Positive voltage output of VCOM. - Connect a capacitor for stabilization. - Negative voltage output of VCOM. - Connect a capacitor for stabilization. VCI1 I/O AVDD I AVDDO O VCL I VCLO O VGH I VGHO O VGL I VREF O GVDD O VCOMH O VCOML O VCOM O - A power supply for the TFT-LCD common electrode. 3 Common electrode O - Capacitor connecting pins for step-up circuit 1 (for AVDDO) 12 Step-up Capacitor O - Capacitor connecting pins for step-up circuit 2 and 4 (for VGHO, VGLO, VCLO) 12 Step-up Capacitor O -VDDI voltage output level for monitoring. 8 C11P, C11N C12P, C12N C21P, C21N C22P, C22N C23P, C23N VDDIO Ver 1.5.2 17 - 2007-12 ST7732 DGNDO O VCC O -DGND voltage output level for monitoring. -Monitoring pin of internal digital reference voltage. -Connect a capacitor for stabilization. 10 - 3 Capacitor 6.5 Test ping Name PADA0 PADB0 PADA1 PADB1 PADA2 PADB2 PADA3 PADB3 PADA4 PADB4 TPI[2]~[1] TPO[8]~[1] I/O Dummy - Ver 1.5.2 I I I O Description -These test pins is for display glass break detection. -If not used, please open these pins. -These test pins is for chip attachment detection. -If not used, please open these pins. -Please open these pins. -Please open these pins. -These pins are dummy (have no function inside). -Can allow signal traces pass through these pads on TFT glass. 18 Count Connect pin 2 Open 8 Open 2 8 Open Open 23 Open 2007-12 ST7732 7. Driver electrical characteristics 7.1 Absolute operation range Item Symbol Rating Unit Supply voltage VDD - 0.3 ~ +4.6 V Supply voltage (Logic) VDDI - 0.3 ~ +4.6 V Supply voltage (Digital) VCC -0.3 ~ +4.6 V Driver supply voltage VGH-VGL -0.3 ~ +30.0 V Logic input voltage range VIN 0.3 ~ VDDI + 0.3 V Logic output voltage range VO 0.3 ~ VDDI + 0.3 V Operating temperature range TOPR -40 ~ +85 ℃ Storage temperature range TSTG -55 ~ +125 ℃ Note: If one of the above items is exceeded its maximum limitation momentarily, the quality of the product may be degraded. Absolute maximum limitation, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the recommend range. 7.2 DC characteristic Parameter Specification TYP Max Symbol Condition VDD Operating voltage 2.5 2.8 3.3 V VDDI I/O supply voltage 1.6 1.8/2.8 3.3 V Digital operating voltage VCC Digital supply voltage 1.6 2.0 V Gate driver high voltage Gate driver low voltage Gate driver supply voltage Input / Output Logic-high input voltage Logic-low input voltage Logic-high output voltage Logic-low output voltage Logic-high input current Logic-low input current Input leakage current VCOM voltage VCOM high voltage VCOM low voltage VCOM amplitude Source driver Source output range Gamma reference voltage Source output settling time VGH VGL 9.41 -13.48 16.17 -7.06 V V 16.47 29.65 V 0.7VDDI VSS 0.8VDDI VSS VDDI 0.3VDDI VDDI 0.2VDDI 1 Power & operation voltage System voltage Interface operation voltage Output deviation voltage (Source output channel) Output offset voltage Step-up circuit Internal reference voltage 1st step-up (VDDx2) voltage 1st step-up (VDDx2) drop voltage Linear range Min | VGH-VGL | VIH VIL VOH VOL IIH IIL IIL IOH = -1.0mA IOL = +1.0mA VIN = VDDI VIN = VSS IOH = -1.0mA VCOMH VCOML VCOMAC Ccom=12nF Ccom=12nF |VCOMH-VCOML| Unit Related Pins -1 -0.1 +0.1 V V V V uA uA uA 2.5 -2.5 4.0 5.0 0.0 6.0 V V V Vsout 0.1 AVDD-0.1 V GVDD 3.0 5.0 V 30 us Note 2 20 mV Note 2 15 35 mV mV Note 3 1 % Tr Vdev Below with 99% precision Sout >=4.2V, Sout<=0.8V 4.2V>Sout>0.8V VOFFSET VREF 0 AVDD VDDx2,dorp 4.95 *4 I AVDD = 1.0mA (include panel loading) VLinear 0.2 6.0 *5 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 V 5% % AVDD-0.2 V Note 1: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, TA=-30 to 70 ℃ Note 2, Source channel loading= 10pF/channel, Gate channel loading=50pF/channel. Note 3, The Max. value is between measured point of source output and gamma setting value. Note 4, VDD=2.6V or VCI1=2.6V Note 5, VDD=3.0V or VCI1=3.0V Ver 1.5.2 19 2007-12 ST7732 7.3 Power consumption Operation mode Current consumption Typical Maximum IDDI IDD IDDI IDD (uA) (mA) (mA) (mA) Inversion mode Image One Line Note 1 1 1.10 One Line Note 2 1 1.10 One Line Note 3 1 0.3 N/A N/A 1 3uA -Normal mode -Partial + Idle mode (40 lines) -Sleep-in mode Notes: 1. All pixels black. 2. Grayscale from top to bottom. 3. Black & white checker board 4 by 4. Ver 1.5.2 20 2007-12 ST7732 8. Timing chart 8.1 Parallel interface characteristics: 18, 16, 9 or 8-bits bus (8080-series MCU interface) Fig. 8.1.1 Parallel interface timing characteristics (8080-series MCU interface) Signal Symbol Parameter Min Max TAST Address setup time 5 D/CX TAHT Address hold time (Write/Read) 10 TCHW Chip select “H” pulse width 0 TCS Chip select setup time (Write) 20 TRCS Chip select setup time (Read ID) 20 CSX TRCSFM Chip select setup time (Read FM) 20 TCSF Chip select wait time (Write/Read) 10 TCSH Chip select hold time 20 TWC Write cycle 66 WRX TWRH Control pulse “H” duration 25 TWRL Control pulse “L” duration 15 TRC Read cycle (ID) 160 RDX (ID) TRDH Control pulse “H” duration (ID) 90 TRDL Control pulse “L” duration (ID) 45 TRCFM Read cycle (FM) 160 RDX (FM) TRDHFM Control pulse “H” duration (FM) 90 TRDLFM Control pulse “L” duration (FM) 45 TDST Data setup time 15 D[17:0] TDHT Data hold time 15 TODH Output disable time 20 80 Note: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=-30 to 70 ℃ Ver 1.5.2 21 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Description - -(3-transfer for one pixel) When read ID data When read from frame memory For maximum CL=30pF For minimum CL=8pF 2007-12 ST7732 Fig. 8.1.2 Rising and falling timing for input and output signal Fig.8.1.3 Chip selection (CSX) timing Fig. 8.1.4 Write-to-read and read-to-write timing Note: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals. 8.2 Parallel interface characteristics: 18, 16, 9 or 8-bits bus (6800-series MCU interface) Fig. 8.2.1 Parallel interface timing characteristics (6800-series MCU interface) Ver 1.5.2 22 2007-12 ST7732 Signal Symbol Parameter Min Max Unit Description TAST Address setup time 5 ns D/CX TAHT Address hold time (Write/Read) 10 ns TCHW Chip select “H” pulse width 0 ns TCS Chip select setup time (Write) 20 ns TRCS Chip select setup time (Read ID) 20 ns CSX TRCSFM Chip select setup time (Read FM) 20 ns TCSF Chip select wait time (Write/Read) 10 ns Chip select hold time 20 ns TCSH TWC Write cycle 66 ns WRX TWRH Control pulse “H” duration 25 ns TWRL Control pulse “L” duration 15 ns TRC Read cycle (ID) 160 ns RDX (ID) When read ID data TRDH Control pulse “H” duration (ID) 90 ns TRDL Control pulse “L” duration (ID) 45 ns TRCFM Read cycle (FM) 160 ns When read from frame RDX (FM) TRDHFM Control pulse “H” duration (FM) 90 ns memory TRDLFM Control pulse “L” duration (FM) 45 ns TDST Data setup time 15 ns For maximum CL=30pF D[17:0] TDHT Data hold time 15 ns For minimum CL=8pF Output disable time 20 80 ns TODH Note 1: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=-30 to 70℃ Note 2: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals 8.3 Serial interface characteristics (3-line serial) CSX VIH TCHW VIL TSCYCW/TSCYCR TCSH TCSS TSLW/TSLR SCL TSHW/TSHR TSDS SDA TSCC VIH VIL TSDH VIH VIL TACC TOH VIH VIL VIH SDA (DOUT) VIL Fig. 8.3.1 3-line serial interface timing Parameter Min Max Unit Description Chip select setup time (write) 45 ns Chip select hold time (write) 45 ns CSX Chip select setup time (read) 12 ns Chip select hold time (read) 20 ns Chip select “H” pulse width 0 ns Serial clock cycle (Write) 54 ns SCL “H” pulse width (Write) 12 ns SCL “L” pulse width (Write) 12 ns SCL Serial clock cycle (Read) 150 ns SCL “H” pulse width (Read) 60 ns SCL “L” pulse width (Read) 60 ns Data setup time 10 ns SDA Data hold time 10 ns For maximum CL=30pF (DIN) For minimum CL=8pF Access time 10 40 ns (DOUT) Output disable time 40 ns Table 8.3: 3-line Serial Interface Characteristics Note 1: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=-30 to 70℃ Note 2: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals. Signal Ver 1.5.2 Symbol TCSS TCSH TCSS TSCC TCHW TSCYCW TSHW TSLW TSCYCR TSHR TSLR TSDS TSDH TACC TOH 23 2007-12 ST7732 8.4 Serial interface characteristics (4-line serial) Fig. 8.4.1 4-line serial interface timing Signal CSX SCL D/CX SDA (DIN) (DOUT) Symbol TCSS TCSH TCSS TSCC TCHW TSCYCW TSHW TSLW TSCYCR TSHR TSLR TDCS TDCH TSDS TSDH TACC TOH Parameter MIN MAX Chip select setup time (write) 45 Chip select hold time (write) 45 Chip select setup time (read) 12 Chip select hold time (read) 20 Chip select “H” pulse width 0 Serial clock cycle (Write) 54 SCL “H” pulse width (Write) 12 SCL “L” pulse width (Write) 12 Serial clock cycle (Read) 150 SCL “H” pulse width (Read) 60 SCL “L” pulse width (Read) 60 D/CX setup time 10 D/CX hold time 10 Data setup time 10 Data hold time 10 Access time 10 40 Output disable time 40 Table 8.4: 4-line Serial Interface Characteristics Unit ns ns ns ns ns ns ns ns ns ns ns Ns ns ns ns ns ns Description -write command & data ram -read command & data ram For maximum CL=30pF For minimum CL=8pF Note 1: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=-30 to 70 ℃ Note 2: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals. Ver 1.5.2 24 2007-12 ST7732 9. Function description 9.1 Interface type selection The selection of given interfaces are done by setting P68, IM2, IM1, and IM0 pins as shown in following table. Table 9.1.1 Selection of MCU interface P68 IM2 IM1 IM0 Interface 0 3-line serial interface 0 1 0 0 8080 MCU 8-bit parallel 0 1 0 1 8080 MCU 16-bit parallel 0 1 1 0 8080 MCU 9-bit parallel 0 1 1 1 8080 MCU 18-bit parallel 0 3-line serial interface 1 1 0 0 6800 MCU 8-bit parallel 1 1 0 1 6800 MCU 16-bit parallel 1 1 1 0 6800 MCU 9-bit parallel 1 1 1 1 6800 MCU 18-bit parallel Read back selection Via the read instruction RDX strobe (8-bit read data and 8-bit read parameter) RDX strobe (16-bit read data and 8-bit read parameter) RDX strobe (9-bit read data and 8-bit read parameter) RDX strobe (18-bit read data and 8-bit read parameter) Via the read instruction E strobe (8-bit read data and 8-bit read parameter) E strobe (16-bit read data and 8-bit read parameter) E strobe (9-bit read data and 8-bit read parameter) E strobe (18-bit read data and 8-bit read parameter) Table 9.1.2 Pin connection according to various MCU interface P68 IM2 IM1 IM0 Interface RDX 0 3-line serial interface Note1 0 1 0 0 8080 8-bit parallel RDX WRX Note1 WRX D/CX SCL D/CX 0 1 0 1 8080 16-bit parallel RDX WRX D/CX 0 0 1 1 1 0 1 1 1 0 0 1 0 8080 9-bit parallel 8080 18-bit parallel 3-line serial interface 6800 8-bit parallel RDX RDX Note1 E WRX WRX D/CX WRX D/CX D/CX SCL RS 1 1 0 1 6800 16-bit parallel E WRX RS 1 1 1 0 6800 9-bit parallel E WRX 1 1 1 1 6800 18-bit parallel E WRX Note 1. Unused pins can be open, or connected to DGND or VDDI. RS RS Read back selection D[17:1]: unused, D0: SDA D[17:8]: unused, D7-D0: 8-bit data D[17:16]: unused, D15-D0: 16-bit data D[17:9]: unused, D8-D0: 9-bit data D17-D0: 18-bit data D[17:1]: unused, D0: SDA D[17:8]: unused, D7-D0: 8-bit data D[17:16]: unused, D15-D0: 16-bit data D[17:9]: unused, D8-D0: 9-bit data D17-D0: 18-bit data 9.2 8080-series MCU parallel interface (P68=’0’) The MCU can use one of following interfaces: 11-lines with 8-data parallel interface, 12-lines with 9-data parallel interface, 19-line with 16-data parallel interface or 21-lines with 18-data parallel interface. The chip-select CSX (active low) enables/disables the parallel interface. RESX (active low) is an external reset signal. WRX is the parallel data write enable, RDX is the parallel data read enable and D[17:0] is parallel data bus. The LCD driver reads the data at the rising edge of WRX signal. The D/CX is the data/command flag. When D/CX=’1’, D[17:0] bits is either display data or command parameter. When D/C=’0’, D[17:0] bits is command. The 6800-series bi-directional interface can be used for communication between the micro controller and LCD driver. The selection of this interface is done when P68 pin is in low state (DGND). Interface bus width can be selected with IM2, IM1 and IM0. The interface functions of 8080-series parallel interface are given in following table. Table 9.2.1 The function of 8080-series parallel interface P68 IM2 IM1 IM0 Interface D/CX RDX WRX Read back selection 0 1 ↑ Write 8-bit command (D7 to D0) 8-bit 1 1 ↑ Write 8-bit display data or 8-bit parameter (D7 to D0) 0 1 0 0 parallel 1 ↑ 1 Read 8-bit display data (D7 to D0) 1 ↑ 1 Read 8-bit parameter or status (D7 to D0) 0 1 ↑ Write 8-bit command (D7 to D0) 16-bit 1 1 ↑ Write 16-bit display data or 8-bit parameter (D15 to D0) 0 1 0 1 parallel 1 ↑ 1 Read 16-bit display data (D15 to D0) 1 ↑ 1 Read 8-bit parameter or status (D7 to D0) 0 1 ↑ Write 8-bit command (D7 to D0) 9-bit 1 1 ↑ Write 9-bit display data or 8-bit parameter (D8 to D0) 0 1 1 0 parallel 1 ↑ 1 Read 9-bit display data (D8 to D0) 1 ↑ 1 Read 8-bit parameter or status (D7 to D0) 0 1 ↑ Write 8-bit command (D7 to D0) 18-bit 1 1 ↑ Write 18-bit display data or 8-bit parameter (D17 to D0) 0 1 1 1 parallel 1 ↑ 1 Read 18-bit display data (D17 to D0) 1 ↑ 1 Read 8-bit parameter or status (D7 to D0) Note: applied for command code: DAh, DBh, DCh, 04h, 09h, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 0Fh Ver 1.5.2 25 2007-12 ST7732 9.2.1 Write cycle sequence The write cycle means that the host writes information (command or/and data) to the display via the interface. Each write cycle (WRX high-low-high sequence) consists of 3 control signals (D/CX, RDX, WRX) and data signals (D[17:0]). D/CX bit is a control signal, which tells if the data is a command or a data. The data signals are the command if the control signal is low (=’0’) and vice versa it is data (=’1’). Fig. 9.2.1 8080-series WRX protocol Note: WRX is an unsynchronized signal (It can be stopped). Fig. 9.2.2 8080-series parallel bus protocol, write to register or display RAM Ver 1.5.2 26 2007-12 ST7732 9.2.2 Read cycle sequence The read cycle (RDX high-low-high sequence) means that the host reads information from LCD driver via interface. The driver sends data (D[17:0]) to the host when there is a falling edge of RDX and the host reads data when there is a rising edge of RDX. Fig. 9.2.3 8080-series RDX protocol Note: RDX is an unsynchronized signal (It can be stopped). Fig. 9.2.4 8080-series parallel bus protocol, read data from register or display RAM 9.3 6800-Series Parallel Interface (P68=’1’) The MCU uses one of following interface: 11-lines with 8-data parallel interface, 12-lines with 9-data parallel interface, 19-lines with 16-data parallel interface, or 21-lines with 18-data parallel interface. The chip-select CSX(active low) enables and disables the parallel interface. RESX (active low) is an external reset signal. The R/WX is the Read/Write flag and D[17:0] is parallel data bus. The LCD driver reads the data at the falling edge of E signal when R/WX= ‘1’ and Writes the data at the falling of the E signal when R/WX=’0’. The D/CX is the data/command flag. When D/CX=’1’, D[17:0] bits are display RAM data or command parameters. When D/C= ‘0’, D[17:0] bits are commands. The 6800-series bi-directional interface can be used for communication between the micro controller and LCD driver. The selection of this interface is done when P68 pin is high state (VDDI). Interface bus width can be selected with IM2, IM1 and IM0. The interface functions of 6800-series parallel interface are given in Table 9.3.1. Ver 1.5.2 27 2007-12 ST7732 Table 9.3.1 The function of 6800-series parallel interface P68 IM2 IM1 IM0 Interface D/CX R/WX E Function 0 0 ↓ Write 8-bit command (D7 to D0) 1 0 ↓ Write 8-bit display data or 8-bit parameter (D7 to D0) 1 1 0 0 8-bit Parallel 1 1 ↓ Read 8-bit Display data (D7 to D0) 1 1 ↓ Read 8-bit parameter or status (D7 to D0) 0 0 ↓ Write 8-bit command (D7 to D0) 1 0 ↓ Write 16-bit display data or 8-bit parameter (D15 to D0) 1 1 0 1 16-bit Parallel 1 1 ↓ Read 16-bit Display data (D15 to D0) 1 1 ↓ Read 8-bit parameter or status (D7 to D0) 0 0 ↓ Write 8-bit command (D7 to D0) 1 0 ↓ Write 9-bit display data or 8-bit parameter (D8 to D0) 1 1 1 0 9-bit Parallel 1 1 ↓ Read 9-bit Display data (D8 to D0) 1 1 ↓ Read 8-bit parameter or status (D7 to D0) 0 0 ↓ Write 8-bit command (D7 to D0) 1 0 ↓ Write 18-bit display data or 8-bit parameter (D17 to D0) 1 1 1 1 18-bit Parallel 1 1 ↓ Read 18-bit Display data (D17 to D0) 1 1 ↓ Read 8-bit parameter or status (D7 to D0) Note: applied for command code: DAh, DBh, DCh, 04h, 09h, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 0Fh. 9.3.1 Write cycle sequence The write cycle means that the host writes information (command or/and data) to the display via the interface. Each write cycle (E low-high-low sequence) consists of 3 control signals (D/CX, E, R/WX) and data signals (D[17:0]). D/CX bit is a control signal, which tells if the data is a command or a data. The data signals are the command if the control signal is low (=’0’) and vice versa it is data (=’1’). Fig. 9.3.1 6800-Series Write Protocol Note: E is an unsynchronized signal (It can be stopped) Fig. 9.3.2 6800-series parallel bus protocol, write to register or display RAM Ver 1.5.2 28 2007-12 ST7732 9.3.2 Read cycle sequence The read cycle (E low-high-low sequence) means that the host reads information from LCD driver via interface. The driver sends data (D[17:0]) to the host when there is a rising edge of E and the host reads data when there is a falling edge of E. Fig. 9.3.3 6800-series read protocol Note: E is an unsynchronized signal (It can be stopped) Fig. 9.3.4 6800-series parallel bus protocol, read data form register or display RAM Ver 1.5.2 29 2007-12 ST7732 9.4 Serial interface The selection of this interface is done by IM2. See the Table 9.4.1. Table 9.4.1 Selection of serial interface IM2 4WSPI Interface 0 0 3-line serial interface 0 1 4-line serial interface Read back selection Via the read instruction (8-bit, 24-bit and 32-bit read parameter) Via the read instruction (8-bit, 24-bit and 32-bit read parameter) The serial interface is either 3-lines/9-bits or 4-lines/8-bts bi-directional interface for communication between the micro controller and the LCD driver. The 3-lines serial interface use: CSX (chip enable), SCL (serial clock) and SDA (serial data input/output), and the 4-lines serial interface use: CSX (chip enable), D/CX (data/ command flag), SCL (serial clock) and SDA (serial data input/output). Serial clock (SCL) is used for interface with MCU only, so it can be stopped when no communication is necessary. 9.4.1 Command Write Mode The write mode of the interface means the micro controller writes commands and data to the LCD driver. 3-lines serial data packet contains a control bit D/CX and a transmission byte. In 4-lines serial interface, data packet contains just transmission byte and control bit D/CX is transferred by the D/CX pin. If D/CX is “low”, the transmission byte is interpreted as a command byte. If D/CX is “high”, the transmission byte is stored in the display data RAM (memory write command), or command register as parameter. Any instruction can be sent in any order to the driver. The MSB is transmitted first. The serial interface is initialized when CSX is high. In this state, SCL clock pulse or SDA data have no effect. A falling edge on CSX enables the serial interface and indicates the start of data transmission. Fig. 9.4.1 Serial interface data stream format When CSX is “high”, SCL clock is ignored. During the high period of CSX the serial interface is initialized. At the falling edge of CSX, SCL can be high or low (see Fig 9.4.2). SDA is sampled at the rising edge of SCL. D/CX indicates whether the byte is command (D/CX=’0’) or parameter/RAM data (D/CX=’1’). D/CX is sampled when first rising edge of SCL (3-lines serial interface) or 8th rising edge of SCL (4-lines serial interface). If CSX stays low after the last bit of command/data byte, the serial interface expects the D/CX bit (3-lines serial interface) or D7 (4-lines serial interface) of the next byte at the next rising edge of SCL. Ver 1.5.2 30 2007-12 ST7732 Fig. 9.4.2 3-line serial interface write protocol (write to register with control bit in transmission) Fig. 9.4.3 4-line serial interface write protocol (write to register with control bit in transmission) 9.4.2 Read Functions The read mode of the interface means that the micro controller reads register value from the driver. To achieve read function, the micro controller first has to send a command (read ID or register command) and then the following byte is transmitted in the opposite direction. After that CSX is required to go to high before a new command is send (see the below figure). The driver samples the SDA (input data) at rising edge of SCL, but shifts SDA (output data) at the falling edge of SCL. Thus the micro controller is supported to read at the rising edge of SCL. After the read status command has been sent, the SDA line must be set to tri-state no later than at the falling edge of SCL of the last bit. 3-line serial protocol (for RDID1/RDID2/RDID3/0Ah/0Bh/0Ch/0Dh/0Eh/0Fh command: 8-bit read): Ver 1.5.2 31 2007-12 ST7732 S TB TB P S CSX Host SCL Driver SDA D/C SDA (SDO) Hi-Z D7 D6 D5 D4 D3 D2 D1 D0 Hi-Z D7 D/C X D6 D5 D4 D3 D2 D1 D0 3-line serial protocol (for RDDID command: 24-bit read) 3-line Serial Protocol (for RDDST command: 32-bit read) Fig. 9.4.4 3-line serial interface read protocol Ver 1.5.2 32 2007-12 ST7732 4-line serial protocol (for RDID1/RDID2/RDID3/0Ah/0Bh/0Ch/0Dh/0Eh/0Fh command: 8-bit read): 4-line serial protocol (for RDDID command: 24-bit read) 4-line Serial Protocol (for RDDST command: 32-bit read) Fig. 9.4.5 4-line serial interface read protocol Ver 1.5.2 33 2007-12 ST7732 9.5 Data Transfer Break and Recovery If there is a break in data transmission by RESX pulse, while transferring a command or frame memory data or multiple parameter command data, before Bit D0 of the byte has been completed, then driver will reject the previous bits and have reset the interface such that it will be ready to receive command data again when the chip select line (CSX) is next activated after RESX have been HIGH state. See the following example Host (MCU to driver) Fig. 9.5.1 Serial bus protocol, write mode – interrupted by RESX If there is a break in data transmission by CSX pulse, while transferring a command or frame memory data or multiple parameter command data, before Bit D0 of the byte has been completed, then driver will reject the previous bits and have reset the interface such that it will be ready to receive the same byte re-transmitted when the chip select line (CSX) is next activated. See the following example Fig. 9.5.2 Serial bus protocol, write mode – interrupted by CSX If 1, 2 or more parameter commands are being sent and a break occurs while sending any parameter before the last one and if the host then sends a new command rather than re-transmitting the parameter that was interrupted, then the parameters that were successfully sent are stored and the parameter where the break occurred is rejected. The interface is ready to receive next byte as shown below. Fig.9.5.3 Write interrupts recovery (serial interface) Ver 1.5.2 34 2007-12 ST7732 If a 2 or more parameter commands are being sent and a break occurs by the other command before the last one is sent, then the parameters that were successfully sent are stored and the other parameter of that command remains previous value. Fig. 9.5.4 Write interrupts recovery (both serial and parallel Interface) 9.6 Data transfer pause It will be possible when transferring a command, frame memory data or multiple parameter data to invoke a pause in the data transmission. If the chip select line is released after a whole byte of a frame memory data or multiple parameter data has been completed, then driver will wait and continue the frame memory data or parameter data transmission from the point where it was paused. If the chip select Line is released after a whole byte of a command has been completed, then the display module will receive either the command‘s parameters (if appropriate) or a new command when the chip select line is next enabled as shown below. This applies to the following 4 conditions: 1) Command-Pause-Command 2) Command-Pause-Parameter 3) Parameter-Pause-Command 4) Parameter-Pause-Parameter 9.6.1 Serial interface pause Fig. 9.6.1 Serial interface pause protocol (pause by CSX) 9.6.2 Parallel interface pause Fig. 9.6.2 Parallel bus pause protocol (paused by CSX) Ver 1.5.2 35 2007-12 ST7732 9.7 Data Transfer Modes The module has three kinds color modes for transferring data to the display RAM. These are 12-bits color per pixel, 16-bits color per pixel and 18-bits color per pixel. The data format is described for each interface. Data can be downloaded to the frame memory by 2 methods. 9.7.1 Method 1 The Image data is sent to the frame memory in successive frame writes, each time the frame memory is filled, the frame memory pointer is reset to the start point and the next frame is written. 9.7.2 Method 2 Image data is sent and at the end of each frame memory download, a command is sent to stop frame memory write. Then start memory write command is sent, and a new frame is downloaded. Note: 1) These apply to all data transfer Color modes on both serial and parallel interfaces. 2) The frame memory can contain both odd and even number of pixels for both methods. Only complete pixel data will be stored in the frame memory. Ver 1.5.2 36 2007-12 ST7732 9.8 Data Color Coding 9.8.1 8-bit Parallel Interface (IM2, IM1, IM0= “100”) Different display data formats are available for three Colors depth supported by listed below. - 4k Colors, RGB 4,4,4-bit input, - 65k Colors, RGB 5,6,5-bit input,. - 262k Colors, RGB 6,6,6-bit input, 9.8.1.1 8-bit data bus for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH= “03h” There are 2 pixels (6 sub-pixels) per 3-bytes. Note1. The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit 3, LSB=Bit 0 for Red, Green and Blue data. Note 2. 3-time transfer is used to transmit 1 pixel data with the 12-bit color depth information. Note 3. ‘-‘ = Don't care - Can be set to '0' or '1' Ver 1.5.2 37 2007-12 ST7732 9.8.1.2 8-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH= “05h” There is 1 pixel (3 sub-pixels) per 2-bytes. RESX IM[2:0] “1” “100” CSX D/CX WRX RDX R/WX “1” 8080-series control pins “0” E 6800-series control pins D7 0 R1, Bit 4 G1, Bit 2 R2, Bit 4 G2, Bit 2 D6 0 R1, Bit 3 G1, Bit 1 R2, Bit 3 G2, Bit 1 D5 1 R1, Bit 2 G1, Bit 0 R2, Bit 2 G2, Bit 0 D4 0 R1, Bit 1 B1, Bit 4 R2, Bit 1 B2, Bit 4 D3 1 R1, Bit 0 B1, Bit 3 R2, Bit 0 B2, Bit 3 D2 1 G1, Bit 5 B1, Bit 2 G2, Bit 5 B2, Bit 2 D1 0 G1, Bit 4 B1, Bit 1 G2, Bit 4 B2, Bit 1 D0 0 G1, Bit 3 B1, Bit 0 G2, Bit 3 B2, Bit 0 Pixel n Pixel n+1 16 bits 16 bits Look-up table for 65k color data mapping (16 bits to 18 bits) 18 bits Frame memory R1 G1 B1 R2 G2 B2 R3 G3 B3 Note1. The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Green and MSB=Bit 4, LSB=Bit 0 for Red and Blue data. Note 2.2-times transfer is used to transmit 1 pixel data with the 16-bit color depth information. Note 3. ‘-‘ = Don't care - Can be set to '0' or '1' Ver 1.5.2 38 2007-12 ST7732 9.8.1.3 8-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH= “06h” There is 1 pixel (3 sub-pixels) per 3-bytes. RESX IM[2:0] “1” “100” CSX D/CX WRX RDX R/WX “1” 8080-series control pins “0” E 6800-series control pins D7 0 R1, Bit 5 G1, Bit 5 B1, Bit 5 R2, Bit 5 D6 0 R1, Bit 4 G1, Bit 4 B1, Bit 4 R2, Bit 4 D5 1 R1, Bit 3 G1, Bit 3 B1, Bit 3 R2, Bit 3 D4 0 R1, Bit 2 G1, Bit 2 B1, Bit 2 R2, Bit 2 D3 1 R1, Bit 1 G1, Bit 1 B1, Bit 1 R2, Bit 1 D2 1 R1, Bit 0 G1, Bit 0 B1, Bit 0 R2, Bit 0 D1 0 - - - - D0 0 - - - - Pixel n Pixel n+1 18 bits 18 bits Frame memory R1 G1 B1 R2 G2 B2 R3 G3 B3 Note1. The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Red, Green and Blue data. Note 2.3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information. Note 3. ‘-‘ = Don't care - Can be set to '0' or '1' Ver 1.5.2 39 2007-12 ST7732 9.8.2 16-Bit Parallel Interface (IM2,IM1, IM0= “101”) Different display data formats are available for three colors depth supported by listed below. - 4k colors, RGB 4,4,4-bit input - 65k colors, RGB 5,6,5-bit input - 262k colors, RGB 6,6,6-bit input 9.8.2.1 16-bit data bus for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH= “03h” There is 1 pixel (3 sub-pixels) per 1 bytes, 12-bit/pixel. Note1. The data order is as follows, MSB=D11, LSB=D0 and picture data is MSB=Bit 3, LSB=Bit 0 for Red, Green and Blue data. Note 2.1-times transfer (D11 to D0) is used to transmit 1 pixel data with the 12-bit color depth information. Ver 1.5.2 40 2007-12 ST7732 9.8.2.2 16-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH= “05h” There is 1 pixel (3 sub-pixels) per 1 bytes, 16-bit/pixel. Note1. The data order is as follows, MSB=D15, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Green, and MSB=Bit 4, LSB=Bit 0 for Red and Blue data. Note 2.1-times transfer (D15 to D0) is used to transmit 1 pixel data with the 16-bit color depth information. Note 3. ‘-‘ = Don't care - Can be set to '0' or '1' Ver 1.5.2 41 2007-12 ST7732 9.8.2.3 16-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH= “06h” There are 2 pixel (6 sub-pixels) per 3 bytes, 18-bit/pixel. Note1. The data order is as follows, MSB=D15, LSB=D0 and picture data is MSB=Bits 5, LSB=Bit 0 for Red, Green and Blue data. Note 2.3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information. Note 3. ‘-‘ = Don't care - Can be set to '0' or '1' Ver 1.5.2 42 2007-12 ST7732 9.8.3 9-Bit Parallel Interface (IM2, IM1, IM0=“110”) Different display data formats are available for three colors depth supported by listed below. - 262k colors, RGB 6,6,6-bit input 9.8.3.1 Write 9-bit data for RGB 6-6-6-bit input (262k-color) There are 1 pixel (6 sub-pixels) per 3 bytes, 18-bit/pixel. RESX IM[2:0] “1” “110” CSX D/CX WRX RDX R/WX “1” 8080-series control pins “0” E 6800-series control pins D8 - R1, Bit 5 G1, Bit 2 R2, Bit 5 G2, Bit 2 D7 0 R1, Bit 4 G1, Bit 1 R2, Bit 4 G2, Bit 1 D6 0 R1, Bit 3 G1, Bit 0 R2, Bit 3 G2, Bit 0 D5 1 R1, Bit 2 B1, Bit 5 R2, Bit 2 B2, Bit 5 D4 0 R1, Bit 1 B1, Bit 4 R2, Bit 1 B2, Bit 4 D3 1 R1, Bit 0 B1, Bit 3 R2, Bit 0 B2, Bit 3 D2 1 G1, Bit 5 B1, Bit 2 G2, Bit 5 B2, Bit 2 D1 0 G1, Bit 4 B1, Bit 1 G2, Bit 4 B2, Bit 1 D0 0 G1, Bit 3 B1, Bit 0 G2, Bit 3 B2, Bit 0 Pixel n Pixel n+1 18 bits 18 bits Frame memory R1 G1 B1 R2 G2 B2 R3 G3 B3 Note1. The data order is as follows, MSB=D8, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Red, Green and Blue data. Note 2.3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information. Note 3. ‘-‘ = Don't care - Can be set to '0' or '1' Ver 1.5.2 43 2007-12 ST7732 9.8.4 18-Bit Parallel Interface (IM2, IM1, IM0=“111”) Different display data formats are available for three colors depth supported by listed below. - 4k colors, RGB 4,4,4-bit input - 65k colors, RGB 5,6,5-bit input - 262k colors, RGB 6,6,6-bit input. 9.8.4.1 18-bit data bus for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH=“03h” There are 1 pixel (3 sub-pixels) per 1 byte, 12-bit/pixel. Note1. The data order is as follows, MSB=D11, LSB=D0 and picture data is MSB=Bit 3, LSB=Bit 0 for Red, Green and Blue data. Note 2.1-times transfer is used to transmit 1 pixel data with the 12-bit color depth information. Ver 1.5.2 44 2007-12 ST7732 9.8.4.2 18-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH=“05h” There are 1 pixel (3 sub-pixels) per 1 byte, 16-bit/pixel. Note1. The data order is as follows, MSB=D15, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Green, and MSB=Bit 4, LSB=Bit 0 for Red and Blue data. Note 2.1-time transfer is used to transmit 1 pixel data with the 16-bit color depth information. Ver 1.5.2 45 2007-12 ST7732 9.8.4.3 18-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH=“06h” There are 1 pixel (3 sub-pixels) per 1 bytes, 18-bit/pixel. RESX IM[2:0] “1” “111” CSX D/CX WRX RDX R/WX “1” 8080-series control pins “0” E 6800-series control pins D17 - R1, Bit 5 R2, Bit 5 R3, Bit 5 R4, Bit 5 D16 - R1, Bit 4 R2, Bit 4 R3, Bit 4 R4, Bit 4 D15 - R1, Bit 3 R2, Bit 3 R3, Bit 3 R4, Bit 3 D14 - R1, Bit 2 R2, Bit 2 R3, Bit 2 R4, Bit 2 D13 - R1, Bit 1 R2, Bit 1 R3, Bit 1 R4, Bit 1 D12 - R1, Bit 0 R2, Bit 0 R3, Bit 0 R4, Bit 0 D11 - G1, Bit 5 G2, Bit 5 G3, Bit 5 G4, Bit 5 D10 - G1, Bit 4 G2, Bit 4 G3, Bit 4 G4, Bit 4 D9 - G1, Bit 3 G2, Bit 3 G3, Bit 3 G4, Bit 3 D8 - G1, Bit 2 G2, Bit 2 G3, Bit 2 G4, Bit 2 D7 0 G1, Bit 1 G2, Bit 1 G3, Bit 1 G4, Bit 1 D6 0 G1, Bit 0 G2, Bit 0 G3, Bit 0 G4, Bit 0 D5 1 B1, Bit 5 B2, Bit 5 B3, Bit 5 B4, Bit 5 D4 0 B1, Bit 4 B2, Bit 4 B3, Bit 4 B4, Bit 4 D3 1 B1, Bit 3 B2, Bit 3 B3, Bit 3 B4, Bit 3 D2 1 B1, Bit 2 B2, Bit 2 B3, Bit 2 B4, Bit 2 D1 0 B1, Bit 1 B2, Bit 1 B3, Bit 1 B4, Bit 1 D0 0 B1, Bit 0 B2, Bit 0 B3, Bit 0 B4, Bit 0 Pixel n Pixel n+1 Pixel n+2 Pixel n+3 18 bits 18 bits Frame memory R1 G1 B1 R2 G2 B2 R3 G3 B3 Note1. The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Read, Green and Blue data. Note 2.1-times transfer (D17o D0) is used to transmit 1 pixel data with the 18-bit color depth information. Ver 1.5.2 46 2007-12 ST7732 9.8.5 3-line serial Interface Different display data formats are available for three colors depth supported by the LCM listed below. 4k colors, RGB 4-4-4-bit input 65k colors, RGB 5-6-5-bit input 262k colors, RGB 6-6-6-bit input 9.8.5.1 Write data for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH=“03h” Note 1. pixel data with the 12-bit color depth information Note 2. The most significant bits are: Rx3, Gx3 and Bx3 Note 3. The least significant bits are: Rx0, Gx0 and Bx0 9.8.5.2 Write data for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH=“05h” Note 1. pixel data with the 16-bit color depth information Note 2. The most significant bits are: Rx4, Gx5 and Bx4 Note 3. The least significant bits are: Rx0, Gx0 and Bx0 Ver 1.5.2 47 2007-12 ST7732 9.8.5.3 Write data for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH=“06h” Note 1. pixel data with the 18-bit color depth information Note 2. The most significant bits are: Rx5, Gx5 and Bx5 Note 3. The least significant bits are: Rx0, Gx0 and Bx0 9.8.6 4-line serial Interface Different display data formats are available for three colors depth supported by the LCM listed below. 4k colors, RGB 4-4-4-bit input 65k colors, RGB 5-6-5-bit input 262k colors, RGB 6-6-6-bit input 9.8.6.1 Write data for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH=“03h” Note 1. pixel data with the 12-bit color depth information Note 2. The most significant bits are: Rx3, Gx3 and Bx3 Note 3. The least significant bits are: Rx0, Gx0 and Bx0 Ver 1.5.2 48 2007-12 ST7732 9.8.6.2 Write data for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH=“05h” Note 1. pixel data with the 16-bit color depth information Note 2. The most significant bits are: Rx4, Gx5 and Bx4 Note 3. The least significant bits are: Rx0, Gx0 and Bx0 9.8.6.3 Write data for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH=“06h” Note 1. pixel data with the 18-bit color depth information Note 2. The most significant bits are: Rx5, Gx5 and Bx5 Note 3. The least significant bits are: Rx0, Gx0 and Bx0 Ver 1.5.2 49 2007-12 ST7732 9.9 RGB interface 9.9.1 General Description The module uses 6, 16 and 18-bit parallel RGB interface which includes: VS, HS, DE, PCLK, D[17:0]. The interface is activated after Power-On sequence (See section Power-On/Off Sequence) Pixel clock (PCLK) is running all the time without stopping and it is used to enter VS, HS, DE and D[17:0] states at the rising edge of the PCLK. The PCLK cannot be used as continues internal clock for other functions of the display module e.g. Sleep-In mode etc. Vertical synchronization (VS) is used to tell the driver when a new frame of the display is beginning. This is negative (‘0’, low) active and its state is read by the driver at the rising edge of he PCLK signal. Horizontal synchronization (HS) is used to tell the driver when a new line of the frame is beginning. This is negative (‘0’, low) active and its state is read by the driver at the rising edge of the PCLK signal. Data Enable (DE) is used to tell the driver when the RGB information will be transferred ti the driver. This is a positive (‘1’, high) active and its state is read by the driver at the rising edge of the PCLK signal. D[17:0] (18-bit: R5-R0, G5-G0 and B5-B0; 16-bit: R4-R0, G5-G0 and B4-B0) are used to tell what is the information of the image that is transferred on the display (When DE=’1’ and at the rising edge of PCLK). D[17:0] can be ‘0’ (low) or ‘1’ (high). These lines are read by the driver at the rising edge of the PCLK signal. The PCLK cycle is described in the following figure. Fig. 9.9.1 PCLK cycle Note: PCLK is an unsynchronized signal (It can be stopped). Ver 1.5.2 50 2007-12 ST7732 9.9.2 General timing diagram Fig. 9.9.2 RGB general timing diagram The image information must be correct on the display, when the timings conforms the spec of the RGB interface. However, the image information can be incorrect on the display temporarily when timing is out of spec. The correct image information must be displayed automatically (by the display module) in the next frame period as the timing recovers from out of spec to within spec. Ver 1.5.2 51 2007-12 ST7732 9.9.3 Updating order on display active area (normal display on + sleep out) There are different kinds of updating orders for the display. These updating orders are controlled by H/W (SMX, SMY) and S/W (MX, MY, MV) bits. Vertical active counter (0 ~ 161) Vertical active counter (0 ~ 161) Fig. 9.9.3 Updating order when MADCTL’s MX=”0” and MY=”0” Vertical active counter (0 ~ 161) Vertical active counter (0 ~ 161) Fig. 9.9.5 Updating order when MADCTL’s MX=”0” and MY=”1” Ver 1.5.2 Fig. 9.9.4 Updating order when MADCTL’s MX=”1” and MY=”0” 52 Fig. 9.9.6 Updating order when MADCTL’s MX=”1” and MY=”1” 2007-12 ST7732 Table 9.9.1 Rules for updating order Horizontal Counter Return to 0 Increment by 1 Return to 0 Return to 0 Condition An active VS signal is received Signal pixel information of the active area is received An active HS signal between two active area lines The horizontal counter is larger than 239 and the vertical counter is larger than 319 Note 1. Pixel order is RGB on the display. Note 2. Data streaming direction from the host to the display is described in the following figure. Vertical Counter Return to 0 No change Increment by 1 Return to 0 Fig. 9.9.3 Data streaming order for RGB interface 9.9.4 RGB Interface Bus Width set All 4-kinds of bus width can be available in RGB interface mode (selected by COLMOD (3Ah) command for 6-bit, 16-bit and 18-bit data width) VIPF[3:0] D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0101 R4 R3 R2 R1 R0 x G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0 x 0110 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 x x x x x x x x x x X x R5 R4 R3 x x x x x x x x x x X X G5 G4 G3 x x x x x x x x x x x X B5 B4 B3 Note 1: When VIPF[3:0]=”1110”, 6-bit data width of 3-times transfer is used to transmit 1 pixel data with depth information. Note 2: Only VIPF[3:0]= ”0101” , “0110” and “1110” are valid on RGB I/F, Others are invalid. Note 3. ‘x’ Don’t care, but need to set VDDI or DGND level. 1110 R2 R1 R0 G2 G1 G0 B2 B1 B0 the 18-bit color 9.9.5 RGB Interface Mode Set Table 9.9.5.1 RGB Interface Mode Setting RGB I/F PCLK DE VS Mode RGB Mode 1 Used Used Used RGB Mode 2 Used Used Used HS Used Used Video Data bus D[17:0] Used Used Register for Blanking Porch setting Not Used Used Reference clock for Display Internal Oscillator Internal Oscillator There are 2-kinds of RGB mode which is selected by RCM1 & RCM0 hardware pins. In RGB Mode 1 (RCM1, RCM0 = “10”), writing data to frame memory is done by PCLK and data bus (D[17:0]), when DE is in high state. The external synchronization signals (PCLK, VS and HS) are used for internal display signals. So, controller (host) must always transfer PCLK, VS, HS and DE signals to driver. In RGB Mode 2 (RCM1, RCM0 = “11”), blanking porch setting of VS and HS signals are defined by RGBBPCTR (B5h) command. DE pin is used for data making. When DE pin is high, valid data is directly stored to frame memory. In the contrast, if DE pin is low the data of frame memory will keep same status. Ver 1.5.2 53 2007-12 Bus width 16-bit data 18-bit data 6-bit data ST7732 9.9.6 RGB Interface Timing Diagram 9.9.6.1 General Timings for RGB I/F Fig. 9.9.6 General timing of RGB interface Table 9.9.6.1 General Timing for RGB I/F Item Pixel low pulse width Pixel high pulse width Vertical Sync. set-up time Vertical Sync. hold time Horizontal Sync. set-up time Horizontal Sync. hold time Data Enable set-up time Data Enable hold time Data set-up time Data hold time Symbol Condition TPCLKLT TPCLKHT TVSST TVSSHT THSST TVSSHT TDEST TDEHT TDST TDHT Min 15 15 15 15 15 15 15 15 15 15 Specification Type. Max Unit ns ns ns ns Note 1: VDDI=1.6 to 3.3V, VDD=2.5V to 3.3V, AGND=DGND=0V, Ta=-30 to 70 ℃ (to +85℃ no damage) Note 2: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. Note 3: Data lines can be set to “High” or “Low” during blanking time – Don’t care. Note 4: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals. Note 5: HP is multiples of eight PCLK. Fig. 9.9.7 RAM access via SPI interface in RGB mode Note: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command. Ver 1.5.2 54 2007-12 ST7732 9.9.6.2 RGB Interface Mode 1 Timing Diagram Fig. 9.9.8 RGB mode 1 timing diagram Note: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command. Fig. 9.9.9 Vertical and horizontal timing of RGB interface Ver 1.5.2 55 2007-12 ST7732 Table 9.9.6.2 Vertical and Horizontal Timing for RGB I/F Item Vertical Timing Vertical cycle period Vertical low pulse width Vertical front porch Vertical back porch Vertical data start line Vertical blanking period Vertical active area Vertical refresh rate Horizontal Timing Horizontal cycle period Horizontal low pulse width Horizontal front porch Horizontal back porch Horizontal data start point Horizontal blanking period Horizontal active area Symbol Condition TVP TVS TVFP TVBP GM=”00”&”01” TVBL TVDISP TVRR THP THS THFP THBP TVS + TVBP TVS + TVBP + TVFP GM=”00”&”01” Frame rate GM=”00”&”01” Min Specification Type. Max 166 2 2 2 4 6 172 4 4 4 8 12 61.75 160 2 2 2 30 32 THS + THBP THBL THDISP GM=”00”&”01” TPCLKCYC 100 GM=”00” TVRR=65Hz fPCLKCYC 1.7 Pixel clock cycle TPCLKCYC GM=”01” 100 TVRR=65Hz fPCLKCYC 1.6 Note 1. VDDI=1.6 to 3.3V, VDD=2.5V to 3.3V, AGND=DGND=0V, Ta=-30 to 70℃ Note 2. Data lines can be set to “High” or “Low” during blanking time – Don’t care. Note 3. HP is multiples of eight PCLK. Ver 1.5.2 56 160 65 68.25 745 256 256 256 766 768 128 579 10 610 10 Unit HS HS HS HS HS HS HS Hz PCLK PCLK PCLK PCLK PCLK PCLK PCLK ns MHz ns MHz 2007-12 ST7732 9.9.6.3 RGB Interface Mode 2 Timing Diagram V back porch (TVS+TVBP) VS 1 frame (TVP) V front porch (TVFP) HS DE “1" HS 1 line (THP) H back porch (THS+THBP) Valid data (THDISP) H front porch (THFP) PCLK DE “1" Data bus Invalid Latch data Invalid D1 D2 D3 Invalid Dn D1 D2 D3 Dn Fig. 9.9.10 RGB mode 2 timing diagram Fig. 9.9.11 RGB mode 2 vertical timing diagram Note: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command. Horizontal timing for RGB I/F HS THS+THBP=10 PCLK D[17:0] THDISP=130 PCLK Invalid THFP=10 PCLK Invalid THP= 150 PCLK PCLK Fig. 9.9.12 RGB mode 2 Ver 1.5.2 57 2007-12 ST7732 Fig. 9.9.13 RGB mode 2 idle mode timing diadram Note: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command. Vertical timingfor RGBI/F 1frame (TVP =164Hs) VS TVDISP =160Hs TVS+TVBP =3Hs TVFP=1Hs HS Line1 Line162 Horizontal timingfor RGBI/F HS THS+THBP=10PCLK D[17:0] THDISP=130PCLK Invalid THFP=10PCLK Invalid THP=150PCLK PCLK Fig. 9.9.14 Vertical and Horizontal in RGB interface Ver 1.5.2 58 2007-12 ST7732 Table 9.9.6.3 Vertical and Horizontal Timing for RGB I/F Item Vertical Timing Vertical cycle period Vertical low pulse width Vertical front porch Vertical back porch Vertical data start line Vertical blanking period Vertical active area Vertical refresh rate Horizontal Timing Symbol Condition TVP TVS TVFP TVBP GM=”00”&”01” TVBL TVDISP TVRR Horizontal cycle period THP Horizontal low pulse width Horizontal front porch Horizontal back porch Horizontal data start point Horizontal blanking period THS THFP THBP Horizontal active area TVS + TVBP TVS + TVBP + TVFP GM=”00”&”01” Frame rate GM=”00” GM=”01” THS + THBP THBL THDISP Min 163 1 1 1 2 3 61.75 131 123 1 1 1 1 3 GM=”00” GM=”01” TPCLKCYC 100 fPCLKCYC 1.39 TPCLKCYC 100 Pixel clock cycle fPCLKCYC 1.30 TPCLKCYC 100 fPCLKCYC 1.12 Note 1. VDDI=1.6 to 3.3V, VDD=2.5V to 3.3V, AGND=DGND=0V, Ta=-30 to 70℃ Note 2. Data lines can be set to “High” or “Low” during blanking time – Don’t care. Note 3. HP is multiples of eight PCLK. Ver 1.5.2 59 Specification Type. Max 164 1 3 4 160 65 10 20 128 120 634 1.58 670 1.49 788 1.27 4 512 512 512 512 68.25 511 511 63 63 63 63 256 720 10 767 10 896 10 Unit HS HS HS HS HS HS HS Hz PCLK PCLK PCLK PCLK PCLK PCLK PCLK PCLK PCLK ns MHz ns MHz ns MHz 2007-12 ST7732 9.9.6.4 Power On Sequence on RGB Mode 2 The Driver operates power up and display ON by VDD, VDDI, SHUT, VS, HS, DE, PCLK on RGB mode 2 as show as following figure. VDD TVDD-VDDI VDDI RESX SHUT PCLK TRS-SH TVDD-SH TPCLK-SH HS DE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VS Display high voltage TSH-LCD TSH-ON Display Blanking display(over 1 frame) Source output Vcom output Display on Normal display Normal display Normal display Gate output Internal counter Internal oscillator Fig. 9.9.15 Power-ON sequence in RGB mode 2 Table 9.9.6.4 Power ON AC Characteristics Characteristics Symbol Min Typ Max Unit VDD On to VDDI On TVDD-VDDI 0 ns VDDI/VDD on to falling edge of SHUT TVDD-SH 1 ms RESX to falling of SHUT TRS-SH 10 us Signals input to falling edge of SHUT * TCLK-SH 1 PCLK Falling edge of SHUT to LCD power ON TSH-LCD 120 ms Falling edge of SHUT to Display start TSH-ON 10 VS Note 1: TVDDI-VDD can be <=0ns, >0ns. In any case, VDDI and VDD power up sequence should not have any the driver / display functionalities / performance. Note 2: Signals mean VS, HS, DE and PCLK signal. Note 3: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command. Ver 1.5.2 60 Remark Note1 Note2 impact on 2007-12 ST7732 9.9.6.5 Power OFF Sequence on RGB Mode 2 The Driver operates power off and display OFF by VDD, VDDI, SHUT, VS, HS and DE on RGB mode 2 as show as following figure. VDDI TVDD-VDDI VDD RESX SHUT TOFF-VDD PCLK TSH-OFF HS DE VS Display high voltage Display on Display off Display Normal display Source output Normal display 0V Vcom output Normal display 0V Blanking display (over 1 frame) Gate output Internal counter Internal oscillator Fig. 9.9.16 Power-OFF seqnence in RGB mode 2 Table 9.9.6.5 Power OFF AC Characteristics Characteristics Symbol Min Typ Max Unit Remark VDDI On to VDD On TVDDI-VDD 0 ns Note1 Signals input to VDDI/VDD off TSH-OFF 1 us Note2 Rising edge of SHUT to Display off TSH-OFF 2 VS Note 1: TVDDI-VDD can be <=0ns, >0ns. In any case, VDDI and VDD power up sequence should not have any impact on the driver / display functionalities / performance. Note 2: Signals mean VS, HS, DE and PCLK signal. Note 3: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command. Ver 1.5.2 61 2007-12 ST7732 9.9.7 RGB Data Color Coding 9.9.7.1 16-bit/pixel Color Order on the RGB Interface Note 1: The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit5, LSB=Bit0 for Green data and MSB=Bit4, LSB=Bit0 for Red and Blue data. Note 2: ‘-’ Don’t care, but need set to VDDI or DGND level. Ver 1.5.2 62 2007-12 ST7732 9.9.7.2 18-bit/pixel Color Order on the RGB Interface Note 1: The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit5, LSB=Bit0 for Red, Green and Blue data. Note 2: ‘-’ Don’t care, but need set to VDDI or DGND level. Ver 1.5.2 63 2007-12 ST7732 9.9.7.3 6-bit/pixel Color Order on the RGB Interface Note 1: The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit5, LSB=Bit0 for Red, Green and Blue data. Note 2: ‘-’ Don’t care, but need set to VDDI or DGND level. Ver 1.5.2 64 2007-12 ST7732 9.10 Display Data RAM 9.10.1 Configuration (When GM=“11“) The display module has an integrated 132x162x18-bit graphic type static RAM. This 384,912-bit memory allows to store on-chip a 132xRGBx162image with an 18-bpp resolution (262K-color). There will be no abnormal visible effect on the display when there is a simultaneous Panel Read and Interface Read or Write to the same location of the Frame Memory. Fig. 9.10.1 Display data RAM organization Ver 1.5.2 65 2007-12 ST7732 9.10.2 Memory to Display Address Mapping 9.10.2.1 When using 128RGB x 160 resolution (GM1, GM0 = “00”, SMX=SMY=SRGB=’0’) 2 3 4 5 6 7 8 9 | | | | | 154 155 156 157 158 159 160 161 G0 B0 R1 G1 | | | | | | | | | | | | | | | | | | | | 0 127 1 126 RGB Order RGB=1 S11 S12 -------- S385 S386 S387 S388 S389 S390 RGB=0 S10 Pixel 128 RGB=1 RA MY=' 0 ' MY=' 1 ' 0 159 R0 1 158 2 157 3 156 4 155 5 154 6 153 7 152 | | | | | | | | | | | | | | | 152 7 153 6 154 5 155 4 156 3 157 2 158 1 159 0 MX=' 0 ' CA MX=' 1 ' S9 Pixel 127 -------- RGB=0 S8 RGB=0 S7 RGB=1 Source Out RGB=0 Gate Out Pixel 2 RGB=1 Pixel 1 SA ML=' 0 ' ML=' 1 ' B1 -------- R126 G126 B126 R127 G127 B127 0 159 -------1 158 -------2 157 -------3 156 -------4 155 -------5 154 -------6 153 -------7 152 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | -------152 7 -------153 6 -------154 5 -------155 4 -------156 3 -------157 2 -------158 1 -------159 0 126 127 -------1 0 -------- Note RA = Row Address, CA = Column Address SA = Scan Address MX = Mirror X-axis (Column address direction parameter), D6 parameter of MADCTL command MY = Mirror Y-axis (Row address direction parameter), D7 parameter of MADCTL command MX =Scan direction parameter, D4 parameter of MADCTL command RGB = Red, Green and Blue pixel position change, D3 parameter of MADCTL command Ver 1.5.2 66 2007-12 ST7732 9.10.2.2 When using 120RGB x 160 resolution (GM1, GM0 = “01”, SMX=SMY=SRGB=’0’) 2 3 4 5 6 7 8 9 | | | | | 154 155 156 157 158 159 160 161 G0 B0 R1 G1 | | | | | | | | | | | | | | | | | | | | 0 119 1 118 RGB Order RGB=1 S11 S12 -------- S361 S362 S363 S364 S365 S366 RGB=0 S10 Pixel 120 RGB=1 RA MY=' 0 ' MY=' 1 ' 0 159 R0 1 158 2 157 3 156 4 155 5 154 6 153 7 152 | | | | | | | | | | | | | | | 152 7 153 6 154 5 155 4 156 3 157 2 158 1 159 0 MX=' 0 ' CA MX=' 1 ' S9 Pixel 119 -------- RGB=0 S8 RGB=0 S7 RGB=1 Source Out RGB=0 Gate Out Pixel 2 RGB=1 Pixel 1 SA ML=' 0 ' ML=' 1 ' B1 -------- R118 G118 B118 R119 G119 B119 0 159 -------1 158 -------2 157 -------3 156 -------4 155 -------5 154 -------6 153 -------7 152 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | -------152 7 -------153 6 -------154 5 -------155 4 -------156 3 -------157 2 -------158 1 -------159 0 118 119 -------1 0 -------- Note RA = Row Address, CA = Column Address SA = Scan Address MX = Mirror X-axis (Column address direction parameter), D6 parameter of MADCTL command MY = Mirror Y-axis (Row address direction parameter), D7 parameter of MADCTL command MX =Scan direction parameter, D4 parameter of MADCTL command RGB = Red, Green and Blue pixel position change, D3 parameter of MADCTL command Ver 1.5.2 67 2007-12 ST7732 9.10.2.3 When using 132RGB x 162 resolution (GM1, GM0 = “11”, SMX=SMY=SRGB=’0’) 1 2 3 4 5 6 7 8 | | | | | 155 156 157 158 159 160 161 162 G0 B0 R1 G1 | | | | | | | | | | | | | | | | | | | | 0 131 S6 -------- S391 S392 S393 S394 S395 S396 1 130 RGB Order RGB=1 S5 RGB=0 S4 Pixel 132 RGB=1 RA MY=' 0 ' MY=' 1 ' 0 161 R0 1 160 2 159 3 158 4 157 5 156 6 155 7 154 | | | | | | | | | | | | | | | 154 7 155 6 156 5 157 4 158 3 159 2 160 1 161 0 MX=' 0 ' CA MX=' 1 ' S3 Pixel 131 -------- RGB=0 S2 RGB=0 S1 RGB=1 Source Out RGB=0 Gate Out Pixel 2 RGB=1 Pixel 1 SA ML=' 0 ' ML=' 1 ' B1 -------- R131 G131 B131 R132 G132 B132 0 161 -------1 160 -------2 159 -------3 158 -------4 157 -------5 156 -------6 155 -------7 154 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | -------154 7 -------155 6 -------156 5 -------157 4 -------158 3 -------159 2 -------160 1 -------161 0 130 131 -------1 0 -------- Note RA = Row Address, CA = Column Address SA = Scan Address MX = Mirror X-axis (Column address direction parameter), D6 parameter of MADCTL command MY = Mirror Y-axis (Row address direction parameter), D7 parameter of MADCTL command MX =Scan direction parameter, D4 parameter of MADCTL command RGB = Red, Green and Blue pixel position change, D3 parameter of MADCTL command Ver 1.5.2 68 2007-12 ST7732 9.10.3 Normal Display On or Partial Mode On, Vertical Scroll Off 9.10.3.1 When using 128RGB x 160 resolution (GM1, GM0 = “00”) In this mode, the content of the frame memory within an area where column pointer is 00h to 7Fh and page pointer is 00h to 9Fh is displayed. To display a dot on leftmost top corner, store the dot data at (column pointer, row pointer) = (0, 0). 1). Example for Normal Display On (MX=MY=ML=’0’ ,SMX=SMY=’0’) Scan 128 Columns 128 Columns Order 00h 00 10 20 30 40 50 60 01h ---- ---- 76h 77h ---- 7Fh 83h 01 0Y 0Z 11 1Y 1Z 21 2Y 2Z 31 3Y 3Z 41 4Y 4Z 51 5Y 5Z 6Z 128 x 160 x18bit Fram e RAM X0 X1 X2 XX XY XZ Y0 Y1 Y2 Y3 YW YX YY YZ Z0 Z1 Z2 Z3 ZW ZX ZY ZZ 00 10 20 30 40 50 60 1 2 3 | | | | | | | | | | 158 159 160 01 11 21 31 41 51 02 12 22 32 42 03 13 0W 0X 0Y 1W 1X 1Y 2X 2Y 3X 3Y 4X 4Y 5Y 0Z 1Z 2Z 3Z 4Z 5Z 6Z 128RGB x 160 LCD Panel S0 U0 V0 W0 X0 Y0 Z0 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Y3 Z2 Z3 VX WX XX YW YX ZW ZX UY VY WY XY YY ZY SZ UZ VZ WZ XZ YZ ZZ G2 G3 G4 | | | | | | | | | | | | G159 G160 G161 Display area =160 lines 160 Lines 00h 01h 02h | | | | | | | | | | | 9Eh 9Fh A0h A1h 2). Example for Partial Display On (PSL[7:0]=04h,PEL[7:0]=9Bh, MX=MV=ML=’0’ ,SMX=SMY=’0’) Scan 128 Columns 128 Columns Order 160 Lines Ver 1.5.2 00h 01h 02h | | | | | | | | | | | 9Eh 9Fh A0h A1h 00h 00 10 20 30 40 50 60 01h ---- ---- 76h 77h ---- 7Fh 83h 01 0Y 0Z 11 1Y 1Z 21 2Y 2Z 31 3Y 3Z 41 4Y 4Z 51 5Y 5Z 6Z U0 V0 W0 X0 Y0 Z0 128 x 160 x18bit Fram e RAM U1 V1 VX W1 W2 WX X1 X2 XX Y1 Y2 Y3 YW YX Z1 Z2 Z3 ZW ZX UY VY WY XY YY ZY UZ VZ WZ XZ YZ ZZ 00 10 20 30 40 50 60 1 2 3 | | | | | | | | | | 158 159 160 01 11 21 31 41 51 02 12 22 32 42 03 13 0W 0X 0Y 1W 1X 1Y 2X 2Y 3X 3Y 4X 4Y 5Y 0Z 1Z 2Z 3Z 4Z 5Z 6Z 128RGB x 160 LCD Panel S0 U0 V0 W0 X0 Y0 Z0 69 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Y3 Z2 Z3 VX WX XX YW YX ZW ZX UY VY WY XY YY ZY SZ UZ VZ WZ XZ YZ ZZ G2 G3 G4 | | | | | | | | | | | | G159 G160 G161 Non-Display area =4 lines Display area =152 lines Non-Display area =4 lines 2007-12 ST7732 9.10.3.2 When using 120RGB x 160 resolution (GM1, GM0 = “01”) In this mode, contents of the frame memory within an area where column pointer is 00h to 77h and page pointer is 00h to 9Fh is displayed. To display a dot on leftmost top corner, store the dot data at (column pointer, row pointer) = (0, 0). 1). Example for Normal Display On (MX=MY=ML=’0’, SMX=SMY=’0’) Scan 120 Columns 120 Columns Order 00h 00 10 20 30 40 50 60 ---- ---- 76h 02 0Y 12 1Y 22 2Y 32 3Y 42 4Y 5Y 77h ---- 81h 83h 0Z 1Z 2Z 3Z 4Z 5Z 6Z 120 x 160 x18 bit Fram e RAM | | | | | 9Eh 9Fh A0h A1h 01h 01 11 21 31 41 51 W0 X0 Y0 Z0 W1 X1 X2 Y1 Y2 Z1 Z2 00 10 20 30 40 50 60 1 2 3 | | | | | | 01 11 21 31 41 51 WZ XY XZ YY YZ ZY ZZ 0Y 1Y 2Y 3Y 4Y 5Y 0Z 1Z 2Z 3Z 4Z 5Z 6Z 120RGB x 160 LCD Panel | Unused area 02 12 22 32 42 | | | 158 159 160 S0 U0 V0 W0 X0 Y0 Z0 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Z2 G2 G3 G4 | | | | | | | UY VY WY XY YY ZY | SZ | UZ | VZ | WZ | XZ G159 YZ G160 ZZ G161 Display area =160 lines 160 Lines 00h 01h 02h | | | | | | 2). Example for Partial Display On (PSL[7:0]=04h,PEL[7:0]=9Bh, MX=MV=ML=’0’, SMX=SMY=’0’) Scan 120 Columns 120 Columns Order 160 Lines 00h 01h 02h | | | | | | 01h 01 11 21 31 41 51 ---- ---- 76h 02 0Y 12 1Y 22 2Y 32 3Y 42 4Y 5Y 77h ---- 81h 83h 0Z 1Z 2Z 3Z 4Z 5Z 6Z 120 x 160 x18 bit Fram e RAM | | | | | 9Eh 9Fh A0h A1h Ver 1.5.2 00h 00 10 20 30 40 50 60 U0 V0 W0 X0 Y0 Z0 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Z2 UY VY WY XY YY ZY 00 10 20 30 40 50 60 1 2 3 | | | | | | Unused area 02 12 22 32 42 0Y 1Y 2Y 3Y 4Y 5Y 120RGB x 160 LCD Panel | UZ VZ WZ XZ YZ ZZ 01 11 21 31 41 51 | | | 158 159 160 S0 U0 V0 W0 X0 Y0 Z0 70 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Z2 UY VY WY XY YY ZY 0Z 1Z 2Z 3Z 4Z 5Z 6Z G2 G3 G4 | | | | | | | | SZ | UZ | VZ | WZ | XZ G159 YZ G160 ZZ G161 Non-Display area =4 lines Display area =152 lines Non-Display area =4 lines 2007-12 ST7732 9.10.3.3 When using 132RGB x 162 resolution (GM1, GM0 = “11”) In this mode, contents of the frame memory within an area where column pointer is 00h to 83h and page pointer is 00h to A1h is displayed. To display a dot on leftmost top corner, store the dot data at (column pointer, row pointer) = (0, 0). 1). Example for Normal Display On (MX=MY=ML=’0’, SMX=SMY=’0’) Scan 132 Columns 132 Columns Order 00h 00 10 20 30 40 50 60 01h 01 11 21 31 41 51 ---- ---- ---- ---- ---- 81h 02 03 0W 0X 0Y 12 13 1W 1X 1Y 22 2X 2Y 32 3X 3Y 42 4X 4Y 5Y 83h 0Z 1Z 2Z 3Z 4Z 5Z 6Z 132 x 162 x18 bit Fram e RAM S0 U0 V0 W0 X0 Y0 Z0 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Y3 Z2 Z3 VX WX XX YW YX ZW ZX UY VY WY XY YY ZY SZ UZ VZ WZ XZ YZ ZZ 00 10 20 30 40 50 60 1 2 3 | | | | | | | | | | | | 160 161 162 01 11 21 31 41 51 02 03 12 13 22 32 42 0W 0X 0Y 1W 1X 1Y 2X 2Y 3X 3Y 4X 4Y 5Y 0Z 1Z 2Z 3Z 4Z 5Z 6Z 132R G B x 162 LCD Panel S0 U0 V0 W0 X0 Y0 Z0 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Y3 Z2 Z3 VX WX XX YW YX ZW ZX UY VY WY XY YY ZY SZ UZ VZ WZ XZ YZ ZZ G1 G2 G3 | | | | | | | | | | | | G160 G161 G162 Display area =162 lines 162 Lines 00h 01h 02h | | | | | | | | | | | | 9Fh A0h A1h 2). Example for Partial Display On (PSL[7:0]=04h,PEL[7:0]=9Dh, MX=MV=ML=’0’ ,SMX=SMY=’0’) Scan 132 Columns 132 Columns Order 162 Lines Ver 1.5.2 00h 01h 02h | | | | | | | | | | 9Dh 9Eh 9Fh A0h A1h 00h 00 10 20 30 40 50 60 01h 01 11 21 31 41 51 ---- ---- ---- ---- ---- 81h 02 03 0W 0X 0Y 12 13 1W 1X 1Y 22 2X 2Y 32 3X 3Y 42 4X 4Y 5Y 83h 0Z 1Z 2Z 3Z 4Z 5Z 6Z 132 x 162 x18 bit Fram e RAM S0 U0 V0 W0 X0 Y0 Z0 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Y3 Z2 Z3 VX WX XX YW YX ZW ZX UY VY WY XY YY ZY SZ UZ VZ WZ XZ YZ ZZ 00 10 20 30 40 50 60 1 2 3 | | | | | | | | | | | | 160 161 162 01 11 21 31 41 51 02 12 22 32 42 03 13 0W 0X 0Y 1W 1X 1Y 2X 2Y 3X 3Y 4X 4Y 5Y 0Z 1Z 2Z 3Z 4Z 5Z 6Z 132RGB x 162 LCD Panel S0 U0 V0 W0 X0 Y0 Z0 71 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Y3 Z2 Z3 VX WX XX YW YX ZW ZX UY VY WY XY YY ZY SZ UZ VZ WZ XZ YZ ZZ G1 G2 G3 | | | | | | | | | | | | G160 G161 G162 Non-Display area =4 lines Display area =155 lines Non-Display area =4lines 2007-12 ST7732 9.10.4 Vertical Scroll Mode There is vertical scrolling, which are determined by the commands “Vertical Scrolling Definition” (33h) and Vertical Scrolling Start Address” (37h). Fig. 9.10.2 Difference between Scrolling and original 9.10.4.1 When using 128RGB x 160 resolution (GM1, GM0 = “00”) When Vertical Scrolling Definition Parameters (TFA+VSA+BFA)=160. In this case, scrolling is applied as shown below. 1). Example for TFA =3, VSA=155, BFA=2, SSA=4, ML=0: Scrolling 128 Columns Scan 128 Columns Order 160 Lines 00h 01h 02h | | | | | | | | | | | 9Eh 9Fh A0h A1h 00h 00 10 20 30 40 50 60 S0 W0 X0 Y0 Z0 01h ---- ---- ---- ---- 7Eh 7Fh 83h 01 0Y 0Z 1 11 1Y 1Z 2 21 2Y 2Z 3 31 3Y 3Z | 41 4Y 4Z | 51 5Y 5Z | 6Z | | 128 x 160 x18 bit | Fram e RAM | | | W1 W2 WY WZ | X1 X2 XY XZ 158 Y1 Y2 Y3 YW YX YY YZ 159 Z1 Z2 Z3 ZW XZ ZY ZZ 160 SSA 00 10 20 40 50 60 01 11 21 41 51 02 12 22 42 03 13 0W 0X 0Y 1W 1X 1Y 2X 2Y 4X 4Y 5Y 0Z 1Z 2Z 4Z 5Z 6Z 128 RGB x 160 LCD Panel U0 V0 W0 X0 30 Y0 Z0 U1 V1 W1 X1 31 Y1 Z1 V2 W2 X2 32 Y2 Y3 Z2 Z3 VX WX XX 3X YW YX ZW ZX UY VY WY XY 3Y YY ZY UZ VZ WZ XZ 3Z YZ ZZ G2 G3 G4 | | | | | | | | | | | | G159 G160 G161 TFA 2). Example for TFA =3, VSA=155 BFA=2, SSA=4, ML=1: Scrolling: TFA and BFT are exchanged Ver 1.5.2 72 2007-12 VSA BFA ST7732 128 Columns Scan 128 Columns Order 160 Lines Ver 1.5.2 00h 01h 02h | | | | | | | | | | | 9Eh 9Fh A0h A1h 00h 00 10 20 30 40 50 60 V0 W0 X0 Y0 Z0 01h ---- ---- ---- ---- 7Eh 7Fh 83h 01 0Y 0Z 160 11 1Y 1Z 159 21 2Y 2Z 158 31 3Y 3Z | 41 4Y 4Z | 51 5Y 5Z | 6Z | | 128 x 160 x18 bit | Fram e RAM | | VZ | W1 W2 WY WZ | X1 X2 XY XZ 3 Y1 Y2 Y3 YW YX YY YZ 2 Z1 Z2 Z3 ZW XZ ZY ZZ 1 00 10 W0 20 40 50 60 01 11 W1 21 41 51 02 03 12 13 W2 22 42 0W 0X 0Y 1W 1X 1Y WX WY 2X 2Y 4X 4Y 5Y 0Z 1Z WZ 2Z 4Z 5Z 6Z 128 RGB x 160 LCD Panel SSA S0 U0 V0 X0 Y0 Z0 73 U1 V1 X1 Y1 Z1 U2 V2 X2 Y2 Y3 Z2 Z3 UX VX XX YW YX ZW ZX UY VY XY YY ZY SZ UZ VZ XZ YZ ZZ G2 G3 G4 | | | | | | | | | | | | G159 G160 G161 2007-12 BFA VSA TFA ST7732 9.10.4.2 When using 120RGB x 160 resolution (GM1, GM0 = “01”) When Vertical Scrolling Definition Parameters (TFA+VSA+BFA)=160. In this case, scrolling is applied as shown below. 1). Example for TFA =3, VSA=155, BFA=2, SSA=4, ML=0: Scrolling Scan 120 Columns 120 Columns Order 160 Lines 00h 01h 02h | | | | | | 00h 00 10 20 30 40 50 60 ---- ---- 76h 02 0Y 12 1Y 22 2Y 32 3Y 42 4Y 5Y 77h ---- 81h 83h 0Z 1Z 2Z 3Z 4Z 5Z 6Z 120 x 160 x18 bit Fram e RAM | | | | | 9Eh 9Fh A0h A1h 01h 01 11 21 31 41 51 W0 X0 Y0 Z0 W1 X1 X2 Y1 Y2 Z1 Z2 WZ XY XZ YY YZ ZY ZZ 1 2 3 | | | | | | SSA 00 10 20 40 50 60 02 12 22 42 0Y 1Y 2Y 4Y 5Y 0Z 1Z 2Z 4Z 5Z 6Z 120RGB x 160 LCD Panel | Unused area 01 11 21 41 51 | | | 158 159 160 U0 V0 W0 X0 30 Y0 Z0 U1 V1 W1 X1 31 Y1 Z1 V2 W2 X2 32 Y2 Z2 UY VY WY XY 3Y YY ZY G2 G3 G4 | | | | | | TFA VSA | | UZ | VZ | WZ | XZ | 3Z G159 YZ G160 ZZ G161 BFA 2). Example for TFA =2, VSA=155, BFA=3, SSA=4, ML=1: Scrolling: TFA and BFT are exchanged Scan 120 Columns 120 Columns Order 160 Lines 00h 01h 02h | | | | | | | | | | | 9Eh 9Fh A0h A1h Ver 1.5.2 00h 00 10 20 30 40 50 60 V0 W0 X0 Y0 Z0 01h 01 11 21 31 41 51 ---- ---- 76h 02 0Y 12 1Y 22 2Y 32 3Y 42 4Y 5Y 77h ---- 81h 83h 0Z 160 1Z 159 2Z 158 3Z | 4Z | 5Z | 6Z | | | 120 x 160 x18 bit Fram e RAM | V1 W1 X1 X2 Y1 Y2 Z1 Z2 VY VZ WZ XY XZ YY YZ ZY ZZ Unused area | | 4 3 2 1 00 10 W0 20 30 40 50 60 01 11 W1 21 31 41 51 02 12 W2 22 32 42 0Y 1Y WY 2Y 3Y 4Y 5Y 120RGB x 160 LCD Panel 0Z G2 1Z G3 WZ G4 2Z | 3Z | 4Z | 5Z | 6Z | | 74 U1 V1 X1 Y1 Z1 V2 X2 Y2 Z2 UY VY XY YY ZY VSA | SSA U0 V0 X0 Y0 Z0 TFA UZ VZ XZ YZ ZZ | | | | | G159 G160 G161 BFA 2007-12 ST7732 9.10.4.3 When using 132RGB x 162 resolution (GM1, GM0 = “11”) When Vertical Scrolling Definition Parameters (TFA+VSA+BFA)=162. In this case, scrolling is applied as shown below. 1). Example for TFA =3, VSA=157, BFA=2, SSA=4, ML=0: Scrolling Scan 132 Columns 132 Columns Order 162 Lines 00h 01h 02h | | | | | | | | | | | | 9Fh A0h A1h 00h 00 10 20 30 40 50 60 01h 01 11 21 31 41 51 ---- ---- ---- ---- ---- 81h 83h 02 03 0W 0X 0Y 0Z 12 13 1W 1X 1Y 1Z 22 2X 2Y 2Z 32 3X 3Y 3Z 42 4X 4Y 4Z 5Y 5Z 6Z 132 x 162 x18 bit Fram e RAM S0 U0 V0 W0 X0 Y0 Z0 U1 V1 W1 X1 Y1 Z1 V2 W2 X2 Y2 Y3 Z2 Z3 VX WX XX YW YX ZW ZX UY VY WY XY YY ZY SZ UZ VZ WZ XZ YZ ZZ 1 2 3 | | | | | | | | | | | | 160 161 162 SSA 00 10 20 40 50 60 01 11 21 41 51 02 03 12 13 22 42 0W 0X 0Y 1W 1X 1Y 2X 2Y 4X 4Y 5Y 0Z 1Z 2Z 4Z 5Z 6Z 132R G B x 162 LCD Panel S0 U0 V0 W0 X0 30 Y0 Z0 U1 V1 W1 X1 31 Y1 Z1 V2 W2 X2 32 Y2 Y3 Z2 Z3 VX WX XX 3X YW Y X ZW Z X UY VY WY XY 3Y YY ZY SZ UZ VZ WZ XZ 3Z YZ ZZ G1 G2 G3 | | | | | | | | | | | | G160 G161 G162 TFA VSA BFA 2). Example for TFA =3, VSA=157, BFA=2, SSA=4, ML=1: Scrolling: TFA and BFT are exchanged 132 Columns Scan 132 Columns Order 162 Lines Ver 1.5.2 00h 01h 02h | | | | | | | | | | | | 9Fh A0h A1h 00h 00 10 20 30 40 50 60 S0 U0 V0 W0 X0 Y0 Z0 01h 01 11 21 31 41 51 U1 V1 W1 X1 Y1 Z1 ---- ---- ---- ---- ---- 81h 83h 02 03 0W 0X 0Y 0Z 162 12 13 1W 1X 1Y 1Z 161 22 2X 2Y 2Z 160 32 3X 3Y 3Z | 42 4X 4Y 4Z | 5Y 5Z | 6Z | | SSA | 132 x 162 x18 bit Fram e RAM | | SZ | UY UZ | V2 VX VY VZ | W2 WX WY WZ | X2 XX XY XZ 3 Y2 Y3 YW YX YY YZ 2 Z2 Z3 ZW ZX ZY ZZ 1 75 00 10 W0 20 30 40 50 60 01 11 W1 21 31 41 51 02 03 12 13 W2 22 32 42 0W 0X 0Y 1W 1X 1Y W X WY 2X 2Y 3X 3Y 4X 4Y 5Y 132R G B x 162 LCD Panel S0 U0 V0 X0 Y0 Z0 U1 V1 X1 Y1 Z1 V2 X2 Y 2 Y3 Z 2 Z3 VX XX YW YX ZW ZX UY VY XY YY ZY 0Z G1 1Z G2 WZ G3 2Z | 3Z | 4Z | 5Z | 6Z | | | | | SZ | UZ | VZ | XZ G160 YZ G161 ZZ G162 2007-12 BFA VSA TFA ST7732 9.10.5 Vertical Scroll Example 9.10.5.1 Vertical Scroll Example (GM1, GM0 = “00” & GM1, GM0=“01”) There are 2 types of vertical scrolling, which are determined by the commands “Vertical Scrolling Definition” (33h) and “Vertical Scrolling Start Address” (37h). Case 1: TFA + VSA + BFA≠160 N/A. Do not set TFA + VSA + BFA≠160. In that case, unexpected picture will be shown. Case 2: TFA + VSA + BFA=160 (Scrolling) Example1) When MADCTL parameter ML=”0”, TFA=0, VSA=160, BFA=0 and VSCSAD=80. Example2) When MADCTL parameter ML=”1”, TFA=30, VSA=130, BFA=0 and VSCSAD=80. Ver 1.5.2 76 2007-12 ST7732 9.10.5.2 Vertical Scroll Example (GM1, GM0 = “11”) There are 2 types of vertical scrolling, which are determined by the commands “Vertical Scrolling Definition” (33h) and “Vertical Scrolling Start Address” (37h). Case 1: TFA + VSA + BFA≠162 N/A. Do not set TFA + VSA + BFA≠162. In that case, unexpected picture will be shown. Case 2: TFA + VSA + BFA=162 (Scrolling) Example1) When MADCTL parameter ML=”0”, TFA=0, VSA=162, BFA=0 and VSCSAD=40. Example2) When MADCTL parameter ML=”1”, TFA=30, VSA=132, BFA=0 and VSCSAD=40. Ver 1.5.2 77 2007-12 ST7732 9.11 Address Counter The address counter sets the addresses of the display data RAM for writing and reading. Data is written pixel-wise into the RAM matrix of DRIVER. The data for one pixel or two pixels is collected (RGB 6-6-6-bit), according to the data formats. As soon as this pixel-data information is complete the “Write access” is activated on the RAM. The locations of RAM are addressed by the address pointers. The address ranges are X=0 to X=131 (83h) and Y=0 to Y=161 (A1h). Addresses outside these ranges are not allowed. Before writing to the RAM, a window must be defined that will be written. The window is programmable via the command registers XS, YS designating the start address and XE, YE designating the end address. For example the whole display contents will be written, the window is defined by the following values: XS=0 (0h) YS=0 (0h) and XE=127 (83h), YE=161 (A1h). In vertical addressing mode (MV=1), the Y-address increments after each byte, after the last Y-address (Y=YE), Y wraps around to YS and X increments to address the next column. In horizontal addressing mode (V=0), the X-address increments after each byte, after the last X-address (X=XE), X wraps around to XS and Y increments to address the next row. After the every last address (X=XE and Y=YE) the address pointers wrap around to address (X=XS and Y=YS). For flexibility in handling a wide variety of display architectures, the commands “CASET, RASET and MADCTL” (see section 10 command list), define flags MX and MY, which allows mirroring of the X-address and Y-address. All combinations of flags are allowed. Section 9.12 show the available combinations of writing to the display RAM. When MX, MY and MV will be changed the data bust be rewritten to the display RAM. For each image condition, the controls for the column and row counters apply as section 9.12 below: Condition Column Counter Return to “Start When RAMWR/RAMRD command is accepted Column (XS)” Complete Pixel Read / Write action Increment by 1 Return to “Start The Column counter value is larger than “End Column (XE)” Column (XS)” The Column counter value is larger than “End Column (XE)” and Return to “Start the Row counter value is larger than “End Row (YE)” Column (XS)” Row Counter Return to “Start Row (YS)” No change Increment by 1 Return to “Start Row (YS)” 9.12. Memory Data Write/ Read Direction The data is written in the order illustrated above. The Counter which dictates where in the physical memory the data is to be written is controlled by “Memory Data Access Control” Command, bits B5 (MV), B6 (MX), B7 (MY) as described below. Fig. 9.12.1 Data streaming order Ver 1.5.2 78 2007-12 ST7732 9.12.1.1 When 128RGBx160 (GM=’00’) MV 0 0 0 0 1 1 1 1 MX 0 0 1 1 0 0 1 1 MV 0 1 0 1 0 1 0 1 CASET Direct to Physical Column Pointer Direct to Physical Column Pointer Direct to (127-Physical Column Pointer) Direct to (127-Physical Column Pointer) Direct to Physical Row Pointer Direct to (159-Physical Row Pointer) Direct to Physical Row Pointer Direct to (159-Physical Row Pointer) RASET Direct to Physical Row Pointer Direct to (159-Physical Row Pointer) Direct to Physical Row Pointer Direct to (159-Physical Row Pointer) Direct to Physical Column Pointer Direct to Physical Column Pointer Direct to (127-Physical Column Pointer) Direct to (127-Physical Column Pointer) 9.12.1.2 When 120RGBx160 (GM=’01’) MV 0 0 0 0 1 1 1 1 MX 0 0 1 1 0 0 1 1 MV 0 1 0 1 0 1 0 1 CASET Direct to Physical Column Pointer Direct to Physical Column Pointer Direct to (119-Physical Column Pointer) Direct to (119-Physical Column Pointer) Direct to Physical Row Pointer Direct to (159-Physical Row Pointer) Direct to Physical Row Pointer Direct to (159-Physical Row Pointer) RASET Direct to Physical Row Pointer Direct to (159-Physical Row Pointer) Direct to Physical Row Pointer Direct to (159-Physical Row Pointer) Direct to Physical Column Pointer Direct to Physical Column Pointer Direct to (119-Physical Column Pointer) Direct to (119-Physical Column Pointer) 9.12.1.3 When 132RGBx162 (GM=’11’) MV MX MV CASET RASET 0 0 0 Direct to Physical Column Pointer Direct to Physical Row Pointer 0 0 1 Direct to Physical Column Pointer Direct to (161-Physical Row Pointer) 0 1 0 Direct to (131-Physical Column Pointer) Direct to Physical Row Pointer 0 1 1 Direct to (131-Physical Column Pointer) Direct to (161-Physical Row Pointer) 1 0 0 Direct to Physical Row Pointer Direct to Physical Column Pointer 1 0 1 Direct to (161-Physical Row Pointer) Direct to Physical Column Pointer 1 1 0 Direct to Physical Row Pointer Direct to (131-Physical Column Pointer) 1 1 1 Direct to (161-Physical Row Pointer) Direct to (131-Physical Column Pointer) Note: Data is always written to the Frame Memory in the same order, regardless of the Memory Write Direction set by MADCTL bits B7 (MY), B6 (MX), B5 (MV). The write order for each pixel unit is One pixel unit represents 1 column and 1page counter value on the Frame Memory. Ver 1.5.2 79 2007-12 ST7732 9.12.2 Frame Data Write Direction According to the MADCTL parameters (MV, MX and MY) Display Data Direction Normal MADCTL Parameter MV MX MY 0 0 0 Image in the Host (MPU) B Image in the Driver (DDRAM) H/W position (0,0) B X-Y address (0,0) X: CASET F Y-Mirror 0 0 1 B Y: RASET F F H/W position (0,0) X-Y address (0,0) X: CASET F X-Mirror 0 1 0 B Y: RASET B B H/W position (0,0) X-Y address (0,0) X: CASET Y: RASET F X-Mirror Y-Mirror 0 1 1 B F H/W position (0,0) F X-Y address (0,0) X: CASET Y: RASET B F X-Y Exchange 1 0 0 B H/W position (0,0) B X-Y address (0,0) X: RASET F X-Y Exchange Y-Mirror 1 0 1 B Y: CASET F F H/W position (0,0) X-Y address (0,0) X: RASET F X-Y Exchange X-Mirror 1 1 0 B Y: CASET B B H/W position (0,0) X-Y address (0,0) X: RASET Y: CASET F X-Y Exchange X-Mirror Y-Mirror 1 1 1 B H/W position (0,0) F B X-Y address (0,0) X: RASET F Ver 1.5.2 F 80 Y: CASET 2007-12 ST7732 9.13 Tearing Effect Output Line The Tearing Effect output line supplies to the MPU a Panel synchronization signal. This signal can be enabled or disabled by the Tearing Effect Line Off & On commands. The mode of the Tearing Effect signal is defined by the parameter of the Tearing Effect Line On command. The signal can be used by the MPU to synchronize Frame Memory Writing when displaying video images. 9.13.1 Tearing Effect Line Modes Mode 1, the Tearing Effect Output signal consists of V-Blanking Information only: tvdh= The LCD display is not updated from the Frame Memory tvdl= The LCD display is updated from the Frame Memory (except Invisible Line – see below) Mode 2, the Tearing Effect Output signal consists of V-Blanking and H-Blanking Information, there is one V-sync and 162 H-sync pulses per field. thdh= The LCD display is not updated from the Frame Memory thdl= The LCD display is updated from the Frame Memory (except Invisible Line – see above) Note: During Sleep In Mode, the Tearing Output Pin is active Low. Ver 1.5.2 81 2007-12 ST7732 9.13.2 Tearing Effect Line Timings The Tearing Effect signal is described below: Table 9.13.1 AC characteristics of Tearing Effect Signal Idle Mode Off (Frame Rate = 58.9 Hz) Symbol Parameter min max unit tvdl Vertical Timing Low Duration 13 ms tvdh Vertical Timing High Duration 1000 µs thdl Horizontal Timing Low Duration 33 µs thdh Horizontal Timing Low Duration 25 500 µs NOTE: The timings in Table 9.3.1 apply when MADCTL ML=0 and ML=1 description The signal’s rise and fall times (tf, tr) are stipulated to be equal to or less than 15ns. The Tearing Effect Output Line is fed back to the MPU and should be used as shown below to avoid Tearing Effect: 9.13.3 Example 1: MPU Write is faster than panel read Data write to Frame Memory is now synchronized to the Panel Scan. It should be written during the vertical sync pulse of the Tearing Effect Output Line. This ensures that data is always written ahead of the panel scan and each Panel Frame refresh has a complete new image: B Ver 1.5.2 82 2007-12 ST7732 9.13.4 Example 2: MPU write is slower than panel read. The MPU to Frame Memory write begins just after Panel Read has commenced i.e. after one horizontal sync pulse of the Tearing Effect Output Line. This allows time for the image to download behind the Panel Read pointer and finishing download during the subsequent Frame before the Read Pointer “catches” the MPU to Frame memory write position. B Ver 1.5.2 83 2007-12 ST7732 9.14 Preset Values ST7732 will set preset values on our production line for each display module. Any of these preset values do not need customer’s SW support. 9.15 Power ON/OFF Sequence The power on/off sequence is illustrated below: 9.15.1 Uncontrolled Power Off The uncontrolled power-off means a situation which removed a battery without the controlled power off sequence. It will neither damage the module or the host interface. If uncontrolled power-off happened, the display will go blank and there will not any visible effect on the display (blank display) and remains blank until “Power On Sequence” powers it up. Ver 1.5.2 84 2007-12 ST7732 9.16 Power Level Definition 9.16.1 Power Level 6 level modes are defined they are in order of Maximum Power consumption to Minimum Power Consumption: 1. Normal Mode On (full display), Idle Mode Off, Sleep Out. In this mode, the display is able to show maximum 262,144 colors. 2. Partial Mode On, Idle Mode Off, Sleep Out. In this mode part of the display is used with maximum 262,144 colors. 3. Normal Mode On (full display), Idle Mode On, Sleep Out. In this mode, the full display area is used but with 8 colors. 4. Partial Mode On, Idle Mode On, Sleep Out. In this mode, part of the display is used but with 8 colors. 5. Sleep In Mode In this mode, the DC: DC converter, internal oscillator and panel driver circuit are stopped. Only the MCU interface and memory works with VDDI power supply. Contents of the memory are safe. 6. Power Off Mode In this mode, both VDD and VDDI are removed. Note: Transition between modes 1-5 is controllable by MCU commands. Mode 6 is entered only when both Power supplies are removed. 9.16.2 Power Flow Chart Normal display mode on = NOR ON Partial display mode on = PTL ON Idle mode off = IDM OFF Idle mode on = IDM ON Sleep out = SLP OUT Sleep in = SLP IN NOR ON PTL ON Sleep out Normal display mode on Idle mode off IDM ON Power on sequence HW reset SW reset SLP IN SLP OUT Sleep in Normal display mode on Idle mode off Sleep out Normal display mode on Idle mode on Sleep out Partial display mode on Idle mode off PTL ON NOR ON Ver 1.5.2 PTL ON IDM OFF IDM ON IDM ON NOR ON SLP IN SLP OUT SLP IN SLP OUT IDM OFF Sleep out Partial display mode on Idle mode on Sleep in Normal display mode on Idle mode on Sleep in Partial display mode on Idle mode off IDM ON SLP IN SLP OUT 85 IDM OFF IDM OFF Sleep in Partial display mode on Idle mode on PTL ON NOR ON 2007-12 ST7732 9.17 Reset Table 9.17.1 Reset Table (Default Value, GM=00, 128RGB x 160) Item Frame memory Sleep In/Out Display On/Off Display mode (normal/partial) Display Inversion On/Off Display Idle Mode On/Off Column: Start Address (XS) After Power On Random In Off Normal Off Off 0000h After Hardware Reset No Change In Off Normal Off Off 0000h Column: End Address (XE) 007Fh 007Fh Row: Start Address (YS) 0000h 0000h Row: End Address (YE) 009Fh 009Fh GC0 See Section 9.19 0000h 009Fh Off 0000h 00A0h 0000h 0000h Off 0 (Mode1) GC0 See Section 9.19 0000h 009Fh Off 0000h 00A0h 0000h 0000h Off 0 (Mode1) After Software Reset No Change In Off Normal Off Off 0000h 007Fh (127d) (when MV=0) 009Fh (159d) (when MV=1) 0000h 009Fh (159d) (when MV=0) 007Fh (127d) (when MV=1) GC0 No Change 0000h 009Fh Off 0000h 00A0h 0000h 0000h Off 0 (Mode1) 0/0/0/0/0 0/0/0/0/0 No Change Gamma setting RGB for 256, 4k and 65k Color Mode Partial: Start Address (PSL) Partial: End Address (PEL) Scroll: Vertical scrolling Scroll: Top Fixed Area (TFA) Scroll: Scroll Area (VSA) Scroll: Bottom Fixed Area (BFA) Scroll Start Address (SSA) Tearing: On/Off Tearing Effect Mode (*1) Memory Data Access Control (MY/MX/MV/ML/RGB) Interface Pixel Color Format 6 (18-Bit/Pixel) 6 (18-Bit/Pixel) RDDPM 08h 08h RDDMADCTL 00h 00h RDDCOLMOD 6 (18-Bit/Pixel) 6 (18-Bit/Pixel) RDDIM 00h 00h RDDSM 00h 00h RDDSDR 00h 00h ID2 NV value NV value ID3 NV value NV value Note1. TE Mode 1 means Tearing Effect Output Line consists of V-Blanking Information only. Ver 1.5.2 86 No Change 08h No Change No Change 00h 00h 00h NV value NV value 2007-12 ST7732 9.17.2 Reset Table (GM=01, 120RGB x 160) Item Frame memory Sleep In/Out Display On/Off Display mode (normal/partial) Display Inversion On/Off Display Idle Mode On/Off Column: Start Address (XS) After Power On Random In Off Normal Off Off 0000h After Hardware Reset No Change In Off Normal Off Off 0000h Column: End Address (XE) 0077h 0077h Row: Start Address (YS) 0000h 0000h Row: End Address (YE) 009Fh 009Fh GC0 See Section 9.19 0000h 009Fh Off 0000h 00A0h 0000h 0000h Off 0 (Mode1) GC0 See Section 9.19 0000h 009Fh Off 0000h 00A0h 0000h 0000h Off 0 (Mode1) After Software Reset No Change In Off Normal Off Off 0000h 0077h (119d) (when MV=0) 009Fh (159d) (when MV=1) 0000h 009Fh (159d) (when MV=0) 0077h (119d) (when MV=1) GC0 No Change 0000h 009Fh Off 0000h 00A0h 0000h 0000h Off 0 (Mode1) 0/0/0/0/0 0/0/0/0/0 No Change Gamma setting RGB for 256, 4k and 65k Color Mode Partial: Start Address (PSL) Partial: End Address (PEL) Scroll: Vertical scrolling Scroll: Top Fixed Area (TFA) Scroll: Scroll Area (VSA) Scroll: Bottom Fixed Area (BFA) Scroll Start Address (SSA) Tearing: On/Off Tearing Effect Mode (*1) Memory Data Access Control (MY/MX/MV/ML/RGB) Interface Pixel Color Format 6 (18-Bit/Pixel) 6 (18-Bit/Pixel) RDDPM 08h 08h RDDMADCTL 00h 00h RDDCOLMOD 6 (18-Bit/Pixel) 6 (18-Bit/Pixel) RDDIM 00h 00h RDDSM 00h 00h RDDSDR 00h 00h ID2 NV value NV value ID3 NV value NV value Note1. TE Mode 1 means Tearing Effect Output Line consists of V-Blanking Information only. Ver 1.5.2 87 No Change 08h No Change No Change 00h 00h 00h NV value NV value 2007-12 ST7732 9.17.3 Reset Table (GM=11, 132RGB x 162) Item Frame memory Sleep In/Out Display On/Off Display mode (normal/partial) Display Inversion On/Off Display Idle Mode On/Off Column: Start Address (XS) After Power On Random In Off Normal Off Off 0000h After Hardware Reset No Change In Off Normal Off Off 0000h Column: End Address (XE) 0083h 0083h Row: Start Address (YS) 0000h 0000h Row: End Address (YE) 00A1h 00A1h GC0 See Section 9.19 0000h 00A1h Off 0000h 00A2h 0000h 0000h Off 0 (Mode1) GC0 See Section 9.19 0000h 00A1h Off 0000h 00A2h 0000h 0000h Off 0 (Mode1) After Software Reset No Change In Off Normal Off Off 0000h 0083h (131d) (when MV=0) 00A1h (161d) (when MV=1) 0000h 00A1h (161d) (when MV=0) 0083h (131d) (when MV=1) GC0 No Change 0000h 00A1h Off 0000h 00A2h 0000h 0000h Off 0 (Mode1) 0/0/0/0/0 0/0/0/0/0 No Change Gamma setting RGB for 256, 4k and 65k Color Mode Partial: Start Address (PSL) Partial: End Address (PEL) Scroll: Vertical scrolling Scroll: Top Fixed Area (TFA) Scroll: Scroll Area (VSA) Scroll: Bottom Fixed Area (BFA) Scroll Start Address (SSA) Tearing: On/Off Tearing Effect Mode (*1) Memory Data Access Control (MY/MX/MV/ML/RGB) Interface Pixel Color Format 6 (18-Bit/Pixel) 6 (18-Bit/Pixel) RDDPM 08h 08h RDDMADCTL 00h 00h RDDCOLMOD 6 (18-Bit/Pixel) 6 (18-Bit/Pixel) RDDIM 00h 00h RDDSM 00h 00h RDDSDR 00h 00h ID2 NV value NV value ID3 NV value NV value Note 1. TE Mode 1 means Tearing Effect Output Line consists of V-Blanking Information only. Ver 1.5.2 88 No Change 08h No Change No Change 00h 00h 00h NV value NV value 2007-12 ST7732 9.18 Module Input/Output Pins 9.18.1 Output or Bi-directional (I/O) Pins Output or Bi-directional pins After Power On After Hardware Reset After Software Reset TE Low Low Low D7 to D0 (Output driver) High-Z (Inactive) High-Z (Inactive) High-Z (Inactive) Note: There will be no output from D7-D0 during Power On/Off sequence, Hardware Reset and Software Reset. 9.18.2 Input Pins Input pins RESX CSX D/CX WRX RDX D7 to D0 Ver 1.5.2 During Power On Process See 9.15 Input invalid Input invalid Input invalid Input invalid Input invalid After Power On Input valid Input valid Input valid Input valid Input valid Input valid After Hardware Reset Input valid Input valid Input valid Input valid Input valid Input valid 89 After Software Reset Input valid Input valid Input valid Input valid Input valid Input valid During Power Off Process See 9.15 Input invalid Input invalid Input invalid Input invalid Input invalid 2007-12 ST7732 9.18.3 Reset Timing Table 9.18.2.1 Reset input timing VSS=0V, VDDI=1.65V to 1.95V, VDD=2.5V to 2.9V, Ta = -30 to 70℃) Symbol Parameter Related Pins MIN TYP MAX tRESW *1) Reset low pulse width RESX 10 tREST *2) Reset complete time - 120 - - Note - Unit us - ms Note 1 Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below. Note 2.It will be necessary to wait 120 msec before sending next command; this is allowing time for the supply voltages and clock circuits to stabilize. Note 3 During Reset Complete Time, ID2 and VCOMOF value in OTP will be latched to internal register during this period.This loading is done every time when there is H/W reset complete time (tREST) within 120ms after a rising edge of RESX. Note 4 Spike Rejection also applies during a valid reset pulse as shown below: Ver 1.5.2 90 2007-12 ST7732 9.19 Color Depth Conversion Look Up Tables 9.19.1 65536 Color to 262,144 Color Color Look Up Table Output Frame Memory Data (6-bits) Default value after H/W Reset RGBSET Parameter RED R005 R004 R003 R002 R001 R000 R015 R014 R013 R012 R011 R010 R025 R024 R023 R022 R021 R020 R035 R034 R033 R032 R031 R030 R045 R044 R043 R042 R041 R040 R055 R054 R053 R052 R051 R050 R065 R064 R063 R062 R061 R060 R075 R074 R073 R072 R071 R070 R085 R084 R083 R082 R081 R080 R095 R094 R093 R092 R091 R090 R105 R104 R103 R102 R101 R100 R115 R114 R113 R112 R111 R110 R125 R124 R123 R122 R121 R120 R135 R134 R133 R132 R131 R130 R145 R144 R143 R142 R141 R140 R155 R154 R153 R152 R151 R150 R165 R164 R163 R162 R161 R160 R175 R174 R173 R172 R171 R170 R185 R184 R183 R182 R181 R180 R195 R194 R193 R192 R191 R190 R205 R204 R203 R202 R201 R200 R215 R214 R213 R212 R211 R210 R225 R224 R223 R222 R221 R220 R235 R234 R233 R232 R231 R230 R245 R244 R243 R242 R241 R240 R255 R254 R253 R252 R251 R250 R265 R264 R263 R262 R261 R260 R275 R274 R273 R272 R271 R270 R285 R284 R283 R282 R281 R280 R295 R294 R293 R292 R291 R290 R305 R304 R303 R302 R301 R300 R315 R314 R313 R312 R311 R310 000000 000010 000100 000110 001000 001010 001100 001110 010000 010010 010100 010110 011000 011010 011100 011110 100001 100011 100101 100111 101001 101011 101101 101111 110001 110011 110101 110111 111001 111011 111101 111111 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Ver 1.5.2 91 Look Up Table Input Data 65k Color (5-bits) 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 2007-12 ST7732 Color Look Up Table Output Frame Memory Data (6-bits) Default value after H/W Reset RGBSET Parameter GREEN G005 G004 G003 G002 G001 G000 G015 G014 G013 G012 G011 G010 G025 G024 G023 G022 G021 G020 G035 G034 G033 G032 G031 G030 G045 G044 G043 G042 G041 G040 G055 G054 G053 G052 G051 G050 G065 G064 G063 G062 G061 G060 G075 G074 G073 G072 G071 G070 G085 G084 G083 G082 G081 G080 G095 G094 G093 G092 G091 G090 G105 G104 G103 G102 G101 G100 G115 G114 G113 G112 G111 G110 G125 G124 G123 G122 G121 G120 G135 G134 G133 G132 G131 G130 G145 G144 G143 G142 G141 G140 G155 G154 G153 G152 G151 G150 G165 G164 G163 G162 G161 G160 G175 G174 G173 G172 G171 G170 G185 G184 G183 G182 G181 G180 G195 G194 G193 G192 G191 G190 G205 G204 G203 G202 G201 G200 G215 G214 G213 G212 G211 G210 G225 G224 G223 G222 G221 G220 G235 G234 G233 G232 G231 G230 G245 G244 G243 G242 G241 G240 G255 G254 G253 G252 G251 G250 G265 G264 G263 G262 G261 G260 G275 G 274 G273 G272 G271 G270 G285 G 284 G283 G282 G281 G280 G295 G 294 G293 G292 G291 G290 G305 G 304 G303 G302 G301 G300 G315 G 314 G313 G312 G311 G310 000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111 010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Ver 1.5.2 92 Look Up Table Input Data 65k Color (5-bits) 000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111 010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111 2007-12 ST7732 Color Look Up Table Output Frame Memory Data (6-bits) Default value after H/W Reset RGBSET Parameter GREEN G325 G324 G323 G322 G321 G320 G335 G334 G333 G332 G331 G330 G345 G344 G343 G342 G341 G340 G355 G354 G353 G352 G351 G350 G365 G364 G363 G362 G361 G360 G375 G374 G373 G372 G371 G370 G385 G384 G383 G382 G381 G380 G395 G394 G393 G392 G391 G390 G405 G404 G403 G402 G401 G400 G415 G414 G413 G412 G411 G410 G425 G424 G423 G422 G421 G420 G435 G434 G433 G432 G431 G430 G445 G444 G443 G442 G441 G440 G455 G454 G453 G452 G451 G450 G465 G464 G463 G462 G461 G460 G475 G474 G473 G472 G471 G470 G485 G484 G483 G482 G481 G480 G495 G494 G493 G492 G491 G490 G505 G504 G503 G502 G501 G500 G515 G514 G513 G512 G511 G510 G525 G524 G523 G522 G521 G520 G535 G534 G533 G532 G531 G530 G545 G544 G543 G542 G541 G540 G555 G554 G553 G552 G551 G550 G565 G564 G563 G562 G561 G560 G575 G574 G573 G572 G571 G570 G585 G584 G583 G582 G581 G580 G595 G594 G593 G592 G591 G590 G605 G604 G603 G602 G601 G600 G615 G614 G613 G612 G611 G610 G625 G624 G623 G622 G621 G620 G635 G634 G633 G632 G631 G630 100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111 110000 110001 110010 110011 110100 110101 110110 110111 111000 111001 111010 111011 111100 111101 111110 111111 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 Ver 1.5.2 93 Look Up Table Input Data 65k Color (5-bits) 100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111 110000 110001 110010 110011 110100 110101 110110 110111 111000 111001 111010 111011 111100 111101 111110 111111 2007-12 ST7732 Color Look Up Table Output Frame Memory Data (6-bits) Default value after H/W Reset RGBSET Parameter BLUE B005 B004 B003 B002 B001 B000 B015 B014 B013 B012 B011 B010 B025 B024 B023 B022 B021 B020 B035 B034 B033 B032 B031 B030 B045 B044 B043 B042 B041 B040 B055 B054 B053 B052 B051 B050 B065 B064 B063 B062 B061 B060 B075 B074 B073 B072 B071 B070 B085 B084 B083 B082 B081 B080 B095 B094 B093 B092 B091 B090 B105 B104 B103 B102 B101 B100 B115 B114 B113 B112 B111 B110 B125 B124 B123 B122 B121 B120 B135 B134 B133 B132 B131 B130 B145 B144 B143 B142 B141 B140 B155 B154 B153 B152 B151 B150 B165 B164 B163 B162 B161 B160 B175 B174 B173 B172 B171 B170 B185 B184 B183 B182 B181 B180 B195 B194 B193 B192 B191 B190 B205 B204 B203 B202 B201 B200 B215 B214 B213 B212 B211 B210 B225 B224 B223 B222 B221 B220 B235 B234 B233 B232 B231 B230 B245 B244 B243 B242 B241 B240 B255 B254 B253 B252 B251 B250 B265 B264 B263 B262 B261 B260 B275 B274 B273 B272 B271 B270 B285 B284 B283 B282 B281 B280 B295 B294 B293 B292 B291 B290 B305 B304 B303 B302 B301 B300 B315 B314 B313 B312 B311 B310 000000 000010 000100 000110 001000 001010 001100 001110 010000 010010 010100 010110 011000 011010 011100 011110 100001 100011 100101 100111 101001 101011 101101 101111 110001 110011 110101 110111 111001 111011 111101 111111 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 Ver 1.5.2 94 Look Up Table Input Data 65k Color (5-bits) 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 2007-12 ST7732 9.19.1 4096 Color to 262,144 Color Color Look Up Table Output Frame Memory Data (6-bits) Default value after H/W Reset RGBSET Parameter RED R005 R004 R003 R002 R001 R000 R015 R014 R013 R012 R011 R010 R025 R024 R023 R022 R021 R020 R035 R034 R033 R032 R031 R030 R045 R044 R043 R042 R041 R040 R055 R054 R053 R052 R051 R050 R065 R064 R063 R062 R061 R060 R075 R074 R073 R072 R071 R070 R085 R084 R083 R082 R081 R080 R095 R094 R093 R092 R091 R090 R105 R104 R103 R102 R101 R100 R115 R114 R113 R112 R111 R110 R125 R124 R123 R122 R121 R120 R135 R134 R133 R132 R131 R130 R145 R144 R143 R142 R141 R140 R155 R154 R153 R152 R151 R150 R165 R164 R163 R162 R161 R160 | R315 R314 R313 R312 R311 R310 000000 000100 001000 001100 010001 010101 011001 011101 100010 100110 101010 101110 110011 110111 111011 111111 -----| ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 32 Color Look Up Table Output Frame Memory Data (6-bits) Default value after H/W Reset RGBSET Parameter GREEN G005 G004 G003 G002 G001 G000 G015 G014 G013 G012 G011 G010 G025 G024 G023 G022 G021 G020 G035 G034 G033 G032 G031 G030 G045 G044 G043 G042 G041 G040 G055 G054 G053 G052 G051 G050 G065 G064 G063 G062 G061 G060 G075 G074 G073 G072 G071 G070 G085 G084 G083 G082 G081 G080 G095 G094 G093 G092 G091 G090 G105 G104 G103 G102 G101 G100 G115 G114 G113 G112 G111 G110 G125 G124 G123 G122 G121 G120 G135 G134 G133 G132 G131 G130 G145 G144 G143 G142 G141 G140 G155 G154 G153 G152 G151 G150 G165 G164 G163 G162 G161 G160 | G635 G634 G633 G632 G631 G630 000000 000100 001000 001100 010001 010101 011001 011101 100010 100110 101010 101110 110011 110111 111011 111111 -----| ------ 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | 96 Ver 1.5.2 95 Look Up Table Input Data 4k Color (4-bits) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Not used Look Up Table Input Data 4k Color (4-bits) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Not used 2007-12 ST7732 Color Look Up Table Output Frame Memory Data (6-bits) Default value after H/W Reset RGBSET Parameter BLUE B005 B004 B003 B002 B001 B000 B015 B014 B013 B012 B011 B010 B025 B024 B023 B022 B021 B020 B035 B034 B033 B032 B031 B030 B045 B044 B043 B042 B041 B040 B055 B054 B053 B052 B051 B050 B065 B064 B063 B062 B061 B060 B075 B074 B073 B072 B071 B070 B085 B084 B083 B082 B081 B080 B095 B094 B093 B092 B091 B090 B105 B104 B103 B102 B101 B100 B115 B114 B113 B112 B111 B110 B125 B124 B123 B122 B121 B120 B135 B134 B133 B132 B131 B130 B145 B144 B143 B142 B141 B140 B155 B154 B153 B152 B151 B150 B165 B164 B163 B162 B161 B160 | B315 B314 B313 B312 B311 B310 000000 000100 001000 001100 010001 010101 011001 011101 100010 100110 101010 101110 110011 110111 111011 111111 -----| ------ 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | 128 Ver 1.5.2 96 Look Up Table Input Data 4k Color (4-bits) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Not used 2007-12 ST7732 9.20 Sleep Out-Command and Self-Diagnostic Functions of the Display Module 9.20.1 Register Loading Detection Sleep Out-command (See section 10.1.12 “Sleep Out (11h)”) is a trigger for an internal function of the display module, which indicates, if the display module loading function of factory default values from EEPROM (or similar device) to registers of the display controller is working properly. There are compared factory values of the EEPROM and register values of the display controller by the display controller. If those both values (EEPROM and register values) are same, there is inverted (=increased by 1) a bit, which is defined in command 10.1.10 “Read Display Self-Diagnostic Result (0Fh)” (=RDDSDR) (The used bit of this command is D7). If those both values are not same, this bit (D7) is not inverted (= increased by 1). The flow chart for this internal function is following: Power on sequence HW reset SW reset Sleep In (10h) Sleep Out Mode Sleep In Mode RDDSDR’s D7=0 Sleep Out (11h) Loads values from EEPROM to registers No Compares EEPROM and register values Are EEPROM and register values same ? Yes D7 inverted Note: There is not compared and loaded register values, which can be changed by user (00h to AFh and DAh to DDh), by the display module. Ver 1.5.2 97 2007-12 ST7732 9.20.2 Functionality Detection Sleep Out-command (See section 10.1.12 “Sleep Out (11h)”) is a trigger for an internal function of the display module, which indicates, if the display module is still running and meets functionality requirements. The internal function (= the display controller) is comparing, if the display module is still meeting functionality requirements (only Booster voltage level). If functionality requirement is met, there is inverted (= increased by 1) a bit, which defined in command 10.1.10 “Read Display Self- Diagnostic Result (0Fh)” (= RDDSDR) (The used bit of this command is D6). If functionality requirement is not same, this bit (D6) is not inverted (= increased by 1). The flow chart for this internal function is following: Power on sequence HW reset SW reset Sleep In (10h) Sleep Out Mode Sleep In Mode RDDSDR’s D6=0 Sleep Out (11h) Checks Booster voltage levels and other functionalities No Is functionality requirement met? Yes D6 inverted Note: There is needed 120msec after Sleep Out -command, when there is changing from Sleep In –mode to Sleep Out -mode, before there is possible to check if functionality requirements are met and a value of RDDSDR’s D6 is valid. Otherwise, there is 120msec delay for D6’s value, when Sleep Out –command is sent in Sleep Out -mode. Ver 1.5.2 98 2007-12 ST7732 9.20.3 Chip Attachment Detection Sleep Out-command (See section 10.1.12 “Sleep Out (11h)”) is a trigger for an internal function of the display module, which indicates, if a chip or chips (e.g. driver, etc.) of the display module is/are attached to the circuit route of a flex foil or display glass ITO. There is inverted (= increased by 1) a bit, which is defined in command 10.1.10 “Read Display Self- Diagnostic Result (0Fh)” (= RDDSDR) (The used bit of this command is D5), if the chip or chips is/are attached to the circuit route of the flex or display glass. If this chip is or those chips are not attached to the circuit route of the flex or display glass, this bit (D5) is not inverted (= increased by 1). The following figure is for reference purposes; how this chip attachment can be implemented e.g. there are connected together 2 bumps via route of ITO or the flex foil on 4 corners of the driver (chip). Bump Routing Between bumps Through view of driver to bumps Routing Between bumps Substrate of display glass The flow chart for this internal function is following: Power on sequence HW reset SW reset Sleep In (10h) Sleep Out Mode Sleep In Mode RDDSDR’s D5=0 Sleep Out (11h) Checks, if chip is attached to route No Is chip attached to routes? Yes D5 inverted Ver 1.5.2 99 2007-12 ST7732 9.20.4 Display Glass Break Detection Sleep Out-command (See section 10.1.12 “Sleep Out (11h)”) is a trigger for an internal function of the display module, which indicates, if the display glass of the display module is broken or not. There is inverted (= increased by 1) a bit, which is defined in command 10.1.10 “Read Display Self-Diagnostic Result (0Fh)” (= RDDSDR) (The used bit of this command is D4), if the display glass is not broken. If this display glass is broken, this bit (D4) is not inverted (= increased by 1). The following figure is a reference, how this glass break detection can be implemented e.g. there is connected together 2 bumps via route of ITO. This route of ITO is the nearest route of the edge of the display glass. Active area of the display glass Through view of driver to Bump Substrate of display glass The flow chart for this internal function is following: Power on sequence HW reset SW reset Sleep In (10h) Sleep Out Mode Sleep In Mode RDDSDR’s D4=0 Sleep Out (11h) Checks, if display glass broken No Is the display glass broken? Yes D4 inverted Ver 1.5.2 100 2007-12 ST7732 9.21 External Light Source The operation of the module can meet customer’s Environmental reliability requirements. 9.22 Oscillator The chip has on-chip oscillator that does not require external components. This oscillator output signal is used for system clock generation for internal display operation. 9.23 System Clock Generator The timing generator produces the various signals to driver the internal circuitty. Internal chip operation is not affected by operations on the data bus. 9.24 Instruction Decoder and Register The instruction decoder indentifies command words arriving at the interface and routes the following data bytes to their destination. The command set can be found in “Command” section. 9.25 Source Driver The source driver block includes 132x3 source outputs (S1 to S396), which should be connected directly to the TFT-LCD. The source output signals are generated in the data processing block after the data is read out of the RAM and latched, which represent the simulatance selected rows. 9.26 Gate Driver The gate driver block includes 162 channel gate output (G1 to G162) which should be connected directly to the TFT-LCD. 9.27 VSYNC Interface The ST7732 incorporates a VSYNC I/F, which enables to display a moving picture which only system interface and frame-synchronizing signal. The interface enables to display moving pictures with minimum modification to a conventional systern. The VSYNC-I/F is turned ON by VSYNC-I/F ON(ADH) command and turned OFF by VSYNC-I/F(ACH) command. In VSYNC-I/F mode, internal display operations are synchronized with VS. The VSYNC-I/F enables to display a moving picture through a system interface in higher speed than the internal display operations by some degree. The VSYNC-I/F executes display operations only with internal clocks generated by internal oscillators and VS input. All display data are stored in RAM so that only the data relevant to updating a screen are transferred to minimize data transmission while displaying a moving picture. Ver 1.5.2 101 2007-12 ST7732 -Leading Mode -Lagging Mode 1. In RCM[1:0]=”01” mode, writing data to RAM on rising edge of VS signal. 2. If high pulse of VS signal should large than 1-lines. 3. The BP and FP should follow conditions: BP≧2-lines, FP≧2-lines and BP+FP =16-lines 4. The signals (CSX, WRX, D/CX and VS) of VSYNC I/F should follow MCU Parallel Interface AC timing. The VSYNC-I/F has limits on the minimum RAM write speed through the system interface and the frequency of the internal clocks. It requires a RAM write speed more than the calculated result from the following formula. -Internal clock frequency (fosc)[Hz] = Frame Frequency x (DisplayLines+FrontPorch(VSFP)+BackPorch(VSBP)) x 16(clocks) x fluctuation Example of RAMs writes speed and the frequency of the internal clocks in VSYNC-I/F mode is as follows. Example: Display size= 132 RGB x 162 lines, Raster rows= 162 lines, Back/Front porch: 14/2 lines(VSBP = 1110, VSFP = 0010 of AFH), Frame frequency = 60 Hz Internal clock frequency (fosc)[Hz] = 60Hz x (162+2+14) x 16 clocks x 1.1/0.9 = 209 kHz When calculating an internal clock frequency, possible causes of fluctuations must also be taken into consideration. In this example, the allowance for the fluctuation is x10% from the center value and the frequency must be within a VS cycle. Ver 1.5.2 102 2007-12 ST7732 Also in this example, variations attributed to LSI fabrication and room temperature are taken into consideration as causes of fluctuations. Other possible causes of fluctuations, such as variations in external resistors or voltage changes are not considered in this example. It is necessary to make a setting with enough margins to accommodate -When Frame frequency is 60Hz Minimum speed for RAM writing[Hz]> 132x162/{((14+162+2)lines x 16 clock)/300kHz}=1.6MHz Note 1, When RAM write does not start right affer the falling edge of VS, the time from the falling edge of VS until RAM write starts must also be taken into account. Note 2, The above calculation is premised on the case of writing data to RAM on the falling edge of VS. Note 3, There must atleast be a margin of 2 processing lines when all one-frame data are written to RAM before the ST7732 starts processing display llines By writing data to RAM on rising edge of VS signal at speed of 1.6MHz(Frame rate =60Hz) or more, it is possible to overwrite an entire screen without flicker by completing dta write operatipon of a line before it starts display operation of that line Notes: 1. The aforementioned example of calculation is just a result of calculation. In actual settings, possible causes of fluctuations should be taken into comsideration. It is necessary to give enough margins when setting a RAM writing speed. 2. The aforementioned example of calculation is the value in case of overwriting full screen. If a moving picture display area is limited, it will result in more margins between RAMs write and display operations. 3. A front porch period continues after completion of 1 frame and until the next input of VS. The partial display and vertical scroll functions are not available with then VSYNC-I/F. Ver 1.5.2 103 2007-12 ST7732 10. Command 10.1 System function Command List and Description Table 10.1.1 System Function command List (1) Instruction D7 D6 D5 D4 D3 D2 D1 D0 NOP 10.1.1 0 ↑ 1 - 0 0 0 0 0 0 0 0 (00h) No Operation SWRESET 10.1.2 0 ↑ 1 - 0 0 0 0 0 0 0 1 (01h) Software reset 0 ↑ 1 - 0 0 0 0 0 1 0 0 (04h) Read Display ID 1 1 ↑ - - - - - - - - - 1 1 ↑ - ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID1 read 1 1 ↑ - 1 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID2 read 1 1 ↑ - ID37 ID36 ID35 ID34 ID33 ID32 ID31 ID30 0 ↑ 1 - 0 0 0 0 1 0 0 1 1 1 ↑ - - - - - - - - - 1 1 ↑ - BSTON MY MX MV ML RGB - ST24 1 1 ↑ - ST23 IFPF2 IFPF1 IFPF0 IDMON PTLON SLOUT NORON - 1 1 ↑ - VSSON ST14 INVON ST21 ST11 DISON TEON GCS2 - 1 1 ↑ - 0 ↑ 1 - 1 1 ↑ - 1 1 ↑ - 0 ↑ 1 - 0 0 0 0 1 1 1 ↑ - - - - - - 1 1 ↑ - MY MX MV ML 0 ↑ 1 - 0 0 0 1 1 ↑ - - - - 1 1 ↑ - 0 ↑ 1 - 0 0 1 1 ↑ - - - 1 1 ↑ - VSSON 0 ↑ 1 - 1 1 ↑ - 1 1 ↑ - 0 ↑ 1 - 0 0 0 0 1 1 1 ↑ - - - - - - 1 1 ↑ - BRD - RDDID RDDST RDDPM Refer D/CX WRX RDX D17-8 10.1.3 10.1.4 10.1.5 RDD MADCTL 10.1.6 RDD COLMOD 10.1.7 RDDIM RDDSM RDDSDR 10.1.8 10.1.9 10.1.10 GCS1 GCS0 TELON HSON VSON PCKON DEON 0 0 0 0 1 0 - - - - - - 1 ST0 0 (Hex) Function Dummy read ID3 read (09h) Read Display Status Dummy read - (0Ah) Read Display Power Mode - - Dummy read - - - 0 1 1 - - - Dummy read RGB - - - - 0 1 1 0 0 - - - - - VIP0 - 0 0 1 1 0 1 - - - - - - D6 INVON - - 0 0 0 0 1 1 1 0 - - - - - - - - Dummy read - - - 1 1 1 - - - Dummy read - - - - BSTON IDMON PTLON SLPOUT NORON DISON VIPF3 VIPF2 VIPF1 IFPF2 IFPF1 IFPF0 GCS2 GCS1 GCS0 TEON TELON HSON VSON PCKON DEON RELD FUND ATTD (0Bh) Read Display MADCTL (0Ch) Read Display Pixel Format Dummy read (0Dh) Read Display Image Mode Dummy read (0Eh) Read Display Signal Mode (0Fh) Read Display Self-diagnostic result “-“: Don’t care Ver 1.5.2 104 2007-12 ST7732 Table 10.1.2 System Function command List (2) Instruction Refer D/C X WR D17RDX X 8 D7 D6 D5 D4 D3 D2 D1 D0 (Hex) Function SLPIN 10.1.11 0 ↑ 1 - 0 0 0 1 0 0 0 0 (10h) Sleep in & booster off SLPOUT 10.1.12 0 ↑ 1 - 0 0 0 1 0 0 0 1 (11h) Sleep out & booster on PTLON 10.1.13 0 ↑ 1 - 0 0 0 1 0 0 1 0 (12h) Partial mode on NORON 10.1.14 0 ↑ 1 - 0 0 0 1 0 0 1 1 (13h) Partial off (Normal) INVOFF 10.1.15 0 ↑ 1 - 0 0 1 0 0 0 0 0 (20h) INVON 10.1.16 0 ↑ 1 - 0 0 1 0 0 0 0 1 Display inversion off (normal) (21h) Display inversion on 0 ↑ 1 - 0 0 1 0 0 1 1 0 (26h) Gamma curve select 1 ↑ 1 - - - - - GAMSET 10.1.17 DISPOFF 10.1.18 0 ↑ 1 - 0 0 1 0 1 0 0 0 DISPON 10.1.19 0 ↑ 1 - 0 0 1 0 1 0 0 1 (29h) Display on 0 ↑ 1 - 0 0 1 0 1 0 1 0 (2Ah) Column address set 1 ↑ 1 - - - - - - - - - 1 ↑ 1 - XS7 XS6 XS5 XS4 XS3 XS2 XS1 XS0 1 ↑ 1 - - - - - - - - 1 0 1 ↑ ↑ ↑ 1 1 1 - XE7 0 - XE6 0 - XE5 1 - XE4 0 - XE3 1 - XE2 0 - XE1 1 - 1 ↑ 1 - YS7 YS6 YS5 YS4 YS3 YS2 YS1 1 ↑ 1 - - - - - - - - - 1 ↑ 1 - YE7 YE6 YE5 YE4 YE3 YE2 YE1 YE0 0 ↑ 1 - 0 0 1 0 1 1 0 0 1 ↑ 1 - D7 D6 D5 D4 D3 D2 D1 D0 0 ↑ 1 - 0 0 1 0 1 1 1 0 (2Eh) Memory read 1 1 ↑ - - - - - - - - - Dummy read 1 1 ↑ - D7 D6 D5 D4 D3 D2 D1 D0 CASET RASET 10.1.20 GC3 GC2 GC1 GC0 (28h) Display off X address start: 0≦S≦X X address end: XS≦XE≦X XE0 1 (2Bh) Row address set Y address start: 0≦YS≦Y YS0 10.1.21 Y address end:S≦YE≦Y RAMWR RAMRD 10.1.22 10.1.23 (2Ch) Memory write Write data Read data “-“: Don’t care Ver 1.5.2 105 2007-12 ST7732 Table 10.1.3 System Function command List (3) Instruction Refer D/CXWRXRDX D17-8 D7 PTLAR 10.1.25 SCRLAR 10.1.26 TEOFF 10.1.27 TEON 10.1.28 MADCTL 10.1.29 VSCSAD 10.1.30 IDMOFF 10.1.31 IDMON 10.1.32 COLMOD 10.1.33 0 1 1 1 1 0 1 1 1 1 1 1 0 0 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1 ↑ 1 - 0 1 0 1 1 0 0 0 1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1 1 1 1 1 1 1 1 1 - D6 D5 D4 D3 D2 D1 0 0 1 1 0 0 0 PSL7 PSL6 PSL5 PSL4 PSL3 PSL2 PSL1 PEL7 PEL6 PEL5 PEL4 PEL3 PEL2 PEL1 0 0 1 1 0 0 1 TFA7 TFA6 TFA5 TFA4 TFA3 TFA2 TFA1 VSA7 VSA6 VSA5 VSA4 VSA3 VSA2 VSA1 BFA7 BFA6 BFA5 BFA4 BFA3 BFA2 BFA1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 D0 0 PSL0 PEL0 1 TFA0 VSA0 BFA0 0 1 Function (30h) Partial start/end address set Partial start address (0,1,2, ..P) Partial end address (0,1,2, .., P) (33h) Scroll area set Top fixed area (0,1,2, .., S) Vertical scroll area (0,1,2, .., S) Bottom fixed area (0,1,2, .., S) (34h) Tearing effect line off (35h) Tearing effect mode set & on Mode1: TELOM=”0” - TELOM Mode2: TELOM=”1” 0 0 1 1 0 1 1 0 (36h) Memory data access control MY MX MV ML RGB 0 0 1 1 0 1 1 1 (37h) Scroll start address of RAM SSA = 0, 1, 2, …, 131 SSA7 SSA6 SSA5 SSA4 SSA3 SSA2 SSA1 SSA0 0 0 1 1 1 0 0 0 (38h) Idle mode off 0 0 1 1 1 0 0 1 (39h) Idle mode on 0 0 1 1 1 0 1 0 (3Ah) Interface pixel format VIPF3 VIPF2VIPF1 VIPF0 - IFPF2IFPF1 IFPF0 Interface format 0 ↑ 1 - 1 1 0 1 1 0 1 0 10.1.34 1 1 ↑ - - - - - - - - - RDID2 10.1.35 1 0 1 1 0 1 ↑ 1 1 ↑ ↑ 1 ↑ ↑ 1 - RDID3 10.1.36 1 1 ↑ - 1 1 ↑ - RDID1 (Hex) ID17 ID16 ID15 ID14 ID13 ID12 ID11 1 1 0 1 1 0 1 1 ID26 ID25 ID24 ID23 ID22 ID21 1 1 0 1 1 1 0 - - - - - - - ID37 ID36 ID35 ID34 ID33 ID32 ID31 (DAh) Read ID1 Dummy read ID10 Read parameter 1 (DBh) Read ID2 Dummy read ID20 Read parameter 0 (DCh) Read ID3 ID30 Dummy read Read parameter “-“: Don’t care Note 1: After the H/W reset by RESX pin or S/W reset by SWRESET command, each internal register becomes default state (Refer “RESET TABLE” section) Note 2: Undefined commands are treated as NOP (00 h) command. Note 3: B0 to D9 and DA to F are for factory use of driver supplier. Note 4: Commands 10h, 12h, 13h, 20h, 21h, 26h, 28h, 29h, 30h, 33h, 36h (ML parameter only), 37h, 38h and 39h are updated during V-sync when Module is in Sleep Out Mode to avoid abnormal visual effects. During Sleep In mode, these commands are updated immediately. Read status (09h), Read Display Power Mode (0Ah), Read Display MADCTL (0Bh), Read Display Pixel Format (0Ch), Read Display Image Mode (0Dh), Read Display Signal Mode (0Eh) and Read Display Self Diagnostic Result (0Fh) of these commands are updated immediately both in Sleep In mode and Sleep Out mode. Ver 1.5.2 106 2007-12 ST7732 10.2 Panel Function Command List and Description Table 10.2.1 Panel Function Command List (1) Instruction Refer D/CX WRX RDX D23-8 D7 D6 D5 D4 D3 D2 D1 D0 0 ↑ 1 - 1 0 1 1 0 0 0 0 1 ↑ 1 - 0 0 DP EP HSP VSP 0 ↑ 1 - 1 0 0 0 0 1 1 ↑ 1 - 1 ↑ 1 - FPA3 FPA2 FPA1 FPA0 1 ↑ 1 - BPA3 BPA2 BPA1 BPA0 0 ↑ 1 - 0 0 1 0 1 1 ↑ ↑ 1 1 - 1 ↑ 1 - 0 ↑ 1 - 1 ↑ 1 - RTNC3 RTNC2 RTNC1 RTNC0 1 1 1 1 1 ↑ ↑ ↑ ↑ ↑ 1 1 1 1 1 - FPC3 BPC3 RTND3 FPD3 BPD3 FPC2 BPC2 RTND2 FPD2 BPD2 FPC1 BPC1 RTND1 FPD1 BPD1 FPC0 BPC0 RTND0 FPD0 BPD0 0 ↑ 1 - 1 0 1 1 0 1 0 0 1 ↑ 1 - 0 0 0 0 0 NLA NLB NLC 0 ↑ 1 - 1 0 1 1 0 1 0 1 1 1 1 1 ↑ ↑ ↑ ↑ 1 1 1 1 - VBP2 HBP2 VBP1 HBP1 VBP0 HBP8 HBP0 0 ↑ 1 - 1 0 1 1 0 1 1 0 1 ↑ 1 - 0 0 NO1 NO0 SDT1 SDT0 EQ1 EQ0 1 ↑ 1 0 0 0 0 PTG1 PTG0 PT1 PT0 RGBCTR (Hex) Function (B0h) 10.2.1 FRMCTR1 10.2.2 DISSW ICM 1 1 (B1h) RTNA3 RTNA2 RTNA1 RTNA0 Set RGB signal control ICM: RGB data ascess select DW RGB interface bus width set DP, HSP, VSP: PCLK, HS, VS polarity set In normal mode (Full colors) RTNA set 1-line period FPA: front porch FRMCTR2 10.2.3 FRMCTR3 10.2.4 INVCTR RGB BPCTR DISSET5 Ver 1.5.2 1 0 1 1 BPA: back porch (B2h) RTNB3 RTNB2 RTNB1 RTNB0 FPB3 FPB2 FPB1 FPB0 1 0 1 1 BPB3 BPB2 BPB1 BPB0 0 0 1 1 10.2.6 10.2.7 107 (8-colors) RTNB: set 1-line period FPB: front porch BPB: back porch (B3h) In partial mode + Full colors RTNC,RTND: set 1-line period FPC,FPD: front porch BPC,BPD: back porch (B4h) 10.2.5 VBP7 VBP6 VBP5 VBP4 VBP3 HBP7 HBP6 HBP5 HBP4 HBP3 In Idle mode Display inversion control NLA,NLB,NLC set inversion (B5h) (B6h) RGB I/F Blanking porch setting Display function setting NO: the amount of non-overlap SDT: set amount of source delay EQ: set EQ period PT: No display area source/VCOM/Gate output control 2007-12 ST7732 Table 10.2.2 Panel Function Command List (2) Instruction Refer D/CX WRX RDX D17-8 0 ↑ 1 1 ↑ 1 PWCTR1 10.2.8 D7 1 0 D6 1 0 D5 0 0 1 ↑ 1 - 0 0 0 0 0 VC2 VC1 VC0 0 ↑ 1 - 1 1 0 0 0 0 0 1 1 ↑ 1 - 0 0 0 0 0 BT2 BT1 BT0 0 ↑ 1 - 1 1 0 0 0 0 1 0 1 ↑ 1 1 ↑ 1 0 ↑ 1 1 ↑ 1 1 ↑ 1 0 ↑ 1 - 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 APA2 0 DCA2 0 0 APB2 0 DCB2 0 1 APA1 0 DCA1 0 1 APB1 0 DCB1 0 0 1 ↑ 1 - 0 0 0 0 0 APC2 APC1 APC0 1 ↑ 1 - 0 0 0 0 0 DCC2 DCC1 DCC0 0 ↑ 1 - 1 1 0 0 0 1 ↑ 1 - - VMH6 VMH 5 VMH4 VMH3 VMH2 VMH1 VMH0 1 ↑ 1 - - VML6 VML5 VM 4 VML3 VML2 VML1 VML0 0 ↑ 1 - 1 1 0 0 1 ↑ 1 - - VMF6 - - PWCTR2 10.2.9 PWCTR3 10.2.10 PWCTR4 10.2.11 PWCTR5 10.2.12 VMCTR1 10.2.13 VMOFCTR 10.2.14 D4 D3 D2 D1 D0 (Hex) Function 0 0 0 0 0 (C0h) Power control setting VRH: Set the GVDD VRH4 VRH3 VRH2 VRH1 VRH0 0 1 1 0 1 voltage VC: Set the VCI1 voltage (C1h) Power control setting BT: set AVDD/VCL/VGH/ VGL voltage (C2h) In normal mode (Full colors) APA0 APA: adjust the operational 0 amplifier DCA: adjust the booster DCA0 circuit for Idle mode 0 1 (C3h) In Idle mode (8-colors) APB0 APB: adjust the operational 0 amplifier DCB: adjust the booster DCB0 circuit for Idle mode 0 0 (C4h) In partial mode + Full colors 1 1 APC: adjust the operational amplifier DCC: adjust the booster circuit for Idle mode (C5h) VCOM control 1 VMH: VCOMH voltage control VML: VCOML voltage control (C7h) VCOM offset control VMF3 VMF2 VMF1 VMF0 “-“: Don’t care Note 1: C0h to C7h are fixed for about power controller. Table 10.2.3 Panel Function Command List (3) Instruction Refer D/CX WRX RDX D17-8 0 ↑ 1 WRID2 10.2.15 1 ↑ 1 - D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 1 0 0 0 1 0 ID26 ID25 ID24 ID23 ID22 ID21 ID20 0 ↑ 1 - 1 1 0 1 0 0 1 0 1 ↑ 1 - ID37 ID36 ID35 ID34 ID33 ID32 ID31 ID30 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 ↑ 1 1 1 1 1 ↑ 1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1 ↑ ↑ ↑ ↑ ↑ 1 ↑ 1 1 1 1 1 1 1 1 - 1 ID417 ID427 ID437 ID447 1 1 1 0 1 1 0 1 0 1 ID416 ID426 ID436 ID446 1 1 0 0 0 1 1 1 1 0 ID415 ID425 ID435 ID445 0 0 1 0 1 0 0 1 0 1 ID414 ID424 ID434 ID444 1 EXTC 1 0 0 0 1 1 1 1 0 ID413 ID423 ID433 ID443 1 1 1 1 0 1 0 0 1 0 ID412 ID422 ID432 ID442 0 1 0 1 1 1 1 0 0 1 ID411 ID421 ID431 ID441 0 1 1 1 0 1 0 0 1 1 ID410 ID420 ID430 ID440 1 RDY 0 0 1 1 1 1 0 0 WRID3 RDID4 10.2.16 10.2.17 NVCTR1 10.2.18 NVCTR2 10.2.19 NVCTR3 10.2.20 (Hex) Function (D1h) LCM version code (D2h) (D3h) Write ID2 value to NV memory Set the LCM version code at ID2 Customer Project code Write ID3 value to NV memory Set the project code at ID3 IC Vender Coder Dummy read ID41:IC Vender Code ID42: IC Part Number Code ID43 & ID44: Chip version coder (D9h) NVM control status (DEh) NVM read command AA 0F A5 (DFh) NVM write command 55 F0 5A “-“: Don’t care Note 1: The D1h to D3h registers are fixed for about ID code setting. Note 2: The D9h, DEh and DFh registers are used for NV Memory function controller. (Ex: write, clear, etc.) Ver 1.5.2 108 2007-12 ST7732 Table 10.2.4 Panel Function Command List (4) Instruction Refer D/CX WRXRDX D17-8 D7 D6 D5 D4 D3 D2 D1 D0 0 ↑ 1 - 1 1 1 0 0 0 0 0 1 ↑ 1 - - - - - RFP3 RFP2 RFP1 RFP0 1 ↑ 1 - - - - PKP04 PKP03 PKP02 PKP01 PKP00 1 ↑ 1 - - - - PKP14 PKP13 PKP12 PKP11 PKP10 1 ↑ 1 - - - - PKP24 PKP23 PKP22 PKP21 PKP20 1 ↑ 1 - - - - PKP34 PKP33 PKP32 PKP31 PKP30 1 ↑ 1 - - - - PKP44 PKP43 PKP42 PKP41 PKP40 1 ↑ 1 - - - - - PKP53 PKP52 PKP51 PKP50 1 ↑ 1 - - - - - PKP63 PKP62 PKP61 PKP60 1 ↑ 1 - - - - - PKP73 PKP72 PKP71 PKP70 1 ↑ 1 - - - - - PKP83 PKP82 PKP81 PKP80 1 ↑ 1 - - - - RFP14 RFP13 RFP12 RFP11 RFP10 1 ↑ 1 - - - OSP14 OSP13 OSP12 OSP11 OSP10 1 ↑ 1 - - - - - 0 ↑ 1 - 1 1 1 0 0 0 1 ↑ 1 - - - - - RFN3 RFN2 1 ↑ 1 - - - - PKN04 PKN03 PKN02 PKN01 PKN00 1 ↑ 1 - - - - PKN14 PKN13 PKN12 PKN11 PKN10 1 ↑ 1 - - - - PKN24 PKN23 PKN22 PKN21 PKN20 1 ↑ 1 - - - - PKN34 PKN33 PKN32 PKN31 PKN30 1 ↑ 1 - - - - PKN44 PKN43 PKN42 PKN41 PKN40 1 ↑ 1 - - - - - PKN53 PKN52 PKN51 PKN50 1 ↑ 1 - - - - - PKN63 PKN62 PKN61 PKN60 1 ↑ 1 - - - - - PKN73 PKN72 PKN71 PKN70 1 ↑ 1 - - - - - PKN83 PKN82 PKN81 PKN80 1 ↑ 1 - - - - RFN14 RFN13 RFN12 RFN11 RFN10 1 ↑ 1 - - - - OSN14 OSN13 OSN12 OSN11 OSN10 1 ↑ 1 - - - - - 0 ↑ 1 - 1 1 1 0 0 0 1 1 ↑ 1 - 0 0 0 1 0 0 0 0 ↑ 1 - 1 NVM PROG 1 1 1 1 0 1 ↑ 1 - 0 0 0 0 0 0 ↑ 1 - 1 1 1 1 0 0 OSC SEL2 1 1 OSC SEL1 0 1 ↑ 1 - 0 ↑ 1 - 1 1 1 1 0 1 1 1 ↑ 1 - 0 1 0 0 0 1 0 (Hex) Function (E0h) Set Gamma correction Gamma adjustment (+ polarity) GAMCTRP1 10.2.21 OSP3 OSP2 OSP1 OSP0 0 0 RFN1 RFN0 (E1h) Set Gamma correction Gamma adjustment (- polarity) GAMCTRN1 10.2.22 AUTO CTRL 10.2.23 OSCADJ 10.2.24 DISPCTRL 10.2.25 DEFADJ 10.2.26 OSN3 OSN2 OSN1 OSN0 (F1h) NVM write function ON/OFF 0 (F2h) Oscillator frequency setting OSC SEL0 1 (F5h) Display function control PDM1 PDM0 FLM C8ON EQPW1EQPW0EQVDD ENGS 0 (F6h) Default mode setting TESEL OE “-“: Don’t care Note 1: E0-E1 registers are fixed for about Gamma adjusting. Ver 1.5.2 109 2007-12 ST7732 10.1.1 NOP (00h) 00H Inst / Para NOP Parameter D/CX WRX RDX 0 1 ↑ D17-8 - D7 0 NOP (No Operation) D6 D5 D4 D3 0 0 0 0 No Parameter D7 0 SWRESET (Software Reset) D6 D5 D4 D3 0 0 0 0 No Parameter D2 0 D1 0 D0 0 (Code) (00h) - NOTE: “-“ Don’t care Description -This command is empty command. 10.1.2 SWRESET (01h): Software Reset 01H Inst / Para SWRESET Parameter D/CX WRX RDX 0 1 ↑ D17-8 - D2 0 D1 0 D0 1 (Code) (01h) - NOTE: “-“ Don’t care -If Software Reset is applied during Sleep In mode, it will be necessary to wait 120msec before sending next command. Description -The display module loads all default values to the registers during 120msec. -If Software Reset is applied during Sleep Out or Display On Mode, it will be necessary to wait 120msec before sending next command. 10.1.3 RDDID (04h): Read Display ID RDDID (Read Display ID) 04H Inst / Para RDDID 1st Parameter 2nd Parameter 3rt Parameter 4th Parameter D/CX WRX RDX 0 ↑ 1 1 1 ↑ 1 1 ↑ 1 1 ↑ 1 1 ↑ D17-8 - D7 0 ID17 1 ID37 D6 0 ID16 ID26 ID36 D5 0 ID15 ID25 ID35 D4 0 ID14 ID24 ID34 D3 0 ID13 ID23 ID33 D2 1 ID12 ID22 ID32 D1 0 ID11 ID21 ID31 D0 0 ID10 ID20 ID30 (Code) (04h) - NOTE: “-“ Don’t care -This read byte returns 24-bit display identification information. -The 1st parameter is dummy data -The 2nd parameter (ID17 to ID10): LCD module’s manufacturer ID. Description -The 3rd parameter (ID26 to ID20): LCD module/driver version ID -The 4th parameter (ID37 to UD30): LCD module/driver ID. NOTE: Commands RDID1/2/3(DAh, DBh, DCh) read data correspond to the parameters 2,3,4 of the command 04h, respectively. Default Value Status Default Ver 1.5.2 ID1 ID2 ID3 Power On Sequence - 8xh 00h S/W Reset - 8xh 00h H/W Reset - 8xh 00h 110 2007-12 ST7732 10.1.4 RDDST (09h): Read Display Status 09H Inst / Para RDDST D/CX WRX RDX 0 ↑ 1 1st Parameter 2nd Parameter 3rd Parameter 4th Parameter 5th Parameter 1 1 1 1 1 1 1 1 1 1 ↑ ↑ ↑ ↑ ↑ D17-8 - - D7 0 RDDST (Read Display Status) D6 D5 D4 D3 0 0 0 1 - - - - BSTON ST23 VSSON GCS1 MY IFPF2 ST14 GCS0 MX IFPF1 INVON TELOM MV IFPF0 ST12 HSON D2 0 D1 0 - - - ML RGB IDMON PTLON SLOUT ST11 DISON TEON VSON PCKON DEON D0 1 (Code) (09h) - - ST24 NORON GCS2 ST0 NOTE: “-“ Don’t care This command indicates the current status of the display as described in the table below: Description Bit BSTON Description Booster Voltage Status MY Row Address Order (MY) MX Column Address Order (MX) MV Row/Column Exchange (MV) ML Scan Address Order (ML) RGB RGB/ BGR Order (RGB) ST24 ST23 IFPF2 IFPF1 IFPF0 IDMON PTLON SLPOUT NORON For Future Use For Future Use VSSON ST14 INVON ST12 ST11 DISON TEON GCSEL2 GCSEL1 Interface Color Pixel Format Definition Idle Mode On/Off Partial Mode On/Off Sleep In/Out Display Normal Mode On/Off Vertical Scrolling Status Horizontal Scroll Status Inversion Status All Pixels On (Not Used) All Pixels Off (Not Used) Display On/Off Tearing effect line on/off Gamma Curve Selection GCSEL0 TELOM HSON Value ‘1’ =Booster on, ‘0’ =Booster off ‘1’ =Decrement, (Bottom to Top, when MADCTL (36h) D7=’1’) ‘0’ =Increment, (Top to Bottom, when MADCTL (36h) D7=’0’) ‘1’ =Decrement, (Right to Left, when MADCTL (36h) D6=’1’) ‘0’ =Increment, (Left to Right, when MADCTL (36h) D6=’1’) ‘1’ = Row/column exchange, (when MADCTL (36h) D5=’1’) ‘0’ = Normal, (when MADCTL (36h) D5=’0’) ‘1’ =Decrement, (LCD refresh Top to Bottom, when MADCTL (36h) D4=’1’) ‘0’=Increment, (LCD refresh Bottom to Top, when MADCTL (36h) D4=’0’) ‘1’ =BGR, (When MADCTL (36h) D3=’1’) ‘0’ =RGB, (When MADCTL (36h) D3=’0’) ‘0’ ‘0’ “011” = 12-bit / pixel, “101” = 16-bit / pixel, “110” = 18-bit / pixel, others are no define ‘1’ = On, “0” = Off ‘1’ = On, “0” = Off ‘1’ = Out, “0” = In ‘1’ = Normal Display, ‘0’ = Partial Display ‘1’ = Scroll on,“0” = Scroll off ‘0’ ‘1’ = On, “0” = Off ‘0’ ‘0’ ‘1’ = On, “0” = Off ‘1’ = On, “0” = Off “000” = GC0 “001” = GC1 “010” = GC2 “011” = GC3 ”100” to “111” = Not defined ‘0’ = mode1, ‘1’ = mode2 ‘1’ = On, ‘0’ = Off Tearing effect line mode Horizontal Sync. (HS, RGB I/F) VSON Vertical Sync, (VS, RGB I/F) ‘1’ = On, ‘0’ = Off PCLKON Pixel Clock (PCLK, RGB I/F) ‘1’ = On, ‘0’ = Off DEON Data Enable (DE, RGB I/F) ‘1’ = On, ‘0’ = Off ST0 For Future Use ‘0’ Note: ST0, ST5, ST9, ST11-ST15, ST19, ST23, ST24 are set to ‘0’, when RGB I/F. Status Default Ver 1.5.2 Power On Sequence S/W Reset H/W Reset ST[31-24] 0000-0000 0xxx0xx00 0000-0000 111 Default Value (ST31 to ST0) ST[23-16] ST[15-8] 0110-0001 0000-0000 0xxx-0001 0000-0000 0110-0001 0000-0000 ST[7-0] 0000-0000 0000-0000 0000-0000 2007-12 ST7732 10.1.5 RDDPM (0Ah): Read Display Power Mode 0AH Inst / Para RDDPM D/CX WRX RDX 0 ↑ 1 1st Parameter 2nd Parameter 1 1 1 1 RDDPM (Read Display Power Mode) D7 D6 D5 D4 D3 0 0 0 0 1 D17-8 - ↑ ↑ - - - - D2 0 - D1 1 - BSTON IDMON PTLON SLPOUT NORON DISON D0 0 (Code) (0Ah) - - - D1 D0 NOTE: “-” Don’t care, can be set to VDDI or DGND level This command indicates the current status of the display as described in the table below: Bit Description Description Value BSTON Booster Voltage Status IDMON Idle Mode On/Off PTLON Partial Mode On/Off SLPON Sleep In/Out NORON Display Normal Mode On/Off DISON Display On/Off D1 D0 Not Used Not Used ‘1’ =Booster on, ‘0’ =Booster off ‘1’ = Idle Mode On, ‘0’ = Idle Mode Off ‘1’ = Partial Mode On, ‘0’ = Partial Mode Off ‘1’ = Sleep Out, ‘0’ = Sleep In ‘1’ = Normal Display, ‘0’ = Partial Display ‘1’ = Display On, ‘0’ = Display Off ‘0’ ‘0’ Status Power On Sequence S/W Reset H/W Reset Default Default Value (D7 to D0) 0000_1000(08h) 0000_1000(08h) 0000_1000(08h) 10.1.6 RDDMADCTL (0Bh): Read Display MADCTL 0BH Inst / Para RDDMADCTL D/CX 0 WRX ↑ RDX 1 1st Parameter 2nd Parameter 1 1 1 1 ↑ ↑ RDDMADCTL (Read Display MADCTL) D17-8 D7 D6 D5 D4 D3 0 0 0 0 1 - MY MX MV ML RGB D2 0 D1 1 D0 1 (Code) (0Bh) - D1 D0 - NOTE: “-” Don’t care, can be set to VDDI or DGND level This command indicates the current status of the display as described in the table below: Bit Description MX Row Address Order MY Column Address Order MV Row/Column Order (MV) ML Vertical Refresh Order RGB D1 D0 RGB/BGR Order Not Used Not Used Description Default Ver 1.5.2 Value ‘1’ = Bottom to Top (When MADCTL B7=’1’) ‘0’ = Top to Bottom (When MADCTL B7=’0’) ‘1’ = Right to Left (When MADCTL B6=’1’) ‘0’ = Left to Right (When MADCTL B6=’0’) ‘1’ = Row/column exchange (MV=1) ‘0’ = Normal (MV=0) ‘1’ =LCD Refresh Bottom to Top ‘0’ =LCD Refresh Top to Bottom ‘1’ =BGR, “0”=RGB ‘0’ ‘0’ Status Power On Sequence S/W Reset H/W Reset Default Value (D7 to D0) 0000_0000 (00h) No change 0000_0000 (00h) 112 2007-12 ST7732 10.1.7 RDDCOLMOD (0Ch): Read Display Pixel Format 0CH Inst / Para RDDCOLMOD D/CX 0 WRX 1st Parameter 2nd Parameter 1 1 ↑ RDX 1 D17-8 - 1 1 ↑ ↑ - RDDCOLMOD (Read Display Pixel Format) D7 D6 D5 D4 D3 D2 0 0 0 0 1 1 VIPF3 VIPF2 VIPF1 VIPF0 - IFPF2 D1 0 D0 0 (Code) (0Ch) IFPF1 IFPF0 - NOTE: “-” Don’t care, can be set to VDDI or DGND level This command indicates the current status of the display as described in the table below: IFPF[2:0] 011 101 110 111 MCU Interface Color Format 12-bit/pixel 16-bit/pixel 18-bit/pixel No used 3 5 6 7 Description Others are no define and invalid VIFPF[2:0] 0101 0110 0111 1110 RGB Interface Color Format 16-bit/pixel (1-times data transfer) 18-bit/pixel (1-times data transfer) No used 18-bit/pixel (3-times data transfer) 5 6 7 14 Others are no define and invalid Status Default Default Value IFPF[2:0] 0110 (18 bits/pixel) No Change 0110 (18 bits/pixel) Power On Sequence S/W Reset H/W Reset VIPF[3:0] 0110 (18 bits/pixel) No Change 0110 (18 bits/pixel) 10.1.8 RDDIM (0Dh): Read Display Image Mode 0DH Inst / Para RDDIM D/CX WRX RDX 0 ↑ 1 1st Parameter 2nd Parameter 1 1 1 1 D17-8 - RDDIM (0Dh): Read Display Image Mode D7 D6 D5 D4 D3 D2 0 0 0 0 1 1 - ↑ ↑ D1 0 D0 1 (Code) (0Dh) - - - - - - - - - VSSON D6 INVON D4 D3 GCS2 GCS1 GCS0 NOTE: “-” Don’t care, can be set to VDDI or DGND level This command indicates the current status of the display as described in the table below: Bit VSSON D6 Description Description Value “1” = Vertical scrolling is On, “0” = Vertical scrolling is Off “0” (Not used) “1” = Inversion is On, “0” = Inversion is Off “0” (Not used) “0” (Not used) “000” = GC0, “001” = GC1, “010” = GC2, “011” = GC3, ”100” to “111” = Not defined Vertical Scrolling On/Off Horizontal Scrolling On/Off INVON Inversion On/Off D4 D3 GCS2 GCS1 All Pixels On All Pixels Off Gamma Curve Selection GCS0 Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value(D7 to D0) 0000_0000 (00h) 0000_0000 (00h) 0000_0000 (00h) 113 2007-12 ST7732 10.1.9 RDDSM (0Eh): Read Display Signal Mode 0EH RDDSM (0Eh): Read Display Signal Mode Inst / Para RDDSM D/CX WRX 0 ↑ 1st Parameter nd 2 Parameter RDX 1 D17-8 - D7 0 D6 0 D5 0 D4 0 D3 1 D2 1 D1 1 D0 0 (Code) (0Eh) - 1 1 ↑ - - - - - - - - - 1 1 ↑ - TEON TELOM HSON VSON PCKON DEON D1 D0 NOTE: “-” Don’t care, can be set to VDDI or DGND level This command indicates the current status of the display as described in the table below: Bit TEON Description Description Tearing Effect Line On/Off TELOM Tearing effect line mode HSON Horizontal Sync. (RGB I/F) On/Off VSON Vertical Sync. (RGB I/F) On/Off PCKON DEON Value Pixel Clock (PCLK, RGB I/F) On/Off Data Enable (DE, RGB I/F) On/Off D1 Not Used D0 Not Used “1” = On, “0” = Off “1” = mode1, “0” = mode2 “1” = On, “0” = Off “1” = On, “0” = Off “1” = On, “0” = Off “1” = On, “0” = Off “1” = On, “0” = Off “1” = On, “0” = Off Status Power On Sequence S/W Reset H/W Reset Default Default Value(D7~D0) 0000_0000 (00h) 0000_0000 (00h) 0000_0000 (00h) 10.1.10 RDDSDR (0Fh): Read Display Self-Diagnostic Result 0FH Inst / Para RDDSDR D/CX 0 WRX ↑ RDX 1 1st Parameter 2nd Parameter 1 1 1 1 ↑ ↑ RDDSDR (0Fh): Read Display Self-Diagnostic Result D17-8 D7 D6 D5 D4 D3 D2 0 0 0 0 1 1 - RELD FUND ATTD BRD D3 D2 D1 1 D0 1 (Code) (0Fh) D1 D0 - NOTE: “-” Don’t care, can be set to VDDI or DGND level This command indicates the current status of the display as described in the table below: Description Default Ver 1.5.2 Bit RELD FUND ATTD BRD D3 D2 D1 D0 Description Register Loading Detection Functionality Detection Chip Attachment Detection Display Glass Break Detection Not Used Not Used Not Used Not Used Value See section 9.20 See section 9.20 See section 9.20 See section 9.20 “0” “0” “0” “0” Status Power On Sequence S/W Reset H/W Reset Default Value(D7~D0) 0000_0000 (00h) 0000_0000 (00h) 0000_0000 (00h) 114 2007-12 ST7732 10.1.11 SLPIN (10h): Sleep In 10H Inst / Para SLPIN st 1 Parameter D/CX 0 WRX ↑ RDX 1 SLPIN (Sleep In) D7 D6 D5 D4 0 0 0 1 No parameter D17-8 - D3 0 D2 0 D1 0 D0 0 (Code) (10h) - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command causes the LCD module to enter the minimum power consumption mode. -In this mode the DC/DC converter is stopped, Internal display oscillator is stopped, and panel scanning is stopped. Sleep In 1.6V-3.0V VDDI VDD 2.6V-3.0V Gate Output Description STOP Source Output 0V VCOM Output 0V Blanking display (over 1frame display) * 0V Internal counter STOP Internal Oscillator STOP DC charge in capacitors DISCHARGE 0V or VDD VGH 0V or VDD VGL 0V AVDD 0V or VDD IC Internal reset 0V * Note: complete 1 frame display (ex: continue 2-falling edges of VS) -This command has no effect when module is already in sleep in mode. Sleep In Mode can only be exit by the Sleep Out Command (11h). Restriction -When IC is in Sleep Out or Display On mode, it is necessary to wait 120msec before sending next command because of the stabilization timing for the supply voltages and clock circuits. Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value Sleep in mode Sleep in mode Sleep in mode 115 2007-12 ST7732 10.1.12 SLPOUT (11h): Sleep Out 11H Inst / Para SLPOUT 1st Parameter D/CX 0 WRX ↑ RDX 1 SLPOUT (Sleep Out) D7 D6 D5 D4 0 0 0 1 No Parameter D17-8 - D3 0 D2 0 D1 0 D0 1 (Code) (11h) - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command turns off sleep mode. -In this mode the DC/DC converter is enabled, Internal display oscillator is started, and panel scanning is started. Sleep Out Description VDDI 1.6V-3.0V VDD 2.6V-3.0V Internal Oscillator STOP AVDD 0V or VDD Start VGL 0V VGH 0V or VDD Internal counter STOP IC Internal reset 0V Gate Output STOP Source Output 0V 0V Memory Contents VCOM Output 0V 0V Memory Contents Start STOP Blanking display (over 1fram e display) * If DISPON 29h is set * Note: complete 1 frame display (ex: continue 2-falling edges of VS) -This command has no effect when module is already in sleep out mode. Sleep Out Mode can only be exit by the Sleep In Command (10h). -When IC is in Sleep In mode, it is necessary to wait 120msec before sending next command Restriction because of the stabilization timing for the supply voltages and clock circuits. -When IC is in Sleep Out or Display On mode, it is necessary to wait 120msec before sending next command due to the download of default value of registers and the execution of self-diagnostic function. Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value Sleep in mode Sleep in mode Sleep in mode 116 2007-12 ST7732 10.1.13 PTLON (12h): Partial Display Mode On 12H Inst / Para PTLON st 1 Parameter D/CX 0 WRX ↑ PTLON (12h): Partial Display Mode On D17-8 D7 D6 D5 D4 D3 D2 0 0 0 1 0 0 No Parameter RDX 1 D1 1 D0 0 (Code) (12h) - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command turns on Partial mode. The partial mode window is described by the Partial Area command Description (30h) -To leave Partial mode, the Normal Display Mode On command (13H) should be written. Status Power On Sequence S/W Reset H/W Reset Default Default Value Normal Mode On Normal Mode On Normal Mode On 10.1.14 NORON (13h): Normal Display Mode On 13H Inst / Para NORON st 1 Parameter D/CX 0 WRX ↑ RDX 1 NORON (Normal Display Mode On) D17-8 D7 D6 D5 D4 D3 0 0 0 1 0 No Parameter D2 0 D1 1 D0 1 (Code) (13h) - D1 0 D0 0 (Code) (20h) - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command returns the display to normal mode. Description -Normal display mode on means Partial mode off, Scroll mode Off. -Exit from NORON by the Partial mode On command (12h) Status Power On Sequence S/W Reset H/W Reset Default Default Value Normal Mode On Normal Mode On Normal Mode On 10.1.15 INVOFF (20h): Display Inversion Off 20H Inst / Para INVOFF st 1 Parameter D/CX 0 WRX ↑ IVNOFF (Normal Display Mode Off) D17-8 D7 D6 D5 D4 D3 0 0 1 0 0 No Parameter RDX 1 D2 0 NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command is used to recover from display inversion mode. (Example) Top-Left (0,0) Memory Display Description Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value Display Inversion off Display Inversion off Display Inversion off 117 2007-12 ST7732 10.1.16 INVON (21h): Display Inversion On 21H Inst / Para INVON st 1 Parameter D/CX 0 WRX IVNOFF (Display Inversion On) D17-8 D7 D6 D5 D4 D3 0 0 1 0 0 No Parameter RDX 1 ↑ D2 0 D1 0 D0 1 (Code) (21h) - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command is used to enter into display inversion mode -To exit from Display Inversion On, the Display Inversion Off command (20h) should be written. (Example) Top-Left (0,0) Description Memory Display Status Power On Sequence S/W Reset H/W Reset Default Default Value Display Inversion off Display Inversion off Display Inversion off 10.1.17 GAMSET (26h): Gamma Set 26H Inst / Para GAMSET D/CX 0 1st Parameter 1 WRX ↑ ↑ RDX 1 1 D17-8 - D7 0 - GAMSET (Gamma Set) D6 D5 D4 D3 0 1 0 0 GC3 D2 1 D1 1 D0 0 GC2 GC1 GC0 (Code) (26h) NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command is used to select the desired Gamma curve for the current display. A maximum of 4 curves can be selected. The curves are defined in section 9.17 The curve is selected by setting the appropriate bit in the parameter as described in the Table. Description GC [7:0] Parameter 01h 02h 04h 08h GC0 GC1 GC2 GC3 Curve Selected GS=1 GS=0 Gamma Curve 1 (G2.2) Gamma Curve 1 (G1.0) Gamma Curve 2 (G1.8) Gamma Curve 2 (G2.5) Gamma Curve 3 (G2.5) Gamma Curve 3 (G2.2) Gamma Curve 4 (G1.0) Gamma Curve 4 (G1.8) Note: All other values are undefined. Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value 01h 01h 01h 118 2007-12 ST7732 10.1.18 DISPOFF (28h): Display Off 28H Inst / Para DISPOFF st 1 Parameter D/CX 0 WRX ↑ RDX 1 D17-8 - DISPOFF (Display Off) D7 D6 D5 D4 0 0 1 0 No Parameter D3 1 D2 0 D1 0 D0 0 (Code) (28h) - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command is used to enter into DISPLAY OFF mode. In this mode, the output from Frame Memory is disables and blank page inserted. -Exit from this command by Display On (29h) -When IC is in Display On mode, it is necessary to wait 50msec before sending next command. (Example) Top-Left (0,0) Memory Display Display OFF Description VDDI 1.6V-3.0V VDD 2.6V-3.0V Gate Output VGH Source Output 0V VCOM Output 0V Blanking display (over 1 frame display) * Internal counter STOP Internal Oscillator VGH VGL AVDD IC Internal reset Note1: Complete 1 frame display (ex: continue 2-falling edges of VS) Note2: Please use command 28h (display off) combined with command 10h (sleep in) to make module into display off status. Please check the application note of ST7732 when using display off function. Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value Display off Display off Display off 119 2007-12 ST7732 10.1.19 DISPON (29h): Display On 29H Inst / Para DISPON st 1 Parameter D/CX 0 WRX ↑ RDX 1 D17-8 - DISPON (Display On) D7 D6 D5 D4 0 0 1 0 No Parameter D3 1 D2 0 D1 0 D0 1 (Code) (29h) - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command is used to recover from DISPLAY OFF mode. Output from the Frame Memory is enabled. (Example) Top-Left (0,0) Memory Display Display ON 1.6V-3.0V VDDI Description VDD 2.6V-3.0V Blanking display (over 1 frame display) * Gate Output STOP Source Output 0V Memory Contents VCOM Output 0V Memory Contents Internal counter STOP Start Internal Oscillator VGH VGL AVDD IC Internal reset * Note: complete 1 frame display (ex: continue 2-falling edges of VS) Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value Display off Display off Display off 120 2007-12 ST7732 10.1.20 CASET (2Ah): Column Address Set 2AH Inst / Para GAMSET D/CX 0 1st Parameter 2nd Parameter 3rd Parameter 4th Parameter 1 1 1 1 WRX ↑ ↑ ↑ ↑ ↑ RDX 1 D17-8 - 1 1 1 1 - CASET(Colume Address Set)_ D7 D6 D5 D4 D3 0 0 1 0 0 D2 1 D1 1 D0 0 - - - - - - - - XS7 XS6 XS5 XS4 XS3 XS2 XS1 XS0 - - - - - - - - XE7 XE6 XE5 XE4 XE3 XE2 XE1 XE0 (Code) (2Ah) NOTE: “-” Don’t care, can be set to VDDI or DGND level -The value of XS [7:0] and XE [7:0] are referred when RAMWR command comes. -Each value represents one column line in the Frame Memory. (Example) XS[7:0] XE[7:0] Description XS [7:0] always must be equal to or less than XE [7:0] When XS [7:0] or XE [7:0] is greater than maximum address like below, data of out of range will be ignored. 1. 128X160 memory base (GM = ’00’) (Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦127 (007Fh)): MV=”0” (Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦159 (009Fh)): MV=”1” Restriction 2. 120x160 memory base (GM = ‘01’) (Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦119 (0077h)): MV=”0” (Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦159 (009Fh)): MV=”1” 3. 132x162 memory base (GM = ‘11’) (Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦131 (0083h)): MV=”0” (Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦161 (00A1h)): MV=”1” GM Status Status GM=’00’ (128x160 memory base) Power On Sequence S/W Reset H/W Reset Power On Sequence S/W Reset H/W Reset Power On Sequence S/W Reset H/W Reset GM=’01’ (120x160 memory base) Default Ver 1.5.2 GM=’11’ (132x162 memory base) Default Value XS [7:0] 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 121 XE [7:0] (MV=’0 ’) XE [7:0] (MV=’1’) 007Fh (127) 007Fh (127) 009Fh (159) 007Fh (127) 0077h (119) 0077h (119) 009Fh (159) 0077h (119) 0083h (131) 0083h (131) 00A1h (161) 0083h (131) 2007-12 ST7732 10.1.21 RASET (2Bh): Row Address Set 2BH Inst / Para RASET (2Bh) D/CX 0 1st Parameter 2nd Parameter 3rd Parameter 4th Parameter 1 1 1 1 WRX ↑ ↑ ↑ ↑ ↑ RDX 1 D17-8 - 1 1 1 1 - D7 0 RASET (Row Address Set) D6 D5 D4 D3 0 1 0 1 D2 0 D1 1 D0 1 - - - - - - - - YS7 YS6 YS5 YS4 YS3 YS2 YS1 YS0 - - - - - - - - YE7 YE6 YE5 YE4 YE3 YE2 YE1 YE0 (Code) (2Bh) NOTE: “-” Don’t care, can be set to VDDI or DGND level The value of YS [7:0] and YE [7:0] are referred when RAMWR command comes. Each value represents one column line in the Frame Memory. Example YS[7:0] Description YE[7:0] YS [7:0] always must be equal to or less than YE [7:0] When YS [7:0] or YE [7:0] are greater than maximum row address like below, data of out of range will be ignored. 1. 128X160 memory base (GM = ’00’) (Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦159 (009Fh)): MV=”0” (Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦127 (007Fh)): MV=”1” Restriction 2. 120x160 memory base (GM = ‘01’) (Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦159 (009Fh)): MV=”0” (Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦119 (0077h)): MV=”1” 3. 132X162 memory base (GM = ’11’) (Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦161 (00A1h)): MV=”0” (Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦131 (0083h)): MV=”1” Default GM status Status GM=’00’ (128x160 memory base) Power On Sequence S/W Reset H/W Reset Power On Sequence S/W Reset H/W Reset Power On Sequence S/W Reset H/W Reset GM=’01’ (120x160 memory base) GM=’11’ (132x162 memory base) Ver 1.5.2 Default Value YS [7:0] 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 122 YE [7:0] (MV=’0 ’) YE [7:0] (MV=’1’) 009Fh (159) 009Fh (159) 007Fh (127) 009Fh (159) 009Fh (159) 009Fh (159) 0077h (119) 009Fh (159) 00A1h (161) 00A1h (161) 0083h (131) 00A1h (161) 2007-12 ST7732 10.1.22 RAMWR (2Ch): Memory Write 2CH Inst / Para RAMWR 1st Parameter ∣ Nth Parameter D/CX 0 1 1 1 WRX ↑ ↑ ↑ ↑ RDX 1 1 1 1 D17-8 D17-8 RAMWR (Memory Write) D7 D6 D5 D4 0 0 1 0 D7 D6 D5 D4 D3 1 D3 D2 1 D2 D1 0 D1 D0 0 D0 (Code) (2Ch) - ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ D17-8 D7 D6 D5 D4 D3 D2 D1 D0 - NOTE: “-” Don’t care, can be set to VDDI or DGND level -When this command is accepted, the column register and the row register are reset to the Start Column/Start Row positions. -The Start Column/Start Row positions are different in accordance with MADCTL setting. (See section 9.12) -Sending any other command can stop Frame Write. In all color modes, there is no restriction on length of parameters. -1. 128X160 memory base (GM = ‘00’) Description 128x160x18-bit memory can be written by this command Memory range: (0000h,0000h) -> (007Fh, 09Fh) -2. 120x160 memory base (GM = ‘01’) 120x160x18-bit memory can be written on this command. Memory range: (0000h,0000h) -> (0077h,09Fh) -3. 132x162 memory base (GM = ‘11’) 132x162x18-bit memory can be written on this command. Memory range: (0000h,0000h) -> (0083h,00A1h) Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value Contents of memory is set randomly Contents of memory is not cleared Contents of memory is not cleared 123 2007-12 ST7732 10.1.23 RAMHD (2Eh): Memory Read 2EH Inst / Para RAMHD 1st Parameter 2nd Parameter ∣ (N+1)th Parameter D/CX 0 WRX ↑ RDX 1 D17-8 - 1 1 1 1 1 1 1 1 ↑ ↑ ↑ ↑ D17-8 RAMHD (Memory Read) D7 D6 D5 D4 D3 0 0 1 0 1 D7 D6 D5 D4 D3 D2 1 D1 1 D0 0 (Code) (2Eh) D2 D1 D0 - ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ D17-8 D7 D6 D5 D4 D3 D2 D1 D0 - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command is used to transfer data from frame memory to MCU. -When this command is accepted, the column register and the row register are reset to the Start Column/Start Row positions. -The Start Column/Start Row positions are different in accordance with MADCTL setting. (See section 9.12) -Then D[17:0] is read back from the frame memory and the column register and the row register incremented as section 9.10.2. Description -Frame Read can be cancelled by sending any other command. -The data color coding is fixed to 18-bit in reading function. Please see section 9.8 “Data color coding” for color coding (18-bit cases), when there is used 8, 9, 16 and 18-bit data lines for image data. Note1: The Command 3Ah should be set to 66h when reading pixel data from frame memory.Please check the LUT in chapter 9.19 when using memory read function. Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value Contents of memory is set randomly Contents of memory is not cleared Contents of memory is not cleared 124 2007-12 ST7732 10.1.25 PTLAR (30h): Partial Area 30H Inst / Para PTLAR D/CX WRX 0 ↑ 1st Parameter 2nd Parameter 3rd Parameter 4th Parameter 1 1 1 1 RDX D17-8 1 1 1 1 1 ↑ ↑ ↑ ↑ - D7 0 PSL7 PEL7 PTLAR (Partial Area) D6 D5 D4 D3 0 1 1 0 PSL6 PEL6 PSL5 PEL5 PSL4 PEL4 PSL3 PEL3 D2 0 D1 0 D0 0 PSL2 PEL2 PSL1 PEL1 PSL0 PEL0 (Code) (30h) NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command defines the partial mode’s display area. -There are 4 parameters associated with this command, the first defines the Start Row (PSL) and the second the End Row (PEL), as illustrated in the figures below. PSL and PEL refer to the Frame Memory row address counter. -If End Row > Start Row, when MADCTL ML=’0’ Start Row Non-displaying Area PSL [7:0] Partial Display Area PEL [7:0] Non-displaying Area End Row -If End Row > Start Row, when MADCTL ML=’1’ End Row Description Non-displaying Area PEL [7:0] Partial Display Area PSL [7:0] Start Row Non-displaying Area -If End Row < Start Row, when MADCTL ML=’0’ End Row PEL [7:0] Partial Display Area Non-displaying Area PSL [7:0] Partial Display Area Start Row -If End Row = Start Row then the Partial Area will be one row deep. Status Default Ver 1.5.2 Power On Sequence S/W Reset H/W Reset Default Value PEL [7:0] GM=”00”,”01” 009Fh 009Fh 009Fh PSL [7:0] 0000h 0000h 0000h 125 GM=”11” 00A1h 00A1h 00A1h 2007-12 ST7732 10.1.26 SCRLAR (33h): Scroll Area 33H Inst / Para PTLAR 1st Parameter 2nd Parameter 3rd Parameter 4th Parameter 5th Parameter 6th Parameter D/CX WRX RDX D17-8 0 ↑ 1 1 1 1 1 1 1 ↑ ↑ ↑ ↑ ↑ ↑ 1 1 1 1 1 1 - SCRLAR (Scrolll Area) D6 D5 D4 D3 0 1 1 0 D7 0 TFA 7 VSA 7 BFA 7 TFA 6 VSA 6 BFA 6 TFA 5 VSA 5 BFA 5 TFA 4 VSA 4 BFA 4 TFA 3 VSA 3 BFA 3 D2 0 TFA 2 VSA 2 BFA 2 D1 1 D0 1 (Code) (33h) TFA 1 TFA 0 VSA 1 VSA 0 BFA 1 BFA 0 NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command defines the Vertical Scrolling Area of the display. When MADCTL ML=0 st nd -The 1 & 2 parameter TFA [7:0] describes the Top Fixed Area (in No. of lines from Top of the Frame Memory and Display). rd th -The 3 & 4 parameter VSA [7:0] describes the height of the Vertical Scrolling Area (in No. of lines of the Frame Memory [not the display] from the Vertical Scrolling Start Address) -The first line appears immediately after the bottom most line of the Top Fixed Area. th th -The 5 & 6 parameter BFA [7:0] describes the Bottom Fixed Area (in No. of lines from Bottom of the Frame Memory and Display). -TFA, VSA and BFA refer to the Frame Memory row address. Top-Left (0,0) Top Fixed Area TFA [7:0] First line read from Scroll Fixed Area VSFA [7:0] Bottom Fixed Area BFA [7:0] When MADCTL ML=1 st nd -The 1 & 2 parameter TFA [7:0] describes the Top Fixed Area (in No. of lines from Bottom Description of the Frame Memory and Display). rd th -The 3 & 4 parameter VSA [7:0] describes the height of the Vertical Scrolling Area (in No. of lines of the Frame Memory [not the display] from the Vertical Scrolling Start Address) -The first line appears immediately after the top most line of the Top Fixed Area. th th -The 5 & 6 parameter BFA [7:0] describes the Bottom Fixed Area (in No. of lines from Top of the Frame Memory and Display). Top-Left (0,0) Bottom Fixed Area BFA [7:0] Scroll Fixed Area VSFA [7:0] First line read from Top Fixed Area frame memory TFA [7:0] See Section 9.10.4 for details of the Memory to Display Mapping. -The condition is 0≦(TFA+VSA+BFA) ≦162, otherwise Scrolling mode is undefined. -In Vertical Scroll Mode, MADCTL parameter MV should be set to ‘0’-this only affects the Frame Memory Write. Status Default Ver 1.5.2 Power On Sequence S/W Reset H/W Reset Default Value VSA [7:0] GM=”00”,”01” GM=”11” 00A0h 00A2h 00A0h 00A2h 00A0h 00A2h TFA [7:0] 0000h 0000h 0000h 126 BFA [7:0] 0000h 0000h 0000h 2007-12 ST7732 1. To Enter Vertical Scroll Mode Normal Mode Legend Command Parameter SCRLAR (33h) Display 1st & 2nd Parameter: TFA[7:0] Action 3rd & 4th Parameter VSA[7:0] Mode 5th & 6th Parameter BFA[7:0] Sequential transfer CASET (2Ah) 1st & 2nd Parameter XS[7:0] 3rd & 4th Parameter XE[7:0] RASET (2 Redefines the Frame memory Window that the scroll data will be define 1st & 2nd Parameter YS[7:0] Flow Chart Only required for non-rolling scrolling 3rd & 4th Parameter YE[7:0] MADCTL (36h) Parameter: MY,MX,MV,ML,RGB Optional – It may be necessary to redefine the Frame Memory Write Direction. RAMRW (2Ch) Scroll Image Data VSCSAD (37h) 1st & 2nd Parameter SS A[7:0]1 Scroll Mode NOTE: The Frame Memory Window size must be defined correctly otherwise undesirable image will be displayed. Ver 1.5.2 127 2007-12 ST7732 Legend 2. Continuous Scroll Command 1st Normal Mode Parameter CASET (2Ah) Display Action &2nd Parameter XS[7:0] Mode rd 3 th & 4 Parameter XE[7:0] Sequential transfer RASET (2Bh) 1st & 2nd Parameter YS[7:0] 3rd & 4th Parameter YE[7:0] RAMRW (2Ch) Only required for non-rolling scrolling Scroll Image Data VSCSAD (37h) 1st & 2nd Parameter SSA[7:0]1 3. To Exit Vertical Scroll Mode Scroll Mode DISOFF (28h) OptionTo prevent Tearing Effect Image Display NORON (13h) / PTLON (12h) Scroll Mode OFF RAMRW (2Ch) Image Data D1[17:0],D2[17:0]… Dn[17:0] DISON (29h) NOTE: Scroll Mode can be exit by both the Normal Display Mode On (13h) and Partial Mode On (12h) commands. Ver 1.5.2 128 2007-12 ST7732 10.1.27 TEOFF (34h): Tearing Effect Line OFF 34H Inst / Para TEOFF 1st Parameter D/CX 0 WRX ↑ TEOFF (Tearing Effect Line OFF) D17-8 D7 D6 D5 D4 D3 0 0 1 1 0 No Parameter RDX 1 D2 1 D1 0 D0 0 (Code) (34h) - NOTE: “-” Don’t care, can be set to VDDI or DGND level Description -This command is used to turn OFF (Active Low) the Tearing Effect output signal from the TE signal line. Status Power On Sequence S/W Reset H/W Reset Default Default Value OFF OFF OFF 10.1.28 TEON (35h): Tearing Effect Line ON 35H Inst / Para TEON 1st Parameter D/CX 0 1 WRX ↑ ↑ RDX 1 1 D17-8 - TEON (Tearing Effect Line ON) D7 D6 D5 D4 D3 0 0 1 1 0 0 0 0 0 0 D2 1 D1 0 D0 1 (Code) (35h) 0 0 TELOM NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command is used to turn ON the Tearing Effect output signal from the TE signal line. -This output is not affected by changing MADCTL bit ML. -The Tearing Effect Line On has one parameter, which describes the mode of the Tearing Effect Output Line. (“-“=Don’t Care). -When TELOM=’0’: The Tearing Effect Output line consists of V-Blanking information only. tvdl Description tvdh Vertical time scale -When TELOM=’1’: The Tearing Effect Output line consists of both V-Blanking and H-Blinking information. tvdl tvdh Vertical time scale Note: During Sleep In Mode with Tearing Effect Line On, Tearing Effect Output pin will be active Low. Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value Tearing effect off & TELOM=0 Tearing effect off & TELOM=0 Tearing effect off & TELOM=0 129 2007-12 ST7732 10.1.29 MADCTL (36h): Memory Data Access Control MADCTL (Memory Data Access Control) 36H Inst / Para MADCTL 1st Parameter D/CX 0 1 WRX RDX 1 1 ↑ ↑ D17-8 - D7 0 D6 0 D5 1 D4 1 D3 0 D2 1 D1 1 D0 0 MY MX MV ML RGB - - - (Code) (36h) NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command defines read/ write scanning direction of frame memory. -Bit Assignment Bit MY MX MV NAME Row Address Order Column Address Order Row/Column Exchange ML Vertical Refresh Order RGB DESCRIPTION These 3bits controls MCU to memory write/read direction. (See Section 9.12) LCD vertical refresh direction control ‘0’ = LCD vertical refresh Top to Bottom ‘1’ = LCD vertical refresh Bottom to Top Color selector switch control ‘0’ =RGB color filter panel, ‘1’ =BGR color filter panel) RGB-BGR ORDER ML: Vertical Refresh Order Top-Left (0,0) Memory Display Sent First Sent 2nd Sent 3rd ML=’0’ Sent Last Description Top-Left (0,0) Memory Display Sent Last ML=’1’ Sent 3rd Sent 2nd Sent First RGB: RGB-BGR Order RGB=”0” Driver IC RG R GB B SIG1 RG GB R B SIG2 RG R GB B SIG132 SIG1 SIG2 SIG132 RGB B RGB RGB B RGB B RGB B RGB B RG Ver 1.5.2 RGB=”1” Driver IC LCD Panel R RG GBB RG R GB B SIG2 RG R G BB SIG132 SIG1 SIG2 SIG132 B GR BG B RGR BGR B GR B G RR B BG GR SIG1 B G RR LCD Panel 130 2007-12 ST7732 MH: Horizontal refresh Order Top-Left (0,0) Top-Left (0,0) Memory ML=’0’ Sent First Sent 2nd Status Power On Sequence S/W Reset H/W Reset Top-Left (0,0) Sent 3rd Display Sent Last Ver 1.5.2 Sent Last Top-Left (0,0) Default ML=’1’ Sent 3rd Sent 2nd Sent First Description Memory Display Default Value MY=0,MX=0,MV=0,ML=0,RGB=0 No Change MY=0,MX=0,MV=0,ML=0,RGB=0 131 2007-12 ST7732 10.1.30 VSCSAD (37h): Vertical Scroll Start Address of RAM 37H Inst / Para VSCSAD 1st Parameter 2nd Parameter VSCSAD (Vertical Scroll Start Address of RAM) D/CX 0 1 1 WRX ↑ ↑ ↑ RDX 1 1 1 D17-8 - D7 0 D6 0 D5 1 D4 1 D3 0 D2 1 D1 1 D0 1 - - - - - - - - SSA7 SSA6 SSA5 SSA4 SSA3 SSA2 SSA1 SSA0 (Code) (37h) Note: “-” Don’t care, can be set to VDDI or DGND level -This command is used together with Vertical Scrolling Definition (33h). These two commands describe the scrolling area and the scrolling mode. -The Vertical Scrolling Start Address command has one parameter which describes which line in the Frame Memory will be written as the first line after the last line of the Top Fixed Area on the display as illustrated below: -This command Start the scrolling. -Exit from V-scrolling mode by commands Partial mode On (12h) or Normal mode On (13h). When MADCTL ML= ‘0’ Example: -When Top Fixed Area=Bottom Fixed Area=00, Vertical Scrolling Area=160 and Vertical Scrolling Pointer SSA= ’3’. (Example) Top-Left (0,0) Description Scan address Memory Display 0 1 2 3 ∣ ∣ 158 159 SSA[7:0] Scroll start address G1 G2 G3 G4 | | G159 G160 When MADCTL ML = ‘1’ Example: -When Top Fixed Area= Bottom Fixed Area=00, Vertical Scrolling Area=160 and SSA= ’3’ (Example) Top-Left (0,0) Scan address Memory Display 159 158 ∣ ∣ 3 2 1 0 SSA[7:0] Scroll start address G1 G2 G3 G4 | | G159 G160 NOTE: -When new Pointer position and Picture Data are sent, the result on the display will happen at the next Panel Scan to avoid tearing effect. -SSA refers to the Frame Memory scan address. Register Availability Default Ver 1.5.2 Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out No Partial Mode On, Idle Mode On, Sleep Out No Sleep In Yes Status Power On Sequence S/W Reset H/W Reset Default Value 0000h 0000h 0000h 132 2007-12 ST7732 10.1.31 IDMOFF (38h): Idle Mode Off 38H IDMOFF (Idle Mode Off) Inst / Para IDMOFF 1st Parameter D/CX 0 WRX ↑ RDX 1 D17-8 - D7 D6 D5 0 0 1 No Parameter D4 1 D3 1 D2 0 D1 0 D0 0 (Code) (38h) - D1 0 D0 1 (Code) (39h) - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This command is used to recover from Idle mode on. -In the idle off mode, Description 1. LCD can display 4096, 65k or 262k colors. 2. Normal frame frequency is applied. Status Power On Sequence S/W Reset H/W Reset Default Default Value Idle Mode Off Idle Mode Off Idle Mode Off 10.1.32 IDMON (39h): Idle Mode On 39H Inst / Para IDMOFF 1st Parameter D/CX 0 WRX ↑ RDX 1 D17-8 - IDMON (Idle Mode On) D7 D6 D5 D4 0 0 1 1 No Parameter D3 1 D2 0 NOTE: “-” Don’t care, can be set to VDDI or DGND level Description -This command is used to enter into Idle mode on. -There will be no abnormal visible effect on the display mode change transition. -In the idle on mode, 1. Color expression is (Example) Top-Left (0,0) reduced. The primary and Mem ory the secondary colors using MSB of each R,G and B in the Frame Memory, 8 color depth data is displayed. 2. 8-Color mode frame frequency is applied. 3. Exit from IDMON by Idle Mode Off (38h) command Color Black Blue Red Magenta Green Cyan Yellow White Register Availability Default Ver 1.5.2 R5 R4 R3 R2 R1 R0 0xxxxx 0xxxxx 1xxxxx 1xxxxx 0xxxxx 0xxxxx 1xxxxx 1xxxxx G5 G4 G3 G2 G1 G0 0xxxxx 0xxxxx 0xxxxx 0xxxxx 1xxxxx 1xxxxx 1xxxxx 1xxxxx Display B5 B4 B3 B4 B1 B0 0xxxxx 1xxxxx 0xxxxx 1xxxxx 0xxxxx 1xxxxx 0xxxxx 1xxxxx Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out No Partial Mode On, Idle Mode On, Sleep Out No Sleep In Yes Status Power On Sequence S/W Reset H/W Reset Default Value Idle Mode Off Idle Mode Off Idle Mode Off 133 2007-12 ST7732 10.1.33 COLMOD (3Ah): Interface Pixel Format 3AH COLMOD (3Ah): Interface Pixel Format Inst / Para D/CX WRX ↑ COLMOD 0 ↑ 1st Parameter 1 RDX 1 1 D17-8 - D7 0 D6 0 D5 1 D4 1 D3 1 D2 0 D1 1 D0 0 VIPF3 VIPF2 VIPF1 VIPF0 - IFPF2 IFPF1 IFPF0 (Code) (3Ah) NOTE: “-” Don’t care, can be set to VDDI or DGND level This command is used to define the format of RGB picture data, which is to be transferred via the MCU interface and RGB interface. The formats are shown in the table: IFPF[2:0] 011 101 110 111 MCU Interface Color Format 12-bit/pixel 16-bit/pixel 18-bit/pixel No used 3 5 6 7 Others are no define and invalid Description VIFPF[2:0] 0101 0110 0111 1110 RGB Interface Color Format 16-bit/pixel (1-times data transfer) 18-bit/pixel (1-times data transfer) No used 18-bit/pixel (3-times data transfer) 5 6 7 14 Others are no define and invalid Note1: In 12-bit/Pixel, 16-bit/Pixel or 18-bit/Pixel mode, the LUT is applied to transfer data into the Frame Memory. Note2: When RGB I/F the 12-bit/pixel don’t care Note3: When VIPF[3:0]=”1110”,6-bit data width of 3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information. Note4: The Command 3Ah should be set at 55h when writing 16-bit/pixel data into frame memory, but 3Ah should be re-set to 66h when reading pixel data from frame memory. Please check the LUT in chapter 9.19 when using memory read function. Register Availability Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out No Partial Mode On, Idle Mode On, Sleep Out No Sleep In Yes Status Default Ver 1.5.2 Power On Sequence Default Value IFPF[2:0] VIPF[3:0] 0110(18-bit/Pixel) 0110(18-bit/Pixel) S/W Reset No Change No Change H/W Reset 0110(18-bit/Pixel) 0110(18-bit/Pixel) 134 2007-12 ST7732 10.1.34 RDID1 (DAh): Read ID1 Value DAH RDID1 (Read ID1 Value) Inst / Para RDID1 D/CX 0 WRX ↑ RDX 1 D17-8 - D7 1 D6 1 D5 0 D4 1 D3 1 D2 0 D1 1 D0 0 (Code) (DAh) 1st Parameter 1 1 ↑ - - - - - - - - - - 1 1 ↑ 2nd Parameter - ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 NOTE: “-” Don’t care, can be set to VDDI or DGND level -This read byte returns 8-bit LCD module’s manufacturer ID st -The 1 parameter is dummy data Description nd -The 2 parameter (ID17 to ID10): LCD module’s manufacturer ID. nd NOTE: See command RDDID (04h), 2 parameter. Register Availability Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out No Partial Mode On, Idle Mode On, Sleep Out No Sleep In Yes Status Power On Sequence Default Default Value - S/W Reset - H/W Reset - 10.1.35 RDID2 (DBh): Read ID2 Value DBH Inst / Para RDID2 D/CX 0 WRX 1st Parameter 2nd Parameter 1 1 1 1 ↑ RDX 1 D17-8 - ↑ - ↑ RDID2 (Read ID2 Value) D7 D6 D5 D4 D3 1 1 0 1 1 1 ID26 ID25 ID24 ID23 D2 0 D1 1 D0 1 (Code) (DBh) ID22 ID21 ID20 - NOTE: “-” Don’t care, can be set to VDDI or DGND level -This read byte returns 8-bit LCD module/driver version ID st -The 1 parameter is dummy data nd -The 2 parameter (ID26 to ID20): LCD module/driver version ID -Parameter Range: ID=80h to FFh Description ID26 to ID20 80h 81h 82h 83h Version Changes rd NOTE: See command RDDID (04h), 3 parameter. Register Availability Default Ver 1.5.2 Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out No Partial Mode On, Idle Mode On, Sleep Out No Sleep In Yes Status Power On Sequence Default Value 80h S/W Reset 80h H/W Reset 80h 135 2007-12 ST7732 10.1.36 RDID3 (DCh): Read ID3 Value DCH RDID3 (Read ID2 Value) Inst / Para RDID3 D/CX 0 WRX ↑ RDX 1 D17-8 - D7 1 D6 1 D5 0 D4 1 D3 1 D2 1 D1 0 D0 0 (Code) (DCh) 1st Parameter 1 1 ↑ - - - - - - - - - - 1 1 ↑ 2nd Parameter - ID37 ID36 ID35 ID34 ID33 ID32 ID31 ID30 NOTE: “-” Don’t care, can be set to VDDI or DGND level -This read byte returns 8-bit LCD module/driver ID. st -The 1 parameter is dummy data Description -The 2nd parameter (ID37 to ID30): LCD module/driver ID. NOTE: See command RDDID (04h), 4th parameter. Register Availability Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out No Partial Mode On, Idle Mode On, Sleep Out No Sleep In Yes Status Power On Sequence Default Default Value 00h S/W Reset 00h H/W Reset 00h 10.2.1 RGBCTR (B0h): RGB signal control RGBCTR (RGB signal control) B0H Inst / Para RGBCTR 1st Parameter D/CX 0 1 WRX ↑ ↑ RDX 1 1 D17-8 - D7 1 D6 0 D5 1 D4 1 D3 0 D2 0 D1 0 D0 0 - 0 0 DISSW ICM DP EP HSP VSP (Code) (B0h) NOTE: “-“ Don’t care -Set the operation status on the RGB interface. The setting becomes effective as soon as the command is received. -ICM: GRAM Write/Read frequency and data input select on the RGB interface ICM Description Write/ Read frequency and input data select Read cycle PCLK Internal oscillator 0 1 Write cycle PCLK SCL Symbol Name DP PCLK polarity set EP Enable polarity set HSP Hsync polarity set VSP Vsync polarity set DISSW Disable S/W Status Default Ver 1.5.2 Power On Sequence S/W Reset H/W Reset ICM 0d 0d 0d 136 Data input D[17:0] SDA Clock polarity set for RGB Interface ‘1’ = data fetched at the falling edge ‘0’ = data fetched at the rising edge ‘1’ = Low enable for RGB interface ‘0’ = High enable for RGB interface ‘1’ = High level sync clock ‘0’ = Low level sync clock ‘1’ = High level sync clock ‘0’ = Low level sync clock ‘1’ = Disable S/W control ‘0’ = Enable S/W control Default Value DP/EP/HSP/VSP 0d/0d/0d/0d 0d/0d/0d/0d 0d/0d/0d/0d 2007-12 ST7732 10.2.2 FRMCTR1 (B1h): Frame Rate Control (In normal mode/ Full colors) B1H Inst / Para FRMCTR1 D/CX 0 1st Parameter 2nd Parameter 3rd Parameter 1 1 1 WRX ↑ ↑ ↑ ↑ RDX 1 1 1 1 D17-8 - FRMCTR1 (Frame Rate Control) D7 D6 D5 D4 D3 D2 1 0 1 1 0 0 RTNA3 FPA3 BPA3 - RTNA2 FPA2 BPA2 D1 0 D0 1 (Code) (B1h) RTNA1 FPA1 BPA1 RTNA0 FPA0 BPA0 - D1 1 D0 0 (Code) (B2h) RTNB1 FPB1 BPB1 RTNB0 FPB0 BPB0 - D1 1 D0 1 (Code) (B3h) RTNC1 FPC1 BPC1 RTND1 FPD1 BPD1 RTNC0 FPC0 BPC0 RTND0 FPD0 BPD0 - NOTE: “-“ Don’t care Description -Set the frame frequency of the full colors normal mode. - Frame rate=fosc/((RTNA + 18) x (LINE + FPA + BPA)) - 1 < FPA(front porch) + BPA(back porch)<=22 Status Power On Sequence S/W Reset H/W Reset Default Default Value 06h/03h/02h 06h/03h/02h 06h/03h/02h 10.2.3 FRMCTR2 (B2h): Frame Rate Control (In Idle mode/ 8-colors) B2H Inst / Para FRMCTR2 D/CX 0 1st Parameter 2nd Parameter 3rd Parameter 1 1 1 WRX ↑ ↑ ↑ ↑ RDX 1 1 1 1 D17-8 - FRMCTR2 (Frame Rate Control) D7 D6 D5 D4 D3 D2 1 0 1 1 0 0 RTNB3 FPB3 BPB3 - RTNB2 FPB2 BPB2 NOTE: “-“ Don’t care -Set the frame frequency of the Idle mode. - Frame rate=fosc/((RTNB + 18) x (LINE + FPB + BPB)) Description - 1 < FPB(front porch) + BPB(back porch)<=22 Status Power On Sequence S/W Reset H/W Reset Default Default Value 06h/03h/02h 06h/03h/02h 06h/03h/02h 10.2.4 FRMCTR3 (B3h): Frame Rate Control (In Partial mode/ full colors) B3H Inst / Para FRMCTR3 D/CX 0 1st Parameter 2nd Parameter 3rd Parameter 4th Parameter 5th Parameter 6th Parameter 1 1 1 1 1 1 WRX ↑ ↑ ↑ ↑ ↑ ↑ ↑ RDX 1 1 1 1 1 1 1 D17-8 - FRMCTR3 (Frame Rate Control) D7 D6 D5 D4 D3 D2 1 0 1 1 0 0 RTNC3 FPC3 BPC3 RTND3 FPD3 BPD3 - - RTNC2 FPC2 BPC2 RTND2 FPD2 BPD2 - NOTE: “-“ Don’t care -Set the frame frequency of the Partial mode/ full colors. - 1st parameter to 3rd parameter are used in line inversion mode. Description - 4th parameter to 6th parameter are used in frame inversion mode. - Frame rate=fosc/((RTNC + 18) x (LINE + FPC + BPC)) - 1 < FPC(front porch) + BPC(back porch)<=22 Default Ver 1.5.2 Status Power On Sequence S/W Reset H/W Reset Default Value 06h/03h/02h 06h/03h/02h 06h/03h/02h 137 2007-12 ST7732 10.2.5 INVCTR (B4h): Display Inversion Control B4H Inst / Para INVCTR D/CX 0 1st Parameter 1 WRX INVCTR (Display Inversion Control) D17-8 D7 D6 D5 D4 D3 D2 1 0 1 1 0 1 - RDX 1 ↑ ↑ 1 - 0 0 0 0 0 NLA D1 0 D0 0 (Code) (B4h) NLB NLC 02h NOTE: “-“ Don’t care -Display Inversion mode control -NLA: Inversion setting in full colors normal mode (Normal mode on) NLA 0 1 Inversion setting in full Colors normal mode Line Inversion Frame Inversion -NLB: Inversion setting in Idle mode (Idle mode on) Description NLB 0 1 Inversion setting in Idle mode Line Inversion Frame Inversion -NLC: Inversion setting in full colors partial mode (Partial mode on / Idle mode off) NLC 0 1 Inversion setting in full Colors partial mode Line Inversion Frame Inversion Status NLA 0d 0d 0d Power On Sequence S/W Reset H/W Reset Default Default Value NLC 0d 0d 0d NLB 1d 1d 1d B4h 02h 02h 02h 10.2.6 RGBBPCTR (B5h): RGB Interface Blanking Porch setting B5H Inst / Para D/CX WRX RDX RGBPSET (RGB Interface Blanking Porch setting) D17-8 D7 D6 D5 D4 D3 D2 D1 D0 (Code) RGBBPCTR 0 ↑ 1 - 1 0 1 1 0 1 0 1 (B5h) 1st Parameter 1 ↑ 1 - - - - - - - - - - 2nd Parameter 1 ↑ 1 - VBP7 VBP6 VBP5 VBP4 VBP3 VBP2 VBP1 VBP0 - 3rd Parameter 1 ↑ 1 - - - - - - - - HBP8 - 4th Parameter 1 ↑ 1 - HBP7 HBP6 HBP5 HBP4 HBP3 HBP2 HBP1 HBP0 - NOTE: “-“ Don’t care Description Ver 1.5.2 -Set the blanking porch in the RGB interface -VBP:Vertical back porch -HBP:Horizontal back porch 138 2007-12 ST7732 10.2.7 DISSET5 (B6h): Display Function set 5 DISSET (Display Function set 5) B6H Inst / Para DISSET5 D/CX 0 1st Parameter 2nd Parameter 1 1 WRX ↑ ↑ ↑ RDX 1 D17-8 - 1 1 - D7 1 0 0 D6 0 0 0 D5 1 NO1 0 D4 1 NO0 0 D3 0 SDT1 PTG1 D2 1 SDT0 PTG0 D1 1 EQ1 PT1 D0 0 EQ0 PT0 (Code) (B6h) 16h 02h NOTE: “-“ Don’t care -1st parameter: Set output waveform relation. -NO[1:0]: Set the amount of non-overlap of the gate output NO[1:0] 00 01 10 11 0 1 2 3 Amount of non-overlap of the gate output Refer the Internal oscillator Refer the PCLK 1 clock cycle 4 clock cycle 4 clock cycle 16 clock cycle 6 clock cycle 24 clock cycle 8 clock cycle 32 clock cycle -SDT[1:0]: Set delay amount from gate signal falling edge of the source output. SDT[1:0] 00 01 10 11 0 1 2 3 Amount of non-overlap of the gate output Refer the Internal oscillator Refer the PCLK 1 clock cycle 4 clock cycle 4 clock cycle 16 clock cycle 6 clock cycle 24 clock cycle 8 clock cycle 32 clock cycle -EQ[1:0]: Set the Equalizing period EQ[1:0] 00 01 10 11 0 1 2 3 Amount of non-overlap of the gate output Refer the Internal oscillator Refer the PCLK No EQ No EQ 2 clock cycle 4 clock cycle 4 clock cycle 16 clock cycle 6 clock cycle 24 clock cycle Description Gate Non-overlap period Gn Gn+1 Sn VCOM Delay time for source output EQ period -2nd parameter: Set the output waveform in non-display area. -PTG[1:0]: Determine gate output in a non-display area in the partial mode PTG[1:0] 00 01 10 11 Gate output in a non-display area Normal scan Fix on VGL Fix on VGL Fix on VGL 0 1 2 3 -PT[1:0]: Determine Source /VCOM output in a non-display area in the partial mode PT[1:0] 00 01 10 11 Ver 1.5.2 0 1 2 3 Source output on non-display area Positive Negative V63 V0 V0 V63 AGND AGND Hi-z Hi-z 139 VCOM output on non-display area Positive Negative VCOML VCOMH VCOML VCOMH AGND AGND AGND AGND 2007-12 ST7732 10.2.8 PWCTR1 (C0h): Power Control 1 C0H Inst / Para PWCTR1 D/CX 0 1st Parameter 2nd Parameter 1 1 WRX ↑ ↑ ↑ RDX 1 D17-8 - D7 1 1 1 - 0 0 PWCTR1 (Power Control 1) D6 D5 D4 D3 1 0 0 0 0 0 0 0 VRH4 0 VRH3 0 D2 0 D1 0 D0 0 VRH2 VC2 VRH1 VC1 VRH0 VC0 (Code) (C0h) NOTE: “-“ Don’t care -Set the GVDD and VCI1 voltage Description Ver 1.5.2 VRH[4:0] 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 GVDD 5.00 4.75 4.70 4.65 4.60 4.55 4.50 4.45 4.40 4.35 4.30 4.25 4.20 4.15 4.10 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.25 3.00 VC[2:0] 000 001 010 011 100 101 0 1 2 3 4 5 VCI1 2.75 2.70 2.65 2.60 2.55 2.50 140 2007-12 ST7732 10.2.9 PWCTR2 (C1h): Power Control 2 C1H Inst / Para PWCTR2 D/CX 0 1st Parameter 1 WRX RDX 1 ↑ ↑ D17-8 - D7 1 1 PWCTR2 (Power Control 2) D6 D5 D4 D3 1 0 0 0 0 0 0 0 0 D2 0 D1 0 D0 1 BT2 BT1 BT0 (Code) (C1h) NOTE: “-“ Don’t care -Set the AVDD, VCL, VGH and VGL supply power level BT[2:0] 000 001 010 011 100 101 110 111 Description 0 1 2 3 4 5 6 7 AVDD 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 VCL 2xVDD 2xVDD 2xVDD 2xVDD 2xVDD 2xVDD 2xVDD 2xVDD -1xVDD -1xVDD -1xVDD -1xVDD -1xVDD -1xVDD -1xVDD -1xVDD -2.74 -2.74 -2.74 -2.74 -2.74 -2.74 -2.74 -2.74 VGHH 9.80 9.80 12.25 12.25 12.25 14.70 14.70 14.70 VGLL -7.35 -9.80 -7.35 -9.80 -12.25 -7.35 -9.80 -12.25 4*VCI1 4* VCI1 5* VCI1 5* VCI1 5* VCI1 6* VCI1 6* VCI1 6* VCI1 -3* VCI1 -4* VCI1 -3* VCI1 -4* VCI1 -5* VCI1 -3* VCI1 -4* VCI1 -5* VCI1 Note: When VCI1=2.5V, VDD=2.8V,Set-up cycle 1 effective=98%, Set-up cycle 2 effective=98%, 10.2.10 PWCTR3 (C2h): Power Control 3 (in Normal mode/ Full colors) C2H Inst / Para PWCTR3 D/CX 0 1st Parameter 2nd Parameter 1 1 WRX ↑ ↑ ↑ RDX 1 D17-8 - 1 1 - PWCTR3 (Power Control 3) D7 D6 D5 D4 D3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 D2 0 D1 1 D0 0 APA2 DCA2 APA1 DCA1 APA0 DCA0 (Code) (C2h) NOTE: “-“ Don’t care -Set the amount of current in Operational amplifier in normal mode/full colors. -Adjust the amount of fixed current from the fixed current source in the operational amplifier for the source driver. Description AP[2:0] 000 001 010 011 100 101 110 111 Amount of Current in Operational Amplifier Operation of the operational amplifier stops Small Medium Low Medium Medium High Large Reserved Reserved 0 1 2 3 4 5 6 7 -Set the Booster circuit Step-up cycle in Normal mode/ full colors. DC[2:0] 000 001 010 011 100 101 110 111 0 1 2 3 4 5 6 7 Step-up cycle in Booster circuit 1 BCLK / 1 BCLK / 1 BCLK / 1 BCLK / 2 BCLK / 2 BCLK / 4 BCLK / 4 BCLK / 4 Step-up cycle in Booster circuit 2,3 BCLK / 1 BCLK / 2 BCLK / 4 BCLK / 2 BCLK / 4 BCLK / 4 BCLK / 8 BCLK / 16 Note: BCLK is Clock frequency for Booster circuit Ver 1.5.2 141 2007-12 ST7732 10.2.11 PWCTR4 (C3h): Power Control 4 (in Idle mode/ 8-colors) C3H Inst / Para PWCTR4 D/CX 0 1st Parameter 2nd Parameter 1 1 WRX ↑ ↑ ↑ RDX 1 D17-8 - 1 1 - PWCTR4 (Power Control 4) D7 D6 D5 D4 D3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 D2 0 D1 1 D0 1 APB2 DCB2 APB1 DCB1 APB0 DCB0 (Code) (C3h) NOTE: “-“ Don’t care -Set the amount of current in Operational amplifier in Idle mode/8 colors. -Adjust the amount of fixed current from the fixed current source in the operational amplifier for the source driver. Description AP[2:0] 000 001 010 011 100 101 110 111 Amount of Current in Operational Amplifier Operation of the operational amplifier stops Small Medium Low Medium Medium High Large Reserved Reserved 0 1 2 3 4 5 6 7 -Set the Booster circuit Step-up cycle in Idle mode/8 colors. DC[2:0] 000 001 010 011 100 101 110 111 0 1 2 3 4 5 6 7 Step-up cycle in Booster circuit 1 BCLK / 1 BCLK / 1 BCLK / 1 BCLK / 2 BCLK / 2 BCLK / 4 BCLK / 4 BCLK / 4 Step-up cycle in Booster circuit 2,3 BCLK / 1 BCLK / 2 BCLK / 4 BCLK / 2 BCLK / 4 BCLK / 4 BCLK / 8 BCLK / 16 Note: BCLK is Clock frequency for Booster circuit Ver 1.5.2 142 2007-12 ST7732 10.2.12 PWCTR5 (C4h): Power Control 5 (in Partial mode/ full-colors) C4H Inst / Para PWCTR5 D/CX 0 1st Parameter 2nd Parameter 1 1 WRX ↑ ↑ ↑ RDX 1 D17-8 - 1 1 - PWCTR5 (Power Control 5) D7 D6 D5 D4 D3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 D2 1 D1 0 D0 0 APC2 DCC2 APC1 DCC1 APC0 DCC0 (Code) (C4h) NOTE: “-“ Don’t care -Set the amount of current in Operational amplifier in Partial mode/ full-colors. -Adjust the amount of fixed current from the fixed current source in the operational amplifier for the source driver. Description AP[2:0] 000 001 010 011 100 101 110 111 0 1 2 3 4 5 6 7 Amount of Current in Operational Amplifier Operation of the operational amplifier stops Small Medium Low Medium Medium High Large Reserved Reserved -Set the Booster circuit Step-up cycle in Partial mode/ full-colors. DC[2:0] 000 001 010 011 100 101 110 111 0 1 2 3 4 5 6 7 Step-up cycle in Booster circuit 1 BCLK / 1 BCLK / 1 BCLK / 1 BCLK / 2 BCLK / 2 BCLK / 4 BCLK / 4 BCLK / 4 Step-up cycle in Booster circuit 2,3 BCLK / 1 BCLK / 2 BCLK / 4 BCLK / 2 BCLK / 4 BCLK / 4 BCLK / 8 BCLK / 16 Note: BCLK is Clock frequency for Booster circuit Ver 1.5.2 143 2007-12 ST7732 10.2.13 VMCTR1 (C5h): VCOM Control 1 C5H Inst / Para VMCTR1 D/CX 0 1st Parameter 2nd Parameter WRX 1 1 ↑ ↑ ↑ RDX 1 D17-8 - D7 1 1 - - 1 VMCTR1 (VCOM Control 1) D6 D5 D4 D3 1 0 0 0 VMH6 VML6 D2 1 D1 0 D0 1 (Code) (C5h) VMH5 VMH 4 VMH 3 VMH 2 VMH 1 VMH 0 VML5 VML4 VML3 VML2 VML1 VML0 NOTE: “-“ Don’t care -Set VCOMH Voltage Description VMH[6:0] 0000000 0 0000001 1 0000010 2 0000011 3 0000100 4 0000101 5 0000110 6 0000111 7 0001000 8 0001001 9 0001010 10 0001011 11 0001100 12 0001101 13 0001110 14 0001111 15 0010000 16 0010001 17 0010010 18 0010011 19 0010100 20 0010101 21 0010110 22 0010111 23 0011000 24 0011001 25 0011010 26 2.500 2.525 2.550 2.575 2.600 2.625 2.650 2.675 2.700 2.725 2.750 2.775 2.800 2.825 2.850 2.875 2.900 2.925 2.950 2.975 3.000 3.025 3.050 3.075 3.100 3.125 3.150 VMH[6:0] 0011011 0011100 0011101 0011110 0011111 0100000 0100001 0100010 0100011 0100100 0100101 0100110 0100111 0101000 0101001 0101010 0101011 0101100 0101101 0101110 0101111 0110000 0110001 0110010 0110011 0110100 0110101 VCOMH 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 3.175 3.200 3.225 3.250 3.275 3.300 3.325 3.350 3.375 3.400 3.425 3.450 3.475 3.500 3.525 3.550 3.575 3.600 3.625 3.650 3.675 3.700 3.725 3.750 3.775 3.800 3.825 VMH[6:0] 0110110 54 0110111 55 0111000 56 0111001 57 0111010 58 0111011 59 0111100 60 0111101 61 0111110 62 0111111 63 1000000 64 1000001 65 1000010 66 1000011 67 1000100 68 1000101 69 1000110 70 1000111 71 1001000 72 1001001 73 1001010 74 1001011 75 1001100 76 1001101 77 1001110 78 1001111 79 1010000 80 VCOMH VML[6:0] 0110110 54 0110111 55 0111000 56 0111001 57 0111010 58 0111011 59 0111100 60 0111101 61 0111110 62 0111111 63 1000000 64 1000001 65 1000010 66 1000011 67 1000100 68 1000101 69 1000110 70 1000111 71 1001000 72 1001001 73 1001010 74 1001011 75 1001100 76 1001101 77 1001110 78 1001111 79 1010000 80 VCOML 3.850 3.875 3.900 3.925 3.950 3.975 4.000 4.025 4.050 4.075 4.100 4.125 4.150 4.175 4.200 4.225 4.250 4.275 4.300 4.325 4.350 4.375 4.400 4.425 4.450 4.475 4.500 VMH[6:0] 1010001 81 1010010 82 1010011 83 1010100 84 1010101 85 1010110 86 1010111 87 1011000 88 1011001 89 1011010 90 1011011 91 1011100 92 1011101 93 1011110 94 1011111 95 1100000 96 1100001 97 1100010 98 1100011 99 1100100 100 1100101 101 | 1111111 127 VCOMH 4.525 4.550 4.575 4.600 4.625 4.650 4.675 4.700 4.725 4.750 4.775 4.800 4.825 4.850 4.875 4.900 4.925 4.950 4.975 5.000 Not Permitted -Set VCOML Voltage VML[6:0] 0000000 0 0000001 1 0000010 2 0000011 3 0000100 4 0000101 5 0000110 6 0000111 7 0001000 8 0001001 9 0001010 10 0001011 11 0001100 12 0001101 13 0001110 14 0001111 15 0010000 16 0010001 17 0010010 18 0010011 19 0010100 20 0010101 21 0010110 22 0010111 23 0011000 24 0011001 25 0011010 26 Ver 1.5.2 VCOMH VCOML -2.500 -2.475 -2.450 -2.425 -2.400 -2.375 -2.350 -2.325 -2.300 -2.275 -2.250 -2.225 -2.200 -2.175 -2.150 -2.125 -2.100 -2.075 -2.050 -2.025 -2.000 -1.975 -1.950 -1.925 -1.900 -1.875 -1.850 VML[6:0] 0011011 0011100 0011101 0011110 0011111 0100000 0100001 0100010 0100011 0100100 0100101 0100110 0100111 0101000 0101001 0101010 0101011 0101100 0101101 0101110 0101111 0110000 0110001 0110010 0110011 0110100 0110101 VCOML 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 -1.825 -1.800 -1.775 -1.750 -1.725 -1.700 -1.675 -1.650 -1.625 -1.600 -1.575 -1.550 -1.525 -1.500 -1.475 -1.450 -1.425 -1.400 -1.375 -1.350 -1.325 -1.300 -1.275 -1.250 -1.225 -1.200 -1.175 144 -1.150 -1.125 -1.100 -1.075 -1.050 -1.025 -1.000 -0.975 -0.950 -0.925 -0.900 -0.875 -0.850 -0.825 -0.800 -0.775 -0.750 -0.725 -0.700 -0.675 -0.650 -0.625 -0.600 -0.575 -0.550 -0.525 -0.500 VML[6:0] 1010001 81 1010010 82 1010011 83 1010100 84 1010101 85 1010110 86 1010111 87 1011000 88 1011001 89 1011010 90 1011011 91 1011100 92 1011101 93 1011110 94 1011111 95 1100000 96 1100001 97 1100010 98 1100011 99 1100100 100 1100101 101 | 1111111 127 VCOML -0.475 -0.450 -0.425 -0.400 -0.375 -0.350 -0.325 -0.300 -0.275 -0.250 -0.225 -0.200 -0.175 -0.150 -0.125 -0.100 -0.075 -0.050 -0.025 0.000 Not Permitted 2007-12 ST7732 10.2.14 VMOFCTR (C7h): VCOM Offset Control C7H Inst / Para VMOFCTR D/CX 0 WRX 1st Parameter 1 ↑ RDX 1 D17-8 - ↑ 1 - VMOFCTR (VCOM Offset Control) D7 D6 D5 D4 D3 1 1 0 0 0 - VMF6 - - VMF3 D2 1 D1 1 D0 1 VMF2 VMF1 VMF0 (Code) (C7h) NOTE: “-“ Don’t care, can be set to VDDI or DGND level -Set VCOM Voltage level for reduce the flicker issue Description VMF[6] 0 0 0 0 0 0 1 1 1 1 1 1 VMF[3:0] 0000 0001 0010 1110 1111 0000 0001 0010 1110 1111 VCOMH Output Level “VMH”-16d “VMH”-15d “VMH”-14d | “VMH”-2d “VMH”-1d “VMH” “VMH”+1d “VMH”+2d | “VMH”+14d “VMH”+15d VCOML Output Level “VML”-16d “VML”-15d “VML”-14d | “VML”-2d “VML”-1d “VML” “VML”+1d “VML”+2d | “VML”+14d “VML”+15d - 1d=25mV, 2d=50mV 3d=75mv.... - 2.5V <= VMH ± nd <= 5.0V; -2. 5V <= VML ± nd<= 0V (n=0~15,16) - VMF[6] & VMF[3:0] are stored in NV memory to contrast. Ver 1.5.2 145 2007-12 ST7732 10.2.15 WRID2 (D1h): Write ID2 Value D1H Inst / Para WRID2 D/CX 0 1st Parameter 1 WRX ↑ ↑ RDX 1 D17-8 - D7 1 1 - - WRID2 (Write ID2 Value) D6 D5 D4 D3 1 0 1 0 D2 0 D1 0 D0 1 (Code) (D1h) ID23 ID22 ID21 ID20 - WRID3 (Write ID3 Value) D6 D5 D4 D3 1 0 1 0 D2 0 D1 1 D0 0 (Code) (D2h) ID32 ID31 ID30 - ID26 ID25 ID24 NOTE: “-“ Don’t care Description -Write 7-bit data of LCD module version to save it to NV memory. -The parameter ID2[6:0] is LCD Module version ID. Refer to Applcation Note 10.2.16 WRID3 (D2h): Write ID3 Value D2H Inst / Para WRID3 D/CX 0 1st Parameter 1 WRX ↑ ↑ RDX 1 D17-8 - D7 1 1 - ID37 ID36 ID35 ID34 ID33 NOTE: “-“ Don’t care Description -Write 8-bit data of project code module to save it to NV memory. -The parameter ID3[7:0] is product project ID. Refer to Applcation Note 10.2.17 RDID4 (D3h): Read the ID4 value D3H Inst / Para RDID4 D/CX WRX RDX 0 ↑ 1 1st Parameter 2nd Parameter 3rd Parameter 4th Parameter 5th Parameter 1 1 1 1 1 1 1 1 1 1 ↑ ↑ ↑ ↑ ↑ D17-8 D7 1 - RDID4 (Read the ID4 value) D6 D5 D4 D3 1 0 1 0 ID417 ID427 ID437 ID447 ID416 ID426 ID436 ID446 ID415 ID425 ID435 ID445 ID414 ID424 ID434 ID444 ID413 ID423 ID433 ID443 D2 0 D1 1 D0 1 (Code) (D3h) ID412 ID422 ID432 ID442 ID411 ID421 ID431 ID441 ID410 ID420 ID430 ID440 - NOTE: “-“ Don’t care -Read the Driver IC information from mask value. -The 1st parameter is dummy data. Description -The 2nd parameter ID41[7:0]=”03h” is Driver IC ID code. -The 3rd parameter ID42[7:0] is Driver IC Part number ID. (The code be define by Driver IC Vender) -The 4th & 5th parameter ID43[7:0] & ID44[7:0] are Driver IC version ID. Status Default Ver 1.5.2 Power On Sequence S/W Reset H/W Reset Default Value ID42[7:0] ID43[7:0] 20h 01h 20h 01h 20h 01h ID41[7:0] 03h 03h 03h 146 ID44[7:0] 00h 00h 00h 2007-12 ST7732 10.2.18 NVFCTR1 (D9h): NV Memory Function Controller 1 D9H Inst / Para NVFCTR1 1st Parameter D/CX 0 1 WRX ↑ 1 RDX 1 ↑ NVFCTR1 (NV Memory Function Controller 1) D17-8 D7 D6 D5 D4 D3 D2 1 1 0 1 1 0 - - - - EXTC - - D1 0 D0 1 - RDY (Code) (D9h) - NOTE: “-“ Don’t care Description OTP Controller flag Refer to Applcation Note 10.2.19 NVFCTR2 (DEh): NV Memory Function Controller 2 DEH Inst / Para NVFCTR1 st 1 Parameter nd 2 Parameter rd 3 Parameter D/CX 0 1 1 1 WRX ↑ ↑ ↑ ↑ RDX 1 1 1 1 NVFCTR1 (NV Memory Function Controller 2) D17-8 D7 D6 D5 D4 D3 D2 1 1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 D1 1 1 1 0 D0 0 0 1 1 (Code) (DEh) AA 0F A5 D1 1 0 0 1 D0 1 1 0 0 (Code) (DFh) 55 F0 5A NOTE: “-“ Don’t care Description OTP Read Command Refer to Applcation Note 10.2.20 NVFCTR3 (DFh): NV Memory Function Controller 3 DFH Inst / Para NVFCTR1 st 1 Parameter nd 2 Parameter rd 3 Parameter D/CX 0 1 1 1 WRX ↑ ↑ ↑ ↑ RDX 1 1 1 1 NVFCTR1 (NV Memory Function Controller 3 D17-8 D7 D6 D5 D4 D3 D2 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 NOTE: “-“ Don’t care Description OTP Write Command Refer to Applcation Note Ver 1.5.2 147 2007-12 ST7732 10.2.21 GMCTRP1 (E0h): Gamma (‘+’polarity) Correction Characteristics Setting E0H Inst / Para D/CX GMCTRP1 0 ↑ 1 - 1 1 1 st 1 1 1 1 1 1 1 1 1 1 1 1 1 ↑ 1 1 1 1 1 1 1 1 1 1 1 1 1 - - - - 1 Parameter nd 2 Parameter rd 3 Parameter th 4 Parameter th 5 Parameter th 6 Parameter th 7 Parameter th 8 Parameter th 9 Parameter th 10 Parameter th 11 Parameter th 12 Parameter th 13 Parameter GMCTRP0 (Gamma ‘+’polarity Correction Characteristics Setting) WRX RDX D17-8 D7 D6 D5 D4 D3 D2 D1 D0 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 0 0 0 0 0 (Code) (E0h) RFP3 RFP2 RFP1 RFP0 PKP04 PKP03 PKP02 PKP01 PKP00 PKP14 PKP13 PKP12 PKP11 PKP10 PKP24 PKP23 PKP22 PKP21 PKP20 PKP34 PKP33 PKP32 PKP31 PKP30 PKP44 PKP43 PKP42 PKP41 PKP40 PKP53 PKP52 PKP51 PKP50 PKP63 PKP62 PKP61 PKP60 PKP73 PKP72 PKP71 PKP70 PKP83 PKP82 PKP81 PKP80 RFP14 RFP13 RFP12 RFP11 RFP10 OSP14 OSP13 OSP12OSP11 OSP10 OSP3 OSP2 OSP1 OSP0 NOTE: “-“ Don’t care Negative Polarity Description Ver 1.5.2 Set-up Contents RFP[3:0] PKP0[4:0] The voltage of V0 grayscale is selected by the variable resistor The voltage of V3 grayscale is selected by the 32 to 1 selector PKP1[4:0] The voltage of V6 grayscale is selected by the 32 to 1 selector PKP2[4:0] PKP3[4:0] PKP4[4:0] The voltage of V11 grayscale is selected by the 32 to 1 selector The voltage of V20 grayscale is selected by the 32 to 1 selector The voltage of V31 grayscale is selected by the 32 to 1 selector PKP5[3:0] PKP6[3:0] PKP7[3:0] PKP8[3:0] RFP1[4:0] OSP1[4:0] OSP[3:0] The voltage of V43 grayscale is selected by the 16 to 1 selector The voltage of V52 grayscale is selected by the 16 to 1 selector The voltage of V57 grayscale is selected by the 16 to 1 selector The voltage of V60 grayscale is selected by the 16 to 1 selector The voltage of V1 grayscale is selected by the variable resistor The voltage of V62 grayscale is selected by the variable resistor The voltage of V63 grayscale is selected by the variable resistor 148 2007-12 ST7732 10.2.22 GMCTRN1 (E1h): Gamma ‘-’polarity Correction Characteristics Setting E1H Inst / Para GMCTRP0 (Gamma ‘+’polarity Correction Characteristics Setting) D/CX WRX RDX D17-8 D7 D6 D5 D4 D3 D2 D1 D0 GMCTRP1 0 ↑ 1 - 1 1 1 0 0 0 0 1 st 1 1 1 1 1 1 1 1 1 1 1 1 1 ↑ 1 1 1 1 1 1 1 1 1 1 1 1 1 - - - - PKN04 PKN14 PKN24 PKN34 PKN44 RFN14 OSN14 - RFN3 PKN03 PKN13 PKN23 PKN33 PKN43 PKN53 PKN63 PKN73 PKN83 RFN13 OSN13 OSN3 RFN2 PKN02 PKN12 PKN22 PKN32 PKN42 PKN52 PKN62 PKN72 PKN82 RFN12 OSN12 OSN2 RFN1 PKN01 PKN11 PKN21 PKN31 PKN41 PKN51 PKN61 PKN71 PKN81 RFN11 OSN11 OSN1 RFN0 PKN00 PKN10 PKN20 PKN30 PKN40 PKN50 PKN60 PKN70 PKN80 RFN10 OSN10 OSN0 1 Parameter nd 2 Parameter rd 3 Parameter th 4 Parameter th 5 Parameter th 6 Parameter th 7 Parameter th 8 Parameter th 9 Parameter th 10 Parameter th 11 Parameter th 12 Parameter th 13 Parameter ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ (Code) (E1h) NOTE: “-“ Don’t care Negative Polarity Description Set-up Contents RFN[3:0] PKN0[4:0] The voltage of V63 grayscale is selected by the variable resistor The voltage of V60 grayscale is selected by the 32 to 1 selector PKN1[4:0] The voltage of V57 grayscale is selected by the 32 to 1 selector PKN2[4:0] PKN3[4:0] PKN4[4:0] PKN5[3:0] PKN6[3:0] PKN7[3:0] PKN8[3:0] RFN1[4:0] OSN1[4:0] OSN[3:0] The voltage of V52 grayscale is selected by the 32 to 1 selector The voltage of V43 grayscale is selected by the 32 to 1 selector The voltage of V31 grayscale is selected by the 32 to 1 selector The voltage of V20 grayscale is selected by the 16 to 1 selector The voltage of V11 grayscale is selected by the 16 to 1 selector The voltage of V6 grayscale is selected by the 16 to 1 selector The voltage of V3 grayscale is selected by the 16 to 1 selector The voltage of V62 grayscale is selected by the variable resistor The voltage of V1 grayscale is selected by the variable resistor The voltage of V0 grayscale is selected by the variable resistor 10.2.23 AUTOCTRL (F1h): NVM and OSC control function 09H Inst / Para AUTOCTRL D/CX WRX RDX 0 ↑ 1 st 1 Parameter 1 1 ↑ D17-8 - RDDST (Read Display Status) D7 D6 D5 D4 D3 1 1 1 1 0 OTP 0 0 0 1 PROG D2 0 D1 0 D0 1 (Code) (F1h) 0 0 0 - NOTE: “-“ Don’t care Description Default Ver 1.5.2 Bit OTP PROG Description OTP programming function Value ‘1’ = Enable OTP programming function ‘0’ = Disable OTP programming function Status Power On Sequence S/W Reset H/W Reset Default Value(D7~D0) 0000_1000 (08h) 0000_1000 (08h) 0000_1000 (08h) 149 2007-12 ST7732 10.2.24 OSCADJ (F2h): Internal OSC frequency control 09H Inst / Para OSCADJ D/CX WRX RDX 0 ↑ 1 st 1 Parameter 1 1 ↑ D17-8 - D7 1 - 0 RDDST (Read Display Status) D6 D5 D4 D3 1 1 1 0 0 0 0 0 D2 0 D1 1 D0 0 (Code) (F2h) OSC SEL2 OSC SEL1 OSC SEL0 - D0 1 (Code) (F5h) NOTE: “-“ Don’t care Bit OSCSEL Description Description Internal OSC adjust function frequency Value ‘000’ = 120hz ‘001’ = 95hz ‘010’ = 80hz ‘011’ = 70hz ‘100’ = 60hz – default setting Status Power On Sequence S/W Reset H/W Reset Default Default Value(D7~D0) 0000_0100 (04h) 0000_0100 (04h) 0000_0100 (04h) 10.2.25 DISPCTRL (F5h): OTP and OSC function control 09H Inst / Para DISPCTRL st 1 Parameter D/CX WRX RDX 0 ↑ 1 1 1 ↑ D17-8 - D7 1 - PDM1 RDDST (Read Display Status) D6 D5 D4 D3 1 1 1 0 PDM0 FLM D2 1 D1 0 C8ON EQPW1 EQPW0 EQVDD ENGS - NOTE: “-“ Don’t care Bit PDM Description Vcom waveform within porch area FLM EQPW Monochrom image detection Mono -> frame inversion Color -> line inversion Monochrom line detection Mono -> OP-AMP off Color -> OP-AMP on Equalization level setting EQVDD Equalization level setting ENGS Gate scan direction setting C8ON Description Default Ver 1.5.2 setting Value ‘00’ = VcomL ‘01’ = VcomH ‘10’ = GND ‘11’ = Hi-Z ‘1’ = Enable the monochrom image detection function ‘0’ = Disable the monochrom image detection function ‘1’ = Enable the monochrom line detection function ‘0’ = Disable the monochrom line detection function ‘00’ = V0(+ frame), V63(- frame) ‘01’ = V63(+ frame), V0(-frame) ‘10’ = GND(+frame), GND(-frame), ps. EQVDD=’0’ ‘10’ = VDD(+frame), GND(-frame), ps. EQVDD=’1’ ‘11’ = Hi-Z(+frame), Hi-Z(-frame) ‘1’ = VDD(+frame), GND(-frame) mode, ps. EQPW=’10’ ‘0’ = GND(+frame), GND(-frame) mode, ps. EQPW=’10’ ‘1’ = G1 ~ G162 ‘0’ = G162 ~ G1 Status Power On Sequence S/W Reset H/W Reset Default Value(D7~D0) 0001_1010 (1Ah) 0001_1010 (1Ah) 0001_1010 (1Ah) 150 2007-12 ST7732 10.2.26 DEFADJ (F6h): Default mode setting 09H Inst / Para DEFADJ D/CX WRX RDX 0 ↑ 1 st 1 Parameter 1 1 ↑ D17-8 - D7 1 - 0 RDDST (Read Display Status) D6 D5 D4 D3 1 1 1 0 1 0 0 0 D2 1 D1 1 D0 0 (Code) (F6h) 1 0 TESEL OE - NOTE: “-“ Don’t care Description Default Ver 1.5.2 Bit TESELOE Description Output mode setting of TESEL pin Value ‘1’ = Enable the output mode of TESEL pin ‘0’ = Disable the output mode of TESEL pin Status Power On Sequence S/W Reset H/W Reset Default Value(D7~D0) 0100_0100 (44h) 0100_0100 (44h) 0100_0100 (44h) 151 2007-12 ST7732 11. Power structure 11.1. Driver IC Operating voltages Specification VGH (9.4V ~ 16.1V) AVDD AVDD (4.95V ~ 6V) VDD=(2.5V~3.3V) GVDD (3.0V ~ 5.0V) Charge Pump Reference Voltage VCOMH (2.5V ~ 5.0V) Internal Reference Voltage AGND=0V VCOML (-2.5V ~ 0.0V) VCL (-2.5V ~ -2.9V) VGL (-13.4V ~ -7.05V) Fig. 11.1.1 Power Booster Level Remark 1. AVDD supply to all power source (exclude VGH, VGL) 2. Source output range: 0.1V ~ AVDD-0.1V 3. Linear Range: 0.2V ~ AVDD-0.2V (For all output voltage, but exclude VGH, VGL) 4. Above operating voltages is min range. Ver 1.5.2 152 2007-12 ST7732 11.2 Power Booster Circuit 11.2.1 VCI1 generate frome VDD regulator Source Output Circuit Block VDD CVDD S1 | S396 REGP Reference Voltage generator AVDD Gray reference Circuit Block (Gamma) Vci1 REGP AVDD VC [2:0} GVDD REGP VRH [4:0} AGND Vci1 CGVDD CVci1 AGND AVDD VDD C11 Charge Pump 1 (VDD * 2) C12 VCOMH REGP VMH [6:0} CVCOMH AVDD CAVDD AGND Vci1 C22 VCOM Charge Pump 2 (Vci1 * 4,5,6) Vci1 VGH CVGH VCOMH Vci1 VMA [5:0} C23 VGL CVCOML Charge Pump 2 (Vci1 * -3,-4,-5) VCL REGP CVGL VGH VDD C21 VCL Gate Driver VGL G1 | G162 Charge Pump 4 (VDD * -1) Reference Voltage generator CVCL VREF CVREF (Option) VDDI CVDDI VCC CVCC Fig. 11.2.1 Power Booster Structure (1) Ver 1.5.2 153 2007-12 ST7732 11.2.2 EXTERNAL COMPONENTS CONNECTION Pad Name VDDI VDD VCC AGND DGND C23P, C23N C22P, C22N C21P, C21N C12P, C12N C11P, C11N AVDD VCI1 VGH VGL VCL VREF GVDD VCOMH VCOML Rated (Min) Voltage Connection VDDI (Logic Power) VDD (Analog Power) Connect to Capacitor (Max 3V): VCC -------||-------- GND Analog ground (Connect to GND) Digital ground (Connect to GND) Connect to Capacitor: C23P -------||--------C23N Connect to Capacitor: C22P -------||--------C22N Connect to Capacitor: C21P -------||--- -----C21N Connect to Capacitor: C12P -------||--------C12N Connect to Capacitor: C11P -------||--------C11N Connect to Capacitor: AVDD -------||-------- GND Connect to Capacitor: AVDD -------||-------- GND Connect to Capacitor: VGH -------||-------- GND Connect to Capacitor: VGL -------||-------- GND Connect to Capacitor: VCL -------||-------- GND Connect to Capacitor: VREF -------||-------- GND Connect to Capacitor: GVDD -------||-------- GND Connect to Capacitor: VCOMH-------||--------- GND Connect to Capacitor: VCOML -------||-------- GND Typical capacitance value 10.0V 10.0V 10.0V 1.0 uF 1.0 uF 1.0 uF 25.0V; 16.0V* 25.0V; 16.0V* 10.0V 10.0V 10.0V 10.0V 10.0V 25.0V; 16.0V* 25.0V; 16.0V* 10.0V 10.0V 10.0V 10.0V 10.0V 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF 1.0 uF Note: For the typical specification of capacitor, the surge voltage is 125% of rated voltage. The capacitor of rated voltage of 16V can be only used for the case of VGH < 12.8V and VGL > -12.8V to prevent from stability issue. For normal usage, please use the capacitor of 25V rating. Ver 1.5.2 154 2007-12 ST7732 12. Gamma structure 12.1 STRUCTURE OF GRAYSCALE AMPLIFIER The structure of grayscale amplifier is shown as below. 13 voltage levels (VIP(N)0-VIP(N)12) between GVDD and VGS are determined by the high/ mid/ low level adjustment registers. Gray Level Voltage Formula (Positive) Voltage Formula (Negative) 0 VINP0 VINN0 1 VINP1 VINN1 2 V1-(V1-V3)*(16/30) V1-(V1-V3)*(18/30) 3 VINP2 VINP(N)2 4 V3-(V3-V6)*(11/30) V3-(V3-V6)*(12/30) 5 V3-(V3-V6)*(21/30) V3-(V3-V6)*(22/30) 6 VINP3 VINN3 7 V6-(V6-V11)*(7/30) V6-(V6-V11)*(7/30) 8 V6-(V6-V11)*(14/30) V6-(V6-V11)*(13/30) 9 V6-(V6-V11)*(20/30) V6-(V6-V11)*(19/30) 10 V6-(V6-V11)*(25/30) V6-(V6-V11)*(25/30) 11 VINP4 VINN4 12 V11-(V11-V20)*(4/30) V11-(V11-V20)*(4/36) 13 V11-(V11-V20)*(8/30) V11-(V11-V20)*(8/36) 14 V11-(V11-V20)*(12/30) V11-(V11-V20)*(12/36) 15 V11-(V11-V20)*(16/30) V11-(V11-V20)*(16/36) 16 V11-(V11-V20)*(19/30) V11-(V11-V20)*(20/36) 17 V11-(V11-V20)*(22/30) V11-(V11-V20)*(24/36) 18 V11-(V11-V20)*(25/30) V11-(V11-V20)*(28/36) 19 V11-(V11-V20)*(28/30) V11-(V11-V20)*(32/36) 20 VINP5 VINN5 21 V20-(V20-V31)*(3/30) V20-(V20-V32)*(3/36) 22 V20-(V20-V31)* (6/30) V20-(V20-V32)*(6/36) 23 V20-(V20-V31)* (9/30) V20-(V20-V32)*(9/36) 24 V20-(V20-V31)* (12/30) V20-(V20-V32)*(12/36) 25 V20-(V20-V31)* (15/30) V20-(V20-V32)*(15/36) 26 V20-(V20-V31)* (18/30) V20-(V20-V32)*(18/36) 27 V20-(V20-V31)* (21/30) V20-(V20-V32)*(21/36) 28 V20-(V20-V31)* (23/30) V20-(V20-V32)*(24/36) 29 V20-(V20-V31)* (25/30) V20-(V20-V32)*(27/36) 30 V20-(V20-V31)* (27/30) V20-(V20-V32)*(30/36) 31 VINP6 V20-(V20-V32)*(33/36) 32 V31-(V31-V43)*(3/36) VINN6 33 V31-(V31-V43)*(6/36) V32-(V32-V43)*(3/30) 34 V31-(V31-V43)*(9/36) V32-(V32-V43)*(5/30) 35 V31-(V31-V43)*(12/36) V32-(V32-V43)*(7/30) 36 V31-(V31-V43)*(15/36) V32-(V32-V43)*(9/30) Ver 1.5.2 155 2007-12 ST7732 37 V31-(V31-V43)*(18/36) V32-(V32-V43)*(12/30) 38 V31-(V31-V43)*(21/36) V32-(V32-V43)*(15/30) 39 V31-(V31-V43)*(24/36) V32-(V32-V43)*(18/30) 40 V31-(V31-V43)*(27/36) V32-(V32-V43)*(21/30) 41 V31-(V31-V43)*(30/36) V32-(V32-V43)*(24/30) 42 V31-(V31-V43)*(33/36) V32-(V32-V43)*(27/30) 43 VINP7 VINN7 44 V43-(V43-V52)*(4/36) V43-(V43-V52)*(2/30) 45 V43-(V43-V52)*(8/36) V43-(V43-V52)*(5/30) 46 V43-(V43-V52)*(12/36) V43-(V43-V52)*(8/30) 47 V43-(V43-V52)*(16/36) V43-(V43-V52)*(11/30) 48 V43-(V43-V52)*(20/36) V43-(V43-V52)*(14/30) 49 V43-(V43-V52)*(24/36) V43-(V43-V52)*(18/30) 50 V43-(V43-V52)*(28/36) V43-(V43-V52)*(22/30) 51 V43-(V43-V52)*(32/36) V43-(V43-V52)*(26/30) 52 VINP8 VINN8 53 V52-(V52-V57)*(5/30) V52-(V52-V57)*(5/30) 54 V52-(V52-V57)*(11/30) V52-(V52-V57)*(10/30) 55 V52-(V52-V57)*(17/30) V52-(V52-V57)*(16/30) 56 V52-(V52-V57)*(23/30) V52-(V52-V57)*(23/30) 57 VINP9 VINN9 58 V57-(V57-V60)*(8/30) V57-(V57-V60)*(9/30) 59 V57-(V57-V60)*(18/30) V57-(V57-V60)*(19/30) 60 VINP10 VINN10 61 V60-(V60-V62)*(12/30) V60-(V60-V62)*(14/30) 62 VINP11 VINN11 63 VINP12 VINN12 Ver 1.5.2 156 2007-12 ST7732 13. Example Connection with Panel direction and Different Resolution 13.1 Application of connection with panel direction Case 1: (This is default case) - 1st Pixel is at Left Top of the panel - RGB filter order = RGB 1st pixel IC (Bump down) LCD Front side CF Glass TFT Glass Case 2: - 1st Pixel is at Left Top of the panel - RGB filter order = BGR 1st pixel IC (Bump down) LCD Front side CF Glass TFT Glass Case 3: Ver 1.5.2 157 2007-12 ST7732 - 1st Pixel is at Righ Bottom of the panel - RGB filter order = RGB IC (Bump down) LCD Front side CF Glass 1st pixel TFT Glass Case 4: - 1st Pixel is at Righ Bottom of the panel - RGB filter order = BGR IC (Bump down) LCD Front side CF Glass 1st pixel TFT Glass Ver 1.5.2 158 2007-12 ST7732 13.2 Application of connection with Different resolution Case 1 of Resolution (128RGB x 160) (GM1, GM0 = “00”) RAM size=128 x 160 x 18-bit (Used) Display size = 128RGB x 160 1). Example for SMX=SMY=’0’ (0, 0) 1st pixel (127, 159) 2). Example for SMX=SMY=’1’ ST7732 (bump down) G161 G3 S7 S390 G2 G160 (0, 0) 00h 01h 02h 7Eh 7Fh 83h P1 P2 P3 P126 P127 00h P128 G1 01h G2 1st pixel 02h G3 G4 G157 G158 (127, 159) G159 9Fh G160 A1h - Display direction control (S/W) - X-Mirror control by MX - Y-Mirror control by MY - XY-Exchange control by MV Ver 1.5.2 - Direction default setting (H/W) SMX = '1' SMY = '1' SRGB = '0' 159 2007-12 ST7732 Case 2 of Resolution (120RGB x 160) (GM1, GM0 = “01”) RAM size=120 x 160 x 18-bit (Used) Display size = 120RGB x 160 1). Example for SMX=SMY=’0’ (0, 0) 1st pixel (119, 159) 2). Example for SMX=SMY=’1’ ST7732 (bump down) G161 G3 S7 S366 G2 G160 (0, 0) 00h 01h 02h 77h 7Fh 83h P1 P2 P3 P118 P119 00h P120 G1 01h G2 02h 1st pixel G3 G4 G157 G158 (119, 159) G159 9Fh G160 A1h - Display direction control (S/W) - X-Mirror control by MX - Y-Mirror control by MY - XY-Exchange control by MV Ver 1.5.2 - Direction default setting (H/W) SMX = '1' SMY = '1' SRGB = '0' 160 2007-12 ST7732 Case 3 of Resolution (132RGB x 162) (GM1, GM0 = “11”) RAM size=132 x 162 x 18-bit (Used) Display size = 132RGB x 162 1). Example for SMX=SMY=’0’ G 162 G 161 G R A M s i z e (132x 162x 18-b i t s ) G1 (0,0) 00h 02h --- --- --- --- --- 7Fh 83h 00h 01h 02h | | | | | | | | | | | | | 9Fh A1h ST7732 (Bump Down) S1 S 396 D1 D2 -- -- -- -- -- G2 D127 D128 G1 G2 G3 | | | | | | | | | | | G158 (0,0) (131,161) G4 | | | | | | | | | | | G159 1 st P ixel G161 G162 (131,161) - Display direction control (S/W) - Direction default setting (H/W) - X-Mirror control by MX - Y-Mirror control by MY - XY-Exchange control by MV SMX = ’0’ SMY = ‘0’ SRGB = ‘0’ 2). Example for SMX=SMY=’1’ G 162 G 161 G R A M s i z e (132x 162x 18-b i t s ) G1 00h 02h --- --- --- --- --- 7Fh 83h 00h 01h 02h | | | | | | | | | | | | | 9Fh A1h Ver 1.5.2 ST7732 (Bump Down) S1 S 396 D1 D2 -- -- -- -- -- G2 D127 D128 G1 G2 G3 | | | | | | | | | | | G158 (0,0) (131,161) (131,161) 1 st P ixel G4 | | | | | | | | | | | G159 G161 G162 - Display direction control (S/W) (0,0) - Direction default setting (H/W) - X-Mirror control by MX - Y-Mirror control by MY - XY-Exchange control by MV SMX = ’1’ SMY = ‘1’ SRGB = ‘0’ 161 2007-12 ST7732 13.3 MicroProcessor Interface applications 13.3.1 8080-Seriers MCU + SPI Interface (RCM = ‘0x’, P68=’0’, IM2=’1’) 13.3.1.1 8080-Series MCU Interface for 8-bit data bus (IM1, IM0=”00”) ST7732 Host RESX TE RESX TE SCL SDA D/CX(SCL) WRX(R/WX) RDX(E) D7 to D1 D0 “0” “0” Note: RCM = ‘0x’ IM2=’0’, SPI I/F IM2=’1’, MCU I/F “0” “00” IM2 D/CX WRX RDX D7 to D1 D0 D15 to D8 D17 to D16 P68 IM1,IM0 IM2 VS, HS, DE PLCK DGND Fig. 13.3.1.1 8080-Series MCU Interface for 8-bit data bus 13.3.1.2 8080-Series MCU Interface for 16-bit data bus (IM1, IM0=”01”) ST7732 Host RESX TE RESX TE SCL SDA D/CX(SCL) WRX(R/WX) RDX(E) D7 to D1 D0 D15 to D8 “0” Note: RCM = ‘0x’ IM2=’0’, SPI I/F IM2=’1’, MCU I/F “0” “01” IM2 D/CX WRX RDX D7 to D1 D0 D15 to D8 D17 to D16 P68 IM1,IM0 IM2 VS, HS, DE PLCK DGND Fig. 13.3.1.2 8080-Series MCU Interface for 16-bit data bus Ver 1.5.2 162 2007-12 ST7732 13.3.1.3 8080-Series MCU Interface for 9-bit data bus (IM1, IM0=”10”) ST7732 Host RESX TE RESX TE SCL SDA D/CX(SCL) WRX(R/WX) RDX(E) D8 to D1 D0 “0” “0” Note: RCM = ‘0x’ IM2=’0’, SPI I/F IM2=’1’, MCU I/F “0” “10” IM2 D/CX WRX RDX D8 to D1 D0 D15 to D9 D17 to D16 P68 IM1,IM0 IM2 VS, HS, DE PLCK DGND Fig. 13.3.1.3 8080-Series MCU Interface for 9-bit data bus 13.3.1.4 8080-Series MCU Interface for 18-bit data bus (IM1, IM0=”11”) ST7732 Host RESX TE RESX TE SCL SDA D/CX(SCL) WRX(R/WX) RDX(E) D7 to D1 D0 D17 to D8 Note: RCM = ‘0x’ IM2=’0’, SPI I/F IM2=’1’, MCU I/F “0” “11” IM2 D/CX WRX RDX D7 to D1 D0 D17 to D8 P68 IM1,IM0 IM2 VS, HS, DE PLCK DGND Fig. 13.3.1.4 8080-Series MCU Interface for 18-bit data bus Ver 1.5.2 163 2007-12 ST7732 13.3.2 6800-Seriers MCU + SPI Interface (RCM = ‘0x’, P68=’1’, IM2=’1’) 13.3.2.1 6800-Series MCU Interface for 8-bit data bus (IM1, IM0=”00”) ST7732 Host RESX TE RESX TE SCL SDA D/CX(SCL) WRX(R/WX) RDX(E) D7 to D1 D0 “0” “0” Note: RCM = ‘0x’ IM2=’0’, SPI I/F IM2=’1’, MCU I/F “1” “00” IM2 D/CX R/WX E D7 to D1 D0 D15 to D8 D17 to D16 P68 IM1,IM0 IM2 VS, HS, DE PLCK DGND Fig. 13.3.2.1 6800-Series MCU Interface for 8-bit data bus 13.3.2.2 6800-Series MCU Interface for 16-bit data bus (IM1, IM0=”01”) ST7732 Host RESX TE RESX TE SCL SDA D/CX(SCL) WRX(R/WX) RDX(E) D7 to D1 D0 D15 to D8 “0” Note: RCM = ‘0x’ IM2=’0’, SPI I/F IM2=’1’, MCU I/F “1” “01” IM2 D/CX R/WX E D7 to D1 D0 D15 to D8 D17 to D16 P68 IM1,IM0 IM2 VS, HS, DE PLCK DGND Fig. 13.3.2.2 6800-Series MCU Interface for 16-bit data bus Ver 1.5.2 164 2007-12 ST7732 13.3.2.3 6800-Series MCU Interface for 9-bit data bus (IM1, IM0=”10”) ST7732 Host RESX TE RESX TE SCL SDA D/CX(SCL) WRX(R/WX) RDX(E) D8 to D1 D0 “0” “0” Note: RCM = ‘0x’ IM2=’0’, SPI I/F IM2=’1’, MCU I/F “1” “10” IM2 D/CX R/WX E D8 to D1 D0 D15 to D9 D17 to D16 P68 IM1,IM0 IM2 VS, HS, DE PLCK DGND Fig. 13.3.2.3 6800-Series MCU Interface for 9-bit data bus 13.3.2.4 6800-Series MCU Interface for 18-bit data bus (IM1, IM0=”11”) ST7732 Host RESX TE RESX TE SCL SDA D/CX(SCL) WRX(R/WX ) RDX(E) D7 to D1 D0 D17 to D8 Note: RCM = ‘0x’ IM2=’0’, SPI I/F IM2=’1’, MCU I/F “1” “11” IM2 D/CX R/WX E D7 to D1 D0 D17 to D8 P68 IM1,IM0 IM2 VS, HS, DE PLCK DGND Fig. 13.3.2.4 6800-Series MCU Interface for 18-bit data bus Ver 1.5.2 165 2007-12 ST7732 13.3.3 RGB Interface (RCM = ‘1’) 13.3.3.1 RGBInterface for 6-bit Data Width ST7732 Host RESX TE RESX TE CSX D/CX(SCL) SDA CSX SCL SDA VS VS HS DE PCLK D7 to D2 “0” “0” Note: RCM = ‘1x’ 3Ah=”E0h” HS DE PLCK D7 to D2 D17 to D8 D1 to D0 P68, IM2 IM1,IM0 WRX(R/WX) RDX(E) DGND Fig. 13.3.3.1 RGB Interface for 6-bit data width 13.3.3.2 RGBInterface for 16-bit Data Width ST7732 Host RESX TE RESX TE CSX D/CX(SCL) SDA CSX SCL SDA VS VS HS DE PCLK D5 to D1 D11 to D6 D17 to D13 HS DE PLCK D5 to D1 D11 to D6 D17 to D13 “0” Note: RCM = ‘1x’ 3Ah=”50h” D0, D12 P68, IM2 IM1,IM0 WRX(R/WX) RDX(E) DGND Fig. 13.3.3.2 RGB Interface for 16-bit data width Ver 1.5.2 166 2007-12 ST7732 13.3.3.3 RGBInterface for 18-bit Data Width ST7732 Host RESX TE RESX TE CSX D/CX(SCL) SDA CSX SCL SDA VS VS HS DE PCLK D5 to D0 D11 to D6 D17 to D12 HS DE PLCK D5 to D0 D11 to D6 D17 to D12 Note: RCM = ‘1x’ 3Ah=”60h” P68, IM2 IM1,IM0 WRX(R/WX) RDX(E) DGND Fig. 13.3.3.3 RGB Interface for 18-bit data width Ver 1.5.2 167 2007-12 ST7732 14. Revision History ST7732 Specification Revision History Version Date 0.x 1.0 Description Preliminary version 2007/05/16 First issue 1.1 2007/06/12 Modify timing of 3-SPI and 4-SPI. (8.3, p-23; 8.4, p-24) Modify display off function. (10.1.18, p-120) Add notes of 262K read function (10.1.23, p-125; 10.1.33, p-135) Modify cap. rating voltage (11.2.2, p-155) 1.2 2007/07/10 Remove RGBSET command 2Dh (10.1.24 p-106, p-125) 1.3 2007/08 Modify timing of CSX hold time for all I/F(8.1, p-21; 8.2, p-23; 8.4, p-24) Modify the power system diagram(11.2.1, p-154) Correct the typo of component table(11.2.2, p-155) 1.3.1 2007/08 Modify component table(11.2, p-154,155) 1.4 2007/09 1.5 2007/10 1.5.1 2007/11 1.5.2 2007/12 Ver 1.5.2 Revise the waiting time of HW reset(9.18.2 P91) Revise the description of command 01h, 10h,11h, 28h (10.1.2 P111; 10.1.11 P116; 10.1.12 P117; 10.1.18 P120) Modify the description of power on/off sequence(9.15 P84) Remove table 9.18.3.1 reset input timing(9.18.3 P90) Modify the figure of reset timing (9.18.3 P90) Modify the waiting time of SWReset to 120ms (10.1.2 P110) Modify the waiting time of SLPout mode to 120ms (10.1.12 P116) Modify SHUT description (6.3 P16) Modify TESEL description (6.3 P17) Modify RGB Mode2 power on sequence on figure 9.9.15 and table 9.9.6.4 (9.9.6.4 P60) Modify supported 6-bits, 16-bits, 18-bits RGB interface (2 P1) Modify the Figure of RGB Interface for 6-bit data width(fig.13.3.3.1 P166) Modify the Figure of RGB Interface for 16-bit data width(fig.13.3.3.2 P166) Modify the Figure of RGB Interface for 18-bit data width(fig. 13.3.3.3 P167) 168 2007-12