ST ST7781 262K Color Single –Chip TFT Controller/Driver 1. Introduction The ST7781 is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 720 source line and 320 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts, 8-bits/9-bits/16-bits/18-bits parallel interface. Display data can be stored in the on-chip display data RAM of 240x320x18 bits. It can perform display data RAM read/write operation with no external operation clock to minimize power consumption. In addition, because of the integrated power supply circuit necessary to drive liquid crystal; it is possible to make a display system with the fewest components. 2. Features Driver Output: - 720ch Source Outputs (240 X RGB) - 320ch Gate Outputs - Common Electrode Output Single Chip Display RAM: -Capacity: 240x320x18 bit Support Display Color - 65K Color - 262K Color - 8-color (Idle Mode) Supported LC Type Option - MVA LC Type - Transflective LC Type - Transmissive LC Type Supported MCU Interface - 8/9/16/18-bit Interface with 8080-Series MCU - 3-line serial interface Display Features - Partial Display Mode - Resizing Function (x1/2, x1/4) Build-in Circuit - DC/DC Converter - Adjustable VCOM Generation - Oscillator for Display Clock Generation - Timing Controller - Non-volatile Memory for Factory Default Value - Line Inversion, Frame Inversion Non-Volatile Memory - 7-bits for ID Code - 5-bits for VCOM Adjustment Supply Voltage Range - Analog Supply Voltage (VDD) Range: 2.5V to 3.3V - I/O Supply Voltage (VDDI) Range: 1.65V to 3.3V Output Voltage Level - GVDD – AGND: 3V to (AVDD-0.5) V - AVDD – AGND: 4.5V to 5.6V - VCL – AGND: -2.0V to -3.0V - VCOMH – AGND: 3.0V to (AVDD-0.5) V - VCOML – AGND: (VCL+0.5) V to 0.0V - VGH – AGND: 10V to 16.5V - VGL – AGND: -5V to -14V Lower Power Consumption - CMOS Compatible Inputs - Optimized Layout for COG Assembly - Operate Temperature Range: -30 ℃ ~ +85℃ ST7781 8080 Parallel Interface :8bit/ 9 bit/16 bit /18bit Serial Interface :3- line Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. ST7781 3. Pad Arrangement Chip Size: 18163um x 800um Chip Thickness : 280um or 300um (typ.) DB4 DB3 DB2 DB1 DB0 DUMMY SDO SDI /RD /WR /SCL 20 15 20 ……… 2 230 Ver. 1.7 220 C23N C23N C23N C23N C23P C23P C23P C23P C23P C23P C23P DUMMY DUMMY S712 S713 S714 S715 S716 S717 S718 S719 S720 DUMMY DUMMY G2 G4 G6 G8 G10 G12 G14 G16 G18 210 C22P C22P C22P C22P C22P C22P C22P C23N C23N C23N X 200 Bump View VGH VGH VGH DUMMY DUMMY C21N C21N C21N C21N C21P C21P C21P C21P C22N C22N C22N C22N C22N C22N C22N 190 Alignment Mark: A2 (X , Y) = (8751 , 252.5) VGL VGL VGL VGL AGND AGND AGND VGH VGH VGH 180 15 C12P C12P C12P C12P C11N C11N C11N C11N C11N C11P C11P C11P C11P C11P VGL VGL VGL VGL VGL VGL Y 170 VDD VDD TESTO TESTO C12N C12N C12N C12N C12N C12P ……… VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD 160 10 15 Face Up (Bump View) 10 DUMMY S361 S362 S363 S364 S365 S366 S367 S368 S369 150 AVDD VCI1 VCI1 VCI1 VDD VDD VDD VDD VDD VDD 15 140 20 130 15 120 Alignment Mark: A1 (X , Y) = (-8751 , 252.5) VCL VCL VCL VCL VCL AVDD AVDD AVDD AVDD AVDD 110 15 VCOM VCOM VCOM VCOM VCOMH VCOMH VCOMH VCOMH VCOMH VCOMH VCOML VCOML VCOML VCOML GVDD GVDD GVDD DUMMY DUMMY DUMMY S353 S354 S355 S356 S357 S358 S359 S360 DUMMY 100 20 AGND AGND AGND AGND V25 DUMMY DUMMY VCOM VCOM VCOM 90 15 10 VCC VCC VCC DUMMY DGND DGND DGND DGND DGND DGND DGND DGND AGND AGND AGND AGND AGND AGND AGND AGND ……… 15 10 80 VDDI VDDI VCC VCC VCC VCC VCC VCC VCC VCC Alignment Marks 70 DUMMY DUMMY TESTO TESTO DUMMY DUMMY VDDI VDDI VDDI VDDI 60 RS /CS DUMMY OSC FMARK DUMMY TESTI TESTI TESTI TESTI 2. 50um x 80um Input Pads Pad 1 to 243. 50 1. 16um x 90um Gate: G1 ~ G320 Source: S1 ~ S720 G 17 G 15 G 13 G 11 G9 G7 G5 G3 G1 DUMMY DUMMY S1 S2 S3 S4 S5 S6 S7 S8 S9 40 DB12 DB11 DB10 DB9 DB8 DUMMY DUMMY DB7 DB6 DB5 30 Au Bump Size: 20 TESTI TESTI TESTI TESTI DB17 DB16 DB15 DB14 DB13 DUMMY Au Bump Height: 15um (typ.) ……… Coordinate Origin: Chip Center DUMMY G319 G317 G315 G313 G311 G309 G307 G305 G303 10 Pad Location: Pad Center. DUMMY SW_EE DUMMY DUMMY DUMMY TESTO IM0 IM1 IM2 IM3 DUMMY TESTO TESTO TESTO TESTO TESTO TESTO TESTO RESET RESET G304 G306 G308 G310 G312 G314 G316 G318 G320 DUMMY ST7781 S1~S720 G1~G320 DUMMY (No.244~1291) I/O Pads (No.1~243) Ver. 1.7 3 ST7781 4. Pad Center Coordinates PAD No. PIN Name X Y PAD No. PIN Name X Y 1 DUMMY -8610 -304 41 DB4 -5585 -304 2 SW_EE -8540 -304 42 DB3 -5505 -304 3 DUMMY -8470 -304 43 DB2 -5425 -304 4 DUMMY -8400 -304 44 DB1 -5345 -304 5 DUMMY -8330 -304 45 DB0 -5265 -304 6 TESTO -8260 -304 46 DUMMY -5180 -304 7 IM0 -8190 -304 47 SDO -5110 -304 8 IM1 -8120 -304 48 SDI -5040 -304 9 IM2 -8050 -304 49 /RD -4970 -304 10 IM3 -7980 -304 50 /WR /SCL -4900 -304 11 DUMMY -7910 -304 51 RS -4830 -304 12 TESTO -7840 -304 52 /CS -4760 -304 13 TESTO -7770 -304 53 DUMMY -4690 -304 14 TESTO -7700 -304 54 OSC -4620 -304 15 TESTO -7630 -304 55 FMARK -4550 -304 16 TESTO -7560 -304 56 DUMMY -4480 -304 17 TESTO -7490 -304 57 TESTI -4410 -304 18 TESTO -7420 -304 58 TESTI -4340 -304 19 RESET -7350 -304 59 TESTI -4270 -304 20 RESET -7280 -304 60 TESTI -4200 -304 21 TESTI -7210 -304 61 DUMMY -4130 -304 22 TESTI -7140 -304 62 DUMMY -4060 -304 23 TESTI -7070 -304 63 TESTO -3990 -304 24 TESTI -7000 -304 64 TESTO -3920 -304 25 DB17 -6905 -304 65 DUMMY -3850 -304 26 DB16 -6825 -304 66 DUMMY -3780 -304 27 DB15 -6745 -304 67 VDDI -3710 -304 28 DB14 -6665 -304 68 VDDI -3640 -304 29 DB13 -6585 -304 69 VDDI -3570 -304 30 DUMMY -6495 -304 70 VDDI -3500 -304 31 DB12 -6405 -304 71 VDDI -3430 -304 32 DB11 -6325 -304 72 VDDI -3360 -304 33 DB10 -6245 -304 73 VCC -3290 -304 34 DB9 -6165 -304 74 VCC -3220 -304 35 DB8 -6085 -304 75 VCC -3150 -304 36 DUMMY -5990 -304 76 VCC -3080 -304 37 DUMMY -5920 -304 77 VCC -3010 -304 38 DB7 -5825 -304 78 VCC -2940 -304 39 DB6 -5745 -304 79 VCC -2870 -304 40 DB5 -5665 -304 80 VCC -2800 -304 Ver. 1.7 4 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 81 VCC -2730 -304 121 VCOML 70 -304 82 VCC -2660 -304 122 VCOML 140 -304 83 VCC -2590 -304 123 VCOML 210 -304 84 DUMMY -2520 -304 124 VCOML 280 -304 85 DGND -2450 -304 125 GVDD 350 -304 86 DGND -2380 -304 126 GVDD 420 -304 87 DGND -2310 -304 127 GVDD 490 -304 88 DGND -2240 -304 128 DUMMY 560 -304 89 DGND -2170 -304 129 DUMMY 630 -304 90 DGND -2100 -304 130 DUMMY 700 -304 91 DGND -2030 -304 131 VCL 770 -304 92 DGND -1960 -304 132 VCL 840 -304 93 AGND -1890 -304 133 VCL 910 -304 94 AGND -1820 -304 134 VCL 980 -304 95 AGND -1750 -304 135 VCL 1050 -304 96 AGND -1680 -304 136 AVDD 1120 -304 97 AGND -1610 -304 137 AVDD 1190 -304 98 AGND -1540 -304 138 AVDD 1260 -304 99 AGND -1470 -304 139 AVDD 1330 -304 100 AGND -1400 -304 140 AVDD 1400 -304 101 AGND -1330 -304 141 AVDD 1470 -304 102 AGND -1260 -304 142 VCI1 1540 -304 103 AGND -1190 -304 143 VCI1 1610 -304 104 AGND -1120 -304 144 VCI1 1680 -304 105 V25 -1050 -304 145 VDD 1750 -304 106 DUMMY -980 -304 146 VDD 1820 -304 107 DUMMY -910 -304 147 VDD 1890 -304 108 VCOM -840 -304 148 VDD 1960 -304 109 VCOM -770 -304 149 VDD 2030 -304 110 VCOM -700 -304 150 VDD 2100 -304 111 VCOM -630 -304 151 VDD 2170 -304 112 VCOM -560 -304 152 VDD 2240 -304 113 VCOM -490 -304 153 VDD 2310 -304 114 VCOM -420 -304 154 VDD 2380 -304 115 VCOMH -350 -304 155 VDD 2450 -304 116 VCOMH -280 -304 156 VDD 2520 -304 117 VCOMH -210 -304 157 VDD 2590 -304 118 VCOMH -140 -304 158 VDD 2660 -304 119 VCOMH -70 -304 159 VDD 2730 -304 120 VCOMH 0 -304 160 VDD 2800 -304 Ver. 1.7 5 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 161 VDD 2870 -304 201 VGH 5670 -304 162 VDD 2940 -304 202 VGH 5740 -304 163 TESTO 3010 -304 203 VGH 5810 -304 164 TESTO 3080 -304 204 DUMMY 5880 -304 165 C12N 3150 -304 205 DUMMY 5950 -304 166 C12N 3220 -304 206 C21N 6020 -304 167 C12N 3290 -304 207 C21N 6090 -304 168 C12N 3360 -304 208 C21N 6160 -304 169 C12N 3430 -304 209 C21N 6230 -304 170 C12P 3500 -304 210 C21P 6300 -304 171 C12P 3570 -304 211 C21P 6370 -304 172 C12P 3640 -304 212 C21P 6440 -304 173 C12P 3710 -304 213 C21P 6510 -304 174 C12P 3780 -304 214 C22N 6580 -304 175 C11N 3850 -304 215 C22N 6650 -304 176 C11N 3920 -304 216 C22N 6720 -304 177 C11N 3990 -304 217 C22N 6790 -304 178 C11N 4060 -304 218 C22N 6860 -304 179 C11N 4130 -304 219 C22N 6930 -304 180 C11P 4200 -304 220 C22N 7000 -304 181 C11P 4270 -304 221 C22P 7070 -304 182 C11P 4340 -304 222 C22P 7140 -304 183 C11P 4410 -304 223 C22P 7210 -304 184 C11P 4480 -304 224 C22P 7280 -304 185 VGL 4550 -304 225 C22P 7350 -304 186 VGL 4620 -304 226 C22P 7420 -304 187 VGL 4690 -304 227 C22P 7490 -304 188 VGL 4760 -304 228 C23N 7560 -304 189 VGL 4830 -304 229 C23N 7630 -304 190 VGL 4900 -304 230 C23N 7700 -304 191 VGL 4970 -304 231 C23N 7770 -304 192 VGL 5040 -304 232 C23N 7840 -304 193 VGL 5110 -304 233 C23N 7910 -304 194 VGL 5180 -304 234 C23N 7980 -304 195 AGND 5250 -304 235 C23P 8050 -304 196 AGND 5320 -304 236 C23P 8120 -304 197 AGND 5390 -304 237 C23P 8190 -304 198 VGH 5460 -304 238 C23P 8260 -304 199 VGH 5530 -304 239 C23P 8330 -304 200 VGH 5600 -304 240 C23P 8400 -304 Ver. 1.7 6 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 241 C23P 8470 -304 281 G248 8067 299 242 DUMMY 8540 -304 282 G246 8051 182 243 DUMMY 8610 -304 283 G244 8035 299 244 DUMMY 8659 182 284 G244 8019 182 245 G320 8643 299 285 G240 8003 299 246 G318 8627 182 286 G240 7987 182 247 G316 8611 299 287 G236 7971 299 248 G314 8595 182 288 G234 7955 182 249 G312 8579 299 289 G232 7939 299 250 G310 8563 182 290 G230 7923 182 251 G308 8547 299 291 G228 7907 299 252 G306 8531 182 292 G226 7891 182 253 G304 8515 299 293 G224 7875 299 254 G302 8499 182 294 G222 7859 182 255 G300 8483 299 295 G220 7843 299 256 G298 8467 182 296 G218 7827 182 257 G296 8451 299 297 G216 7811 299 258 G294 8435 182 298 G214 7795 182 259 G292 8419 299 299 G212 7779 299 260 G290 8403 182 300 G210 7763 182 261 G288 8387 299 301 G208 7747 299 262 G286 8371 182 302 G206 7731 182 263 G284 8355 299 303 G204 7715 299 264 G282 8339 182 304 G202 7699 182 265 G280 8323 299 305 G200 7683 299 266 G278 8307 182 306 G198 7667 182 267 G276 8291 299 307 G196 7651 299 268 G274 8275 182 308 G194 7635 182 269 G272 8259 299 309 G192 7619 299 270 G270 8243 182 310 G190 7603 182 271 G268 8227 299 311 G188 7587 299 272 G266 8211 182 312 G186 7571 182 273 G264 8195 299 313 G184 7555 299 274 G262 8179 182 314 G182 7539 182 275 G260 8163 299 315 G180 7523 299 276 G258 8147 182 316 G178 7507 182 277 G256 8131 299 317 G176 7491 299 278 G254 8115 182 318 G174 7475 182 279 G252 8099 299 319 G172 7459 299 280 G250 8083 182 320 G170 7443 182 Ver. 1.7 7 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 321 G168 7427 299 361 G88 6787 299 322 G166 7411 182 362 G86 6771 182 323 G164 7395 299 363 G84 6755 299 324 G162 7379 182 364 G82 6739 182 325 G160 7363 299 365 G80 6723 299 326 G158 7347 182 366 G78 6707 182 327 G156 7331 299 367 G76 6691 299 328 G154 7315 182 368 G74 6675 182 329 G152 7299 299 369 G72 6659 299 330 G150 7283 182 370 G70 6643 182 331 G148 7267 299 371 G68 6627 299 332 G146 7251 182 372 G66 6611 182 333 G144 7235 299 373 G64 6595 299 334 G142 7219 182 374 G62 6579 182 335 G140 7203 299 375 G60 6563 299 336 G138 7187 182 376 G58 6547 182 337 G136 7171 299 377 G56 6531 299 338 G134 7155 182 378 G54 6515 182 339 G132 7139 299 379 G52 6499 299 340 G130 7123 182 380 G50 6483 182 341 G128 7107 299 381 G48 6467 299 342 G126 7091 182 382 G46 6451 182 343 G124 7075 299 383 G44 6435 299 344 G122 7059 182 384 G42 6419 182 345 G120 7043 299 385 G40 6403 299 346 G118 7027 182 386 G38 6387 182 347 G116 7011 299 387 G36 6371 299 348 G114 6995 182 388 G34 6355 182 349 G112 6979 299 389 G32 6339 299 350 G110 6963 182 390 G30 6323 182 351 G108 6947 299 391 G28 6307 299 352 G106 6931 182 392 G26 6291 182 353 G104 6915 299 393 G24 6275 299 354 G102 6899 182 394 G22 6259 182 355 G100 6883 299 395 G20 6243 299 356 G98 6867 182 396 G18 6227 182 357 G96 6851 299 397 G16 6211 299 358 G94 6835 182 398 G14 6195 182 359 G92 6819 299 399 G12 6179 299 360 G90 6803 182 400 G10 6163 182 Ver. 1.7 8 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 401 G8 6147 299 441 S686 5487 182 402 G6 6131 182 442 S685 5471 299 403 G4 6115 299 443 S684 5455 182 404 G2 6099 182 444 S683 5439 299 405 DUMMY 6083 299 445 S682 5423 182 406 DUMMY 6047 299 446 S681 5407 299 407 S720 6031 182 447 S680 5391 182 408 S719 6015 299 448 S679 5375 299 409 S718 5999 182 449 S678 5359 182 410 S717 5983 299 450 S677 5343 299 411 S716 5967 182 451 S676 5327 182 412 S715 5951 299 452 S675 5311 299 413 S714 5935 182 453 S674 5295 182 414 S713 5919 299 454 S673 5279 299 415 S712 5903 182 455 S672 5263 182 416 S711 5887 299 456 S671 5247 299 417 S710 5871 182 457 S670 5231 182 418 S709 5855 299 458 S669 5215 299 419 S708 5839 182 459 S668 5199 182 420 S707 5823 299 460 S667 5183 299 421 S706 5807 182 461 S666 5167 182 422 S705 5791 299 462 S665 5151 299 423 S704 5775 182 463 S664 5135 182 424 S703 5759 299 464 S663 5119 299 425 S702 5743 182 465 S662 5103 182 426 S701 5727 299 466 S661 5087 299 427 S700 5711 182 467 S660 5071 182 428 S699 5695 299 468 S659 5055 299 429 S698 5679 182 469 S658 5039 182 430 S697 5663 299 470 S657 5023 299 431 S696 5647 182 471 S656 5007 182 432 S695 5631 299 472 S655 4991 299 433 S694 5615 182 473 S654 4975 182 434 S693 5599 299 474 S653 4959 299 435 S692 5583 182 475 S652 4943 182 436 S691 5567 299 476 S651 4927 299 437 S690 5551 182 477 S650 4911 182 438 S689 5535 299 478 S649 4895 299 439 S688 5519 182 479 S648 4879 182 440 S687 5503 299 480 S647 4863 299 Ver. 1.7 9 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 481 S646 4847 182 521 S606 4207 182 482 S645 4831 299 522 S605 4191 299 483 S644 4815 182 523 S604 4175 182 484 S643 4799 299 524 S603 4159 299 485 S642 4783 182 525 S602 4143 182 486 S641 4767 299 526 S601 4127 299 487 S640 4751 182 527 S600 4111 182 488 S639 4735 299 528 S599 4095 299 489 S638 4719 182 529 S598 4079 182 490 S637 4703 299 530 S597 4063 299 491 S636 4687 182 531 S596 4047 182 492 S635 4671 299 532 S595 4031 299 493 S634 4655 182 533 S594 4015 182 494 S633 4639 299 534 S593 3999 299 495 S632 4623 182 535 S592 3983 182 496 S631 4607 299 536 S591 3967 299 497 S630 4591 182 537 S590 3951 182 498 S629 4575 299 538 S589 3935 299 499 S628 4559 182 539 S588 3919 182 500 S627 4543 299 540 S587 3903 299 501 S626 4527 182 541 S586 3887 182 502 S625 4511 299 542 S585 3871 299 503 S624 4495 182 543 S584 3855 182 504 S623 4479 299 544 S583 3839 299 505 S622 4463 182 545 S582 3823 182 506 S621 4447 299 546 S581 3807 299 507 S620 4431 182 547 S580 3791 182 508 S619 4415 299 548 S579 3775 299 509 S618 4399 182 549 S578 3759 182 510 S617 4383 299 550 S577 3743 299 511 S616 4367 182 551 S576 3727 182 512 S615 4351 299 552 S575 3711 299 513 S614 4335 182 553 S574 3695 182 514 S613 4319 299 554 S573 3679 299 515 S612 4303 182 555 S572 3663 182 516 S611 4287 299 556 S571 3647 299 517 S610 4271 182 557 S570 3631 182 518 S609 4255 299 558 S569 3615 299 519 S608 4239 182 559 S568 3599 182 520 S607 4223 299 560 S567 3583 299 Ver. 1.7 10 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 561 S566 3567 182 601 S526 2927 182 562 S565 3551 299 602 S525 2911 299 563 S564 3535 182 603 S524 2895 182 564 S563 3519 299 604 S523 2879 299 565 S562 3503 182 605 S522 2863 182 566 S561 3487 299 606 S521 2847 299 567 S560 3471 182 607 S520 2831 182 568 S559 3455 299 608 S519 2815 299 569 S558 3439 182 609 S518 2799 182 570 S557 3423 299 610 S517 2783 299 571 S556 3407 182 611 S516 2767 182 572 S555 3391 299 612 S515 2751 299 573 S554 3375 182 613 S514 2735 182 574 S553 3359 299 614 S513 2719 299 575 S552 3343 182 615 S512 2703 182 576 S551 3327 299 616 S511 2687 299 577 S550 3311 182 617 S510 2671 182 578 S549 3295 299 618 S509 2655 299 579 S548 3279 182 619 S508 2639 182 580 S547 3263 299 620 S507 2623 299 581 S546 3247 182 621 S506 2607 182 582 S545 3231 299 622 S505 2591 299 583 S544 3215 182 623 S504 2575 182 584 S543 3199 299 624 S503 2559 299 585 S542 3183 182 625 S502 2543 182 586 S541 3167 299 626 S501 2527 299 587 S540 3151 182 627 S500 2511 182 588 S539 3135 299 628 S499 2495 299 589 S538 3119 182 629 S498 2479 182 590 S537 3103 299 630 S497 2463 299 591 S536 3087 182 631 S496 2447 182 592 S535 3071 299 632 S495 2431 299 593 S534 3055 182 633 S494 2415 182 594 S533 3039 299 634 S493 2399 299 595 S532 3023 182 635 S492 2383 182 596 S531 3007 299 636 S491 2367 299 597 S530 2991 182 637 S490 2351 182 598 S529 2975 299 638 S489 2335 299 599 S528 2959 182 639 S488 2319 182 600 S527 2943 299 640 S487 2303 299 Ver. 1.7 11 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 641 S486 2287 182 681 S446 1647 182 642 S485 2271 299 682 S445 1631 299 643 S484 2255 182 683 S444 1615 182 644 S483 2239 299 684 S443 1599 299 645 S482 2223 182 685 S442 1583 182 646 S481 2207 299 686 S441 1567 299 647 S480 2191 182 687 S440 1551 182 648 S479 2175 299 688 S439 1535 299 649 S478 2159 182 689 S438 1519 182 650 S477 2143 299 690 S437 1503 299 651 S476 2127 182 691 S436 1487 182 652 S475 2111 299 692 S435 1471 299 653 S474 2095 182 693 S434 1455 182 654 S473 2079 299 694 S433 1439 299 655 S472 2063 182 695 S432 1423 182 656 S471 2047 299 696 S431 1407 299 657 S470 2031 182 697 S430 1391 182 658 S469 2015 299 698 S429 1375 299 659 S468 1999 182 699 S428 1359 182 660 S467 1983 299 700 S427 1343 299 661 S466 1967 182 701 S426 1327 182 662 S465 1951 299 702 S425 1311 299 663 S464 1935 182 703 S424 1295 182 664 S463 1919 299 704 S423 1279 299 665 S462 1903 182 705 S422 1263 182 666 S461 1887 299 706 S421 1247 299 667 S460 1871 182 707 S420 1231 182 668 S459 1855 299 708 S419 1215 299 669 S458 1839 182 709 S418 1199 182 670 S457 1823 299 710 S417 1183 299 671 S456 1807 182 711 S416 1167 182 672 S455 1791 299 712 S415 1151 299 673 S454 1775 182 713 S414 1135 182 674 S453 1759 299 714 S413 1119 299 675 S452 1743 182 715 S412 1103 182 676 S451 1727 299 716 S411 1087 299 677 S450 1711 182 717 S410 1071 182 678 S449 1695 299 718 S409 1055 299 679 S448 1679 182 719 S408 1039 182 680 S447 1663 299 720 S407 1023 299 Ver. 1.7 12 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 721 S406 1007 182 761 S366 367 182 722 S405 991 299 762 S365 351 299 723 S404 975 182 763 S364 335 182 724 S403 959 299 764 S363 319 299 725 S402 943 182 765 S362 303 182 726 S401 927 299 766 S361 287 299 727 S400 911 182 767 DUMMY 271 182 728 S399 895 299 768 DUMMY -271 182 729 S398 879 182 769 S360 -287 299 730 S397 863 299 770 S359 -303 182 731 S396 847 182 771 S358 -319 299 732 S395 831 299 772 S357 -335 182 733 S394 815 182 773 S356 -351 299 734 S393 799 299 774 S355 -367 182 735 S392 783 182 775 S354 -383 299 736 S391 767 299 776 S353 -399 182 737 S390 751 182 777 S352 -415 299 738 S389 735 299 778 S351 -431 182 739 S388 719 182 779 S350 -447 299 740 S387 703 299 780 S349 -463 182 741 S386 687 182 781 S348 -479 299 742 S385 671 299 782 S347 -495 182 743 S384 655 182 783 S346 -511 299 744 S383 639 299 784 S345 -527 182 745 S382 623 182 785 S344 -543 299 746 S381 607 299 786 S343 -559 182 747 S380 591 182 787 S342 -575 299 748 S379 575 299 788 S341 -591 182 749 S378 559 182 789 S340 -607 299 750 S377 543 299 790 S339 -623 182 751 S376 527 182 791 S338 -639 299 752 S375 511 299 792 S337 -655 182 753 S374 495 182 793 S336 -671 299 754 S373 479 299 794 S335 -687 182 755 S372 463 182 795 S334 -703 299 756 S371 447 299 796 S333 -719 182 757 S370 431 182 797 S332 -735 299 758 S369 415 299 798 S331 -751 182 759 S368 399 182 799 S330 -767 299 760 S367 383 299 800 S329 -783 182 Ver. 1.7 13 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 801 S328 -799 299 841 S288 -1439 299 802 S327 -815 182 842 S287 -1455 182 803 S326 -831 299 843 S286 -1471 299 804 S325 -847 182 844 S285 -1487 182 805 S324 -863 299 845 S284 -1503 299 806 S323 -879 182 846 S283 -1519 182 807 S322 -895 299 847 S282 -1535 299 808 S321 -911 182 848 S281 -1551 182 809 S320 -927 299 849 S280 -1567 299 810 S319 -943 182 850 S279 -1583 182 811 S318 -959 299 851 S278 -1599 299 812 S317 -975 182 852 S277 -1615 182 813 S316 -991 299 853 S276 -1631 299 814 S315 -1007 182 854 S275 -1647 182 815 S314 -1023 299 855 S274 -1663 299 816 S313 -1039 182 856 S273 -1679 182 817 S312 -1055 299 857 S272 -1695 299 818 S311 -1071 182 858 S271 -1711 182 819 S310 -1087 299 859 S270 -1727 299 820 S309 -1103 182 860 S269 -1743 182 821 S308 -1119 299 861 S268 -1759 299 822 S307 -1135 182 862 S267 -1775 182 823 S306 -1151 299 863 S266 -1791 299 824 S305 -1167 182 864 S265 -1807 182 825 S304 -1183 299 865 S264 -1823 299 826 S303 -1199 182 866 S263 -1839 182 827 S302 -1215 299 867 S262 -1855 299 828 S301 -1231 182 868 S261 -1871 182 829 S300 -1247 299 869 S260 -1887 299 830 S299 -1263 182 870 S269 -1903 182 831 S298 -1279 299 871 S268 -1919 299 832 S297 -1295 182 872 S267 -1935 182 833 S296 -1311 299 873 S266 -1951 299 834 S295 -1327 182 874 S265 -1967 182 835 S294 -1343 299 875 S264 -1983 299 836 S293 -1359 182 876 S263 -1999 182 837 S292 -1375 299 877 S262 -2015 299 838 S291 -1391 182 878 S261 -2031 182 839 S290 -1407 299 879 S260 -2047 299 840 S289 -1423 182 880 S249 -2063 182 Ver. 1.7 14 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 881 S248 -2079 299 921 S208 -2719 299 882 S247 -2095 182 922 S207 -2735 182 883 S246 -2111 299 923 S206 -2751 299 884 S245 -2127 182 924 S205 -2767 182 885 S244 -2143 299 925 S204 -2783 299 886 S243 -2159 182 926 S203 -2799 182 887 S242 -2175 299 927 S202 -2815 299 888 S241 -2191 182 928 S201 -2831 182 889 S240 -2207 299 929 S200 -2847 299 890 S239 -2223 182 930 S199 -2863 182 891 S238 -2239 299 931 S198 -2879 299 892 S237 -2255 182 932 S197 -2895 182 893 S236 -2271 299 933 S196 -2911 299 894 S235 -2287 182 934 S195 -2927 182 895 S234 -2303 299 935 S194 -2943 299 896 S233 -2319 182 936 S193 -2959 182 897 S232 -2335 299 937 S192 -2975 299 898 S231 -2351 182 938 S191 -2991 182 899 S230 -2367 299 939 S190 -3007 299 900 S229 -2383 182 940 S189 -3023 182 901 S228 -2399 299 941 S188 -3039 299 902 S227 -2415 182 942 S187 -3055 182 903 S226 -2431 299 943 S186 -3071 299 904 S225 -2447 182 944 S185 -3087 182 905 S224 -2463 299 945 S184 -3103 299 906 S223 -2479 182 946 S183 -3119 182 907 S222 -2495 299 947 S182 -3135 299 908 S221 -2511 182 948 S181 -3151 182 909 S220 -2527 299 949 S180 -3167 299 910 S219 -2543 182 950 S179 -3183 182 911 S218 -2559 299 951 S178 -3199 299 912 S217 -2575 182 952 S177 -3215 182 913 S216 -2591 299 953 S176 -3231 299 914 S215 -2607 182 954 S175 -3247 182 915 S214 -2623 299 955 S174 -3263 299 916 S213 -2639 182 956 S173 -3279 182 917 S212 -2655 299 957 S172 -3295 299 918 S211 -2671 182 958 S171 -3311 182 919 S210 -2687 299 959 S170 -3327 299 920 S209 -2703 182 960 S169 -3343 182 Ver. 1.7 15 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 961 S168 -3359 299 1001 S128 -3999 299 962 S167 -3375 182 1002 S127 -4015 182 963 S166 -3391 299 1003 S126 -4031 299 964 S165 -3407 182 1004 S125 -4047 182 965 S164 -3423 299 1005 S124 -4063 299 966 S163 -3439 182 1006 S123 -4079 182 967 S162 -3455 299 1007 S122 -4095 299 968 S161 -3471 182 1008 S121 -4111 182 969 S160 -3487 299 1009 S120 -4127 299 970 S159 -3503 182 1010 S119 -4143 182 971 S158 -3519 299 1011 S118 -4159 299 972 S157 -3535 182 1012 S117 -4175 182 973 S156 -3551 299 1013 S116 -4191 299 974 S155 -3567 182 1014 S115 -4207 182 975 S154 -3583 299 1015 S114 -4223 299 976 S153 -3599 182 1016 S113 -4239 182 977 S152 -3615 299 1017 S112 -4255 299 978 S151 -3631 182 1018 S111 -4271 182 979 S150 -3647 299 1019 S110 -4287 299 980 S149 -3663 182 1020 S109 -4303 182 981 S148 -3679 299 1021 S108 -4319 299 982 S147 -3695 182 1022 S107 -4335 182 983 S146 -3711 299 1023 S106 -4351 299 984 S145 -3727 182 1024 S105 -4367 182 985 S144 -3743 299 1025 S104 -4383 299 986 S143 -3759 182 1026 S103 -4399 182 987 S142 -3775 299 1027 S102 -4415 299 988 S141 -3791 182 1028 S101 -4431 182 989 S140 -3807 299 1029 S100 -4447 299 990 S139 -3823 182 1030 S99 -4463 182 991 S138 -3839 299 1031 S98 -4479 299 992 S137 -3855 182 1032 S97 -4495 182 993 S136 -3871 299 1033 S96 -4511 299 994 S135 -3887 182 1034 S95 -4527 182 995 S134 -3903 299 1035 S94 -4543 299 996 S133 -3919 182 1036 S93 -4559 182 997 S132 -3935 299 1037 S92 -4575 299 998 S131 -3951 182 1038 S91 -4591 182 999 S130 -3967 299 1039 S90 -4607 299 1000 S129 -3983 182 1040 S89 -4623 182 Ver. 1.7 16 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 1041 S88 -4639 299 1081 S48 -5279 299 1042 S87 -4655 182 1082 S47 -5295 182 1043 S86 -4671 299 1083 S46 -5311 299 1044 S85 -4687 182 1084 S45 -5327 182 1045 S84 -4703 299 1085 S44 -5343 299 1046 S83 -4719 182 1086 S43 -5359 182 1047 S82 -4735 299 1087 S42 -5375 299 1048 S81 -4751 182 1088 S41 -5391 182 1049 S80 -4767 299 1089 S40 -5407 299 1050 S79 -4783 182 1090 S39 -5423 182 1051 S78 -4799 299 1091 S38 -5439 299 1052 S77 -4815 182 1092 S37 -5455 182 1053 S76 -4831 299 1093 S36 -5471 299 1054 S75 -4847 182 1094 S35 -5487 182 1055 S74 -4863 299 1095 S34 -5503 299 1056 S73 -4879 182 1096 S33 -5519 182 1057 S72 -4895 299 1097 S32 -5535 299 1058 S71 -4911 182 1098 S31 -5551 182 1059 S70 -4927 299 1099 S30 -5567 299 1060 S69 -4943 182 1100 S29 -5583 182 1061 S68 -4959 299 1101 S28 -5599 299 1062 S67 -4975 182 1102 S27 -5615 182 1063 S66 -4991 299 1103 S26 -5631 299 1064 S65 -5007 182 1104 S25 -5647 182 1065 S64 -5023 299 1105 S24 -5663 299 1066 S63 -5039 182 1106 S23 -5679 182 1067 S62 -5055 299 1107 S22 -5695 299 1068 S61 -5071 182 1108 S21 -5711 182 1069 S60 -5087 299 1109 S20 -5727 299 1070 S59 -5103 182 1110 S19 -5743 182 1071 S58 -5119 299 1111 S18 -5759 299 1072 S57 -5135 182 1112 S17 -5775 182 1073 S56 -5151 299 1113 S16 -5791 299 1074 S55 -5167 182 1114 S15 -5807 182 1075 S54 -5183 299 1115 S14 -5823 299 1076 S53 -5199 182 1116 S13 -5839 182 1077 S52 -5215 299 1117 S12 -5855 299 1078 S51 -5231 182 1118 S11 -5871 182 1079 S50 -5247 299 1119 S10 -5887 299 1080 S49 -5263 182 1120 S9 -5903 182 Ver. 1.7 17 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 1121 S8 -5919 299 1161 G61 -6579 182 1122 S7 -5935 182 1162 G63 -6595 299 1123 S6 -5951 299 1163 G65 -6611 182 1124 S5 -5967 182 1164 G67 -6627 299 1125 S4 -5983 299 1165 G69 -6643 182 1126 S3 -5999 182 1166 G71 -6659 299 1127 S2 -6015 299 1167 G73 -6675 182 1128 S1 -6031 182 1168 G75 -6691 299 1129 DUMMY -6047 299 1169 G77 -6707 182 1130 DUMMY -6081.62 299 1170 G79 -6723 299 1131 G1 -6099 182 1171 G81 -6739 182 1132 G3 -6115 299 1172 G83 -6755 299 1133 G5 -6131 182 1173 G85 -6771 182 1134 G7 -6147 299 1174 G87 -6787 299 1135 G9 -6163 182 1175 G89 -6803 182 1136 G11 -6179 299 1176 G91 -6819 299 1137 G13 -6195 182 1177 G93 -6835 182 1138 G15 -6211 299 1178 G95 -6851 299 1139 G17 -6227 182 1179 G97 -6867 182 1140 G19 -6243 299 1180 G99 -6883 299 1141 G21 -6259 182 1181 G101 -6899 182 1142 G23 -6275 299 1182 G103 -6915 299 1143 G25 -6291 182 1183 G105 -6931 182 1144 G27 -6307 299 1184 G107 -6947 299 1145 G29 -6323 182 1185 G109 -6963 182 1146 G31 -6339 299 1186 G111 -6979 299 1147 G33 -6355 182 1187 G113 -6995 182 1148 G35 -6371 299 1188 G115 -7011 299 1149 G37 -6387 182 1189 G117 -7027 182 1150 G39 -6403 299 1190 G119 -7043 299 1151 G41 -6419 182 1191 G121 -7059 182 1152 G43 -6435 299 1192 G123 -7075 299 1153 G45 -6451 182 1193 G125 -7091 182 1154 G47 -6467 299 1194 G127 -7107 299 1155 G49 -6483 182 1195 G129 -7123 182 1156 G51 -6499 299 1196 G131 -7139 299 1157 G53 -6515 182 1197 G133 -7155 182 1158 G55 -6531 299 1198 G135 -7171 299 1159 G57 -6547 182 1199 G137 -7187 182 1160 G59 -6563 299 1200 G139 -7203 299 Ver. 1.7 18 ST7781 PAD No. PIN Name X Y PAD No. PIN Name X Y 1201 G141 -7219 182 1241 G221 -7859 182 1202 G143 -7235 299 1242 G223 -7875 299 1203 G145 -7251 182 1243 G225 -7891 182 1204 G147 -7267 299 1244 G227 -7907 299 1205 G149 -7283 182 1245 G229 -7923 182 1206 G151 -7299 299 1246 G231 -7939 299 1207 G153 -7315 182 1247 G233 -7955 182 1208 G155 -7331 299 1248 G235 -7971 299 1209 G157 -7347 182 1249 G237 -7987 182 1210 G159 -7363 299 1250 G239 -8003 299 1211 G161 -7379 182 1251 G241 -8019 182 1212 G163 -7395 299 1252 G243 -8035 299 1213 G165 -7411 182 1253 G245 -8051 182 1214 G167 -7427 299 1254 G247 -8067 299 1215 G169 -7443 182 1255 G249 -8083 182 1216 G171 -7459 299 1256 G251 -8099 299 1217 G173 -7475 182 1257 G253 -8115 182 1218 G175 -7491 299 1258 G255 -8131 299 1219 G177 -7507 182 1259 G257 -8147 182 1220 G179 -7523 299 1260 G259 -8163 299 1221 G181 -7539 182 1261 G261 -8179 182 1222 G183 -7555 299 1262 G263 -8195 299 1223 G185 -7571 182 1263 G265 -8211 182 1224 G187 -7587 299 1264 G267 -8227 299 1225 G189 -7603 182 1265 G269 -8243 182 1226 G191 -7619 299 1266 G271 -8259 299 1227 G193 -7635 182 1267 G273 -8275 182 1228 G195 -7651 299 1268 G275 -8291 299 1229 G197 -7667 182 1269 G277 -8307 182 1230 G199 -7683 299 1270 G279 -8323 299 1231 G201 -7699 182 1271 G281 -8339 182 1232 G203 -7715 299 1272 G283 -8355 299 1233 G205 -7731 182 1273 G285 -8371 182 1234 G207 -7747 299 1274 G287 -8387 299 1235 G209 -7763 182 1275 G289 -8403 182 1236 G211 -7779 299 1276 G291 -8419 299 1237 G213 -7795 182 1277 G293 -8435 182 1238 G215 -7811 299 1278 G295 -8451 299 1239 G217 -7827 182 1279 G297 -8467 182 1240 G219 -7843 299 1280 G299 -8483 299 Ver. 1.7 19 ST7781 PAD No. PIN Name X Y 1281 G301 -8499 182 1282 G303 -8515 299 1283 G305 -8531 182 1284 G307 -8547 299 1285 G309 -8563 182 1286 G311 -8579 299 1287 G313 -8595 182 1288 G315 -8611 299 1289 G317 -8627 182 1290 G319 -8643 299 1291 DUMMY -8659 182 Ver. 1.7 20 ST7781 5. Block Diagram Ver. 1.7 21 ST7781 6. Pin Description 6.1 Power Supply Pin Name VDD VDDI AGND DGND I/O I I I I Description Power supply for analog, digital system and booster circuit Power supply for I/O system System ground for analog system and booster circuit. System ground for I/O system and internal digital system. Connect Pin VDD VDDI GND GND 6.2 Interface Logic Pin Name I/O Description -Select the MCU system interface mode IM3 IM2 IM1 IM0 MCU-Interface Mode 0 0 1 0 I80-system 16-bit interface Connect Pin DB Pin Use DB[17:10] DB[8:1] DB[17:10] SDI,SDO DB[17:0] DB[17:9] 0 0 1 1 I80-system 8-bit interface 0 1 0 ID Serial Peripheral interface (SPI) 1 0 1 0 I80-system 18-bit interface 1 0 1 1 I80-system 9-bit interface -If not used, please connect this pin to VDDI or DGND -When the serial peripheral interface is selected, IM0_ID pin is used for the device ID code setting. RESET I -This signal will reset the driver and it must be applied to properly initialize the chip. -Chip select input pin and signal is active low. /CS I -This pin can be permanently fixed “Low” in MCU interface mode only. -Display data or command selection pin in MCU interface. RS I RS =’1’: Display Data or Parameter. RS =’0’: Command. /RD I -Read enable in 8080 MCU parallel interface. -Write operation enable pin in 8080 MCU parallel interface. /WR/SCL I -In SPI interface, this pin is used as SCL. -If not used, please connect this pin to VDDI or DGND. -SPI interface data input pin. SDI I -The data is latched on the rising edge of the SCL signal. -If not used, please connect this pin to VDDI or DGND. -SPI interface data output pin. SDO O -The data is outputted on the falling edge of the SCL signal. -Let SDO as floating when not in use. -To use extended command set, please connect this pin to VDDI. SW_EE I -During normal operation, please let this pin open. -Output a frame head pulse signal is used as synchronies MCU to frame rate FMARK O -If not used, Let this pin open Note1. When /CS=”1”, there is no influence to the parallel interface. Note2. “1” = VDDI level, “0” = DGND level. IM0~IM3 Ver. 1.7 I 22 DGND/VDDI MCU MCU MCU MCU MCU MCU MCU DGND/VDDI - ST7781 6.3 Driver Output Pin Name I/O Description -Source driver output pins -To change the shift direction of signal outputs, use the SS bit. SS = “0”, the data in the RAM address “h00000” is output from S1. SS = “1”, the data in the RAM address “h00000” is output from S720. -When SS=”0” S1, S4, S7, … display red (R), S2, S5, S8, ... display green (G), and S3, S6, S9 ... display blue (B) -Gate driver output pins. VGH: Selecting Gate Lines Level. VGL: Non-selecting Gate Lines Level. -A reference voltage for step-up circuit 1. The amplitude between VDD and AGND is determined by the VC [2:0] bits.Make sure to set the VCI1 voltage so that the AVDD, VCL, VGH and VGL voltages are set within the respective specification. -Connect a capacitor for stabilization. - Power pad for analogy circuit. -Connect a capacitor for stabilization. Connect Pin S1 to S720 O G1 to G320 O VCI1 O AVDD O VCL O -Power pad for VCOML circuit. -Connect a capacitor for stabilization. Capacitor VGH O -Power pad pin for gate driver circuit. -Connect a capacitor for stabilization. Capacitor VGL O -Power pad for gate driver circuit. -Connect a capacitor for stabilization. Capacitor GVDD O -A standard level for grayscale voltage generator. -Connect a capacitor for stabilization. Capacitor VCC O - Monitoring pin of internal digital reference voltage. -Connect a capacitor for stabilization. Capacitor VCOMH O -Positive voltage output of VCOM. -Connect a capacitor for stabilization. Capacitor VCOML O -Negative voltage output of VCOM. -Connect a capacitor for stabilization. Capacitor VCOM O -A power supply for the TFT-LCD common electrode. Common Electrode LCD LCD Capacitor Capacitor C11P, C11N Step-Up O -Capacitor connecting pins for step-up circuit 1 (for AVDD). C12P, C12N Capacitor C21P, C21N Step-Up O -Capacitor connecting pins for step-up circuit 2 (for VGH, VGL, and VCL). C22P, C22N Capacitor C23P, C23N Note1.VCI1, GVDD, AVDD, VCC, VCL, VOMH, VOML, C11P/N, C12P/N, C21P/N pin need to connect a capacitor that rated min voltage: 6.3v and typical capacitance value: 1uf Note2.C22P/N, C23P /N, need to connect a Capacitor that rated min voltage: 10v and typical capacitance value: 1uf Note3.VGH, VGL need to connect a Capacitor that rated min voltage: 25v and typical capacitance value: 1uf 6.4 Test Pin Name I/O DUMMY O TESTO O TESTI I OSC O V25 O Ver. 1.7 Description -These pins are dummy (have no function inside). -Please let these pin open. -These pins are for testing. -Please let these pin open. -These pins are for testing. -Please let these pin connect to DGND. -This pin is for testing. -Please let these pin open. -This pin is for testing. -Please let these pin open. 23 Connect Pin Open Open DGND Open Open ST7781 7. Driver Electrical Characteristics 7.1 Absolute Operation Range Item Symbol Rating Unit Supply Voltage VDD - 0.3 ~ +4.6 V Supply Voltage (Logic) VDDI - 0.3 ~ +4.6 V Supply Voltage (Digital) VCC -0.3 ~ +4.6 V Driver Supply Voltage VGH-VGL -0.3 ~ +30.0 V Logic Input Voltage Range VIN 0.5 ~ VDDI + 0.5 V Logic Output Voltage Range VO 0.5 ~ VDDI + 0.5 V Operating Temperature Range TOPR -30 ~ +85 ℃ Storage Temperature Range TSTG -40 ~ +125 ℃ Note: If one of the above items is exceeded its maximum limitation momentarily, the quality of the product may be degraded. Absolute maximum limitation, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the recommend range. 7.2 DC Characteristics Parameter Symbol Condition Min Specification TYP Max Unit Power & Operation Voltage System Voltage VDD Operating Voltage 2.5 2.8 3.3 Interface Operation VDDI I/O Supply Voltage 1.65 1.8/2.8 3.3 Voltage Input / Output Logic-High Input Voltage VIH 0.7VDDI VDDI Logic-Low Input Voltage VIL VSS 0.3VDDI Logic-High Output VOH IOH = -1.0mA 0.8VDDI VDDI Voltage Logic-Low Output VOL IOL = +1.0mA VSS 0.2VDDI Voltage Input Leakage Current IIL -0.1 +0.1 Source Driver Output Deviation Voltage VDEV 10 Output Offset Voltage VOFFSET 35 Note 1: VDDI=1.65 to 3.3V, VDD=2.6 to 3.3V, AGND=DGND=0V, TA= -30 to 85℃. Note 2: The maximum value is between measured point of source output and gamma setting value. Related Pins V V V V Note 1 Note 1 V Note 1 V Note 1 uA Note 1 mV mV Note 2 7.3 Power Consumption Ta=25℃, Frame Rate = 70Hz, Operation Mode Inversion Mode Image DC Current Consumption Typical Maximum IDDI IDD IDDI IDD (mA) (mA) (mA) (mA) Normal Mode One Line Note 1 0.01 3.00 0.01 5.00 Stand-by Mode N/A Note 1 0.01 0.03 0.01 0.05 Note 1: VDDI=1.8V, VDD=2.8V, All pixels black. . Ver. 1.7 24 ST7781 8. System Interface 8.1 Interface Specifications ST7781 has the system interface to read/write the control registers and display memory (DRAM) displaying a moving picture. User can select an optimum interface to display the moving or still picture with efficient data transfer. All display data are stored in the DRAM to reduce the data transfer efforts and only the updating data is necessary to be transferred. User can only update a sub-range of DRAM by using the window address function. ST7781 adopts 18-bit bus interface architecture for high-performance microprocessor. All the functional blocks of ST7781 starts to work after receiving the correct instruction from the external microprocessor by the 18bits, 16bits, 9bits,8bits. The index register (IR) stores the register address to which the instructions and display data will be written. The data/command selection signal (RS), the read/write signals (/RD//WR) and data bus DB[17:0] are used to read/write the instructions and data of ST7781. The registers of the ST7781 are categorized into the following groups. 1. Specify the Index of Register (IR) 2. Read a Status 3. Display Control 4. Power Management Control 5. Display Data Processing 6. Set Internal DRAM Address (AC) 7. Transfer Data to/from the Internal DRAM (R22h) 8. Internal Grayscale γ-Correction (R30h ~ R3Dh) Normally, the display data (DRAM) is most often updated, and in order since the ST7781 can update internal DRAM address automatically as it writes data to the internal DRAM and minimize data transfer by using the window address function, there are fewer loads on the program in the microprocessor. Ver. 1.7 25 ST7781 8.2 Timing Chart Parallel Interface Characteristics: 18, 16, 9 or 8-bits Bus (8080-Series MCU Interface) VIH /CS VIL VIH RS VIL TAST TWC VIH /WR TWRL TAHT TWRH VIL TDST Data Bus Write TDHT VIH VIL TAHT TAST TRC VIH /RD TRDL VIL TRDH TODH TRAT VIH Data Bus Read VIL Fig. 8.2.1 Parallel Interface Timing Characteristics (8080-Series MCU Interface) Signal RS /WR /RD DB[17:0] Symbol TAST TAHT TWC TWRH TWRL TRC TRDH TRDL TDST TDHT TRAT TODH VDDI=1.65 to 3.3V, VDD=2.5 to Parameter Min Max Address Setup Time 10 Address Hold Time (Write/Read) 5 Write Cycle 100 Control Pulse “H” Duration 50 Control Pulse “L” Duration 50 Read Cycle 300 Control Pulse “H” Duration 150 Control Pulse “L” Duration 150 Data Setup Time 10 Data Hold Time 15 Read Access Time 100 Output Disable Time 50 Table 8.2.1: Parallel Interface Characteristics Fig. 8.2.2 Rising and Falling Timing for I/O Signal Ver. 1.7 26 3.3V, AGND=DGND=0V, Ta=25 ℃ Unit Description ns ns ns ns ns ns ns ns TRAT, TRATFM: 3K ohm ns Pullup or Down and 30pF ns Parallel Cap. To GND. ns TODH: 3K ohm Pullup or ns Down. ST7781 Fig. 8.2.3 Write-to-Read and Read-to-Write Timing Note: The rising time and falling time (Tr, Tf) of input signal and fall time are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals. Serial interface characteristics (3-line serial) Fig. 8.2.4 3-line serial interface timing Signal /CS SCL SDI SDO Symbol TCSS TSCC TSCYCW TSHW TSLW TSCYCR TSHR TSLR TSDS TSDH TSOD TSOH VDDI=1.65 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=25 ℃ Parameter Min Max Unit Description Chip select setup time 10 ns Chip select hold time 50 ns Serial clock cycle (Write) 100 ns SCL “H” pulse width (Write) 40 ns SCL “L” pulse width (Write) 40 ns Serial clock cycle (Read) 200 ns SCL “H” pulse width (Read) 100 ns SCL “L” pulse width (Read) 100 ns Data setup time 20 ns Data hold time 20 ns Data output setup time 100 ns Data output hold time 5 ns Table 8.2.2.: 3-line Serial Interface Characteristics Note : The rising time and falling time (Tr, Tf) of input signal and fall time are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals. Ver. 1.7 27 ST7781 9. 8080 - Series MCU Parallel Interface 9.1 General Description The MCU can use on of following interfaces: 11-lines with 8-bit parallel interface, 12-lines with 9-bit parallel interface, 19-lines with 16-bit parallel interface or 21-lines with 18-bit parallel interface. The chip-select /CS (active low) enables/disables the parallel interface. RESET (active low) is an external reset signal to reset chip. /WR is the parallel data write, /RD is the parallel data read and DB[17:0] is parallel data. The LCD driver reads the data at the rising edge of /WR signal.Input The RS is the data/command flag. When RS=’1’, DB [17:0] bits are either display data or command parameters. When RS =’0’, DB [17:0] bits are commands. ST7781 supports high-speed system interfaces: i80-system high-speed interfaces to 8-, 9-, 16-, 18-bit parallel ports. The interface mode is selected by setting the IM[3:0] pins.The interface functions of 8080-series parallel interface are given in following table. IM3 IM2 IM1 IM0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 Interface RS /RD /WR Read Back Selection 0 1 ↑ Write Command (DB[17:10]) 1 1 ↑ Write Display Data (DB[17:10]) 8-bit parallel 1 ↑ 1 Read Display Data (DB[17:10]) 1 ↑ 1 Read Parameter or Status (DB[17:10]) 0 1 ↑ Write Command (DB[17:10], DB[8:1]) 16-bit 1 1 ↑ Write Display Data (DB[17:10], DB[8:1]) parallel 1 ↑ 1 Read Display Data (DB[17:10], DB[8:1]) 1 ↑ 1 Read Parameter or Status (DB[17:10], DB[8:1]) 0 1 ↑ Write Command (DB[17:10]) 9-bit 1 1 ↑ Write Display Data (DB[17:9]) parallel 1 ↑ 1 Read Display Data (DB[17:9]) 1 ↑ 1 Read Parameter or Status (DB[17:10]) 0 1 ↑ Write Command (DB[17:10], DB[8:1]) 18-bit 1 1 ↑ Write Display Data (DB[17:0]) parallel 1 ↑ 1 Read Display Data (DB[17:0]) ↑ 1 Read Parameter or Status (DB[17:10], DB[8:1]) 1 Table 9.1: 8080 Series MCU Paraell Interface ST7781 has a 16-bit index register (IR), an 18-bit write-data register (WDR), and an 18-bit read-data register (RDR). The IR is the register to store index information from control registers and the internal DRAM. The WDR is the register to temporarily store data to be written to control registers and the internal DRAM. The RDR is the register to temporarily store data read from the DRAM. Data from the MPU to be written to the internal DRAM are first written to the WDR and then automatically written to the internal DRAM in internal operation. Data are read via the RDR from the internal DRAM. Therefore, invalid data are read out to the data bus when the ST7781 read the first data from the internal DRAM. Valid data are read out after the ST7781 performs the second read operation. Registers are written consecutively as the register execution time except starting oscillator takes 0 clock cycle. Ver. 1.7 28 ST7781 9.2 8080-Series MCU Write Cycle Sequence The write cycle means that the host writes information (command or/and data) to the display module via the interface. Each write cycle (/WR “1” - “0” - “1” sequence) consists of 3 control signals (RS, /RD, /WR) and data signals (DB17:0]). RS bit is a control signal, which tells if the data is a command or a data. The data signals are the command if the control signal is “0” and vice versa it is data “1”. Fig. 9.2 8080-Series /WR Protocol Note: /WR is an unsynchronized signal (It can be stopped). 1- byte Command DB[17:0] S 2- byte Command N- byte Command CMD CMD PA1 CMD PA1 PAN-2 PAN-1 P S CMD CMD PA1 CMD PA1 PAN-2 PAN-1 P S CMD CMD PA1 CMD PA1 PAN-2 PAN-1 P RESET “ 1 ” /CS RS /RD “1” /WR DB[17:0] Host DB[17:0] (Host to LCD) Driver DB[17:0] (LCD to Host) Hi-Z CMD: Write Command Code PA: Parameter or Display Data Signals on DB[17:0],RS,nWR,nRD pins during nCS=1 are ignored Fig. 9.2.1 8080-Series Parallel Bus Protocol, Write to Register or Display RAM Ver. 1.7 29 ST7781 9.3 8080-18 bits Interface Write Data Format The 8080-18bits interface is selected by setting the IM [3:0] =”1010”.This mode only 262k colors format in display. In this interface write Instructions and DRAM method following figure. /RST MCU RESET /CS /CS A0 RS /WR /WR /RD /RD D[17:0] ST7781 DB[17:0] 18 Fig. 9.1.2 8080-18 bits Interface Data Format (Command Write/DRAM Write) Ver. 1.7 30 ST7781 9.4 8080-16 bits Interface Write Data Format The 8080-16bits interface is selected by setting IM [3:0] =”0010”.The mode can display 262k or 65k colors format. When the 262k color format is display, two transfers mode is used (first transfer: 2 bits, second transfer: 16 bits or first transfer: 16 bits, second transfer: 2 bits) Fig. 9.4 8080-16 bits Interface Data Format (Command Write/Display RAM Write) Ver. 1.7 31 ST7781 9.5 8080-9bits Interface Write Data Format The 8080-9bits interface is selected by setting the IM [3:0] = “1011” and the DB [17:9] pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte and lower byte and the upper byte is transferred first. The display data is also divided in upper byte (9 bits) and lower byte, and the upper byte is transferred first. The unused DB [8:0] pins must be tied to either VDDI or DGND. /RST MCU RESET /CS /CS A0 RS /WR /WR /RD /RD ST7781 DB[17:9] DB[8:0] D[8:0] 9 Fig. 9.5 8080-9 bits Interface Data Format (Command Write/Display RAM Write) Ver. 1.7 32 ST7781 9.6 8080-8bits Interface Write Data Format The 8080 8-bit interface is selected by setting the IM [3:0] as “0011” and the DB [17:10] pins are used to transfer the data. The mode can display 262k or 65k colors format. When writing the 16-bit register, the data is divided into upper byte lower byte and the upper byte is transferred first. The display data is also divided in upper byte (8 bits) and lower byte, and the upper byte is transferred first. The written data is expanded into 18 bits internally (see the figure below) and then written into DRAM. The unused DB [9:0] pins must be tied to either VDDI or DGND. Fig. 9.6 8080-8 bits interface data format (command write/Display RAM write) Ver. 1.7 33 ST7781 9.7 8080-series MCU Read Cycle Sequence The read cycle (/RD “1”- “0”- “1” sequence) means that the host reads information from display via interface. The driver sends data (DB [17:0]) to the host when there is a falling edge of /RD and the host reads data when there is a rising edge of /RD. Fig. 9.7 8080-Series /RD Protocol Note: /RD is an unsynchronized signal (It can be stopped). Fig. 9.7.1 8080-series parallel bus protocol, read data from register or display RAM Ver. 1.7 34 ST7781 9.8 8080-18bits interface read data format Fig. 9.8 8080-18 bits Interface Data Format (Command Read/Display RAM Read) Ver. 1.7 35 ST7781 9.9 8080-16bits Interface Read Data Format Fig. 9.9 8080-16 bits Interface Data Format (Command Read/Display RAM Read) Ver. 1.7 36 ST7781 9.10 8080-9bits Interface Read Data Format Fig. 9.10 8080-9 bits Interface Data Format (Command Read/Display RAM Read) Ver. 1.7 37 ST7781 9.11 8080-8bits Interface Read Data Format Fig.9.11 8080-8 bits Interface Data Format (Command Read/Display RAM Read) Ver. 1.7 38 ST7781 DRAM Address map table of SS=1, BGR=1 S1 SS = ’0’ GS = ’0’ GS = ’1’ SS = ’1’ S2 S3 S4 S5 S6 S718 S719 S720 S715 S716 S717 BGR=’0’ R G B R G B BGR=’1’ B G R B G R “0000”h “0000”h G319 G2 X Address “0000”h “0001”h Y Address “0001”h | | | | | | | | | | | | ------- S4 S5 S6 S1 S2 S3 ------- R G B R G B B G R B G R G2 G1 “00EE”h “00EF”h “0000”h “0000”h “00EE”h “00EF”h “0001”h “0001”h “0001”h | | | | | | | | | | | | | | | | X Address “0000”h “0001”h “00EE”h “00EF”h Y Address “013E”h “013E”h “013E”h “013E”h G320 Y Address X Address “0000”h “0001”h “00EE”h “00EF”h Y Address “013F”h “013F”h “013F”h “013F”h ------- ------- ------- ------- ------- Fig.9.12 DRAM Address Map Table Note: X Address Start Instruction:R50h X Address End Instruction:R51h Y Address Start Instruction:R52h Y Address End Instruction:R53h SS/GS Setting Instruction:R01h BGR Setting Instruction:R03h Ver. 1.7 S715 S716 S717 S718 S719 S720 G319 “0001”h G1 “0000”h G320 X Address ------ 39 ST7781 10 Serial Peripheral Interfaces (SPI) 10.1 General Description The serial interface is a 3-lines interface for communication between the micro controller and the LCD driver chip.That is selected by setting IM [3:0] pins as “010X” level. The 3-lines serial use: /CS(chip enable), SCL (serial clock) , SDI (serial data input)and SDO(serial data output). Serial clock (SCL) is used for interface with MCU only, so it can be stopped when no communication is necessary. The DB [17:0] pins are not used, must be fixed at VDDI or DGND.The selections of this interface see the Table IM3 IM2 IM1 IM0 Interface RS /RD /WR 0 1 0 ID 3-line serial interface N/A N/A SCL Read back selection DB[17:0]: unused Serial data input :SDI Serial data output:SDO Table 10.1 Serial Interface Type Selection Note: Unused pins connected to VDDI. The SPI interface operation enables from the falling edge of /CS and ends of data transfer on the rising edge of /CS. The chip is selected when 6-bit device ID code in the start byte that be matched. Then ST7781 receive sub-sequent data that starts taking. The least significant bit of device ID code is determined by setting the IM0 pin.Example:IM0=”0”, ST7781 is selected when the device ID code=”011100” in the start byte. The seventh bit of start byte is RS bit and the eighth bit is R/W bit. That two bit control ST7781 some operation that description see Table Start Byte Format Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Device ID code 0 1 1 1 0 ID/IM0 RS and R/W Bit Function Description Bit 7 Bit 8 RS R/W Function RS R/W 0 0 Set an index register 0/1 0/1 0 1 Read staus 1 0 Write a register or display RAM 1 1 Read a register Table 10.1.1Start byte format and Bit [7:8] function description 10.2 Command Write Mode The write mode of the interface means the micro controller writes commands to the LCD driver. Start byte data packet contains a control bit RS to indicates transmission data format. If RS is “low”, the transmission byte is interpreted as a command byte. If RS is “high”, the transmission byte is stored in the display data RAM (Memory write command), or command register as parameter. Any instruction can be sent in any order to the driver. The MSB is transmitted first. The serial interface is initialized when /CS is “high”. In this state, SCL clock pulse or SDI data have no effect. A falling edge on /CS enables the serial interface and indicates the start of data transmission. When /CS is “1”, SCL clock is ignored. During the high time of /CS the serial interface is initialized. At the falling edge of /CS, SCL can be high or low. SDI is sampled at the rising edge of /CS. RS (Start byte bit 7) indicates, whether the input data is command code (RS=’0’) or parameter/RAM data (RS=’1’). Fig. 10.2 3-line serial interface write protocol Ver. 1.7 40 ST7781 10.3 Read Functions The read mode of the interface means that the micro controller reads register value from the driver. To do that the micro controller first has to send a command and then the following start byte that setting read register operation (RS=”1”, R/W=”1”).In reading from command register status, after receiving the start byte, ST7781 starts to transfer the data in unit of byte and the data transfer starts from the MSB bit. All registers of ST7781 are 16-bit format and the first byte as upper eight of data. . Fig. 10.3.1 3-line Serial Protocol for read command register Ver. 1.7 41 ST7781 11. Register Descriptions ST7781 adopts 18-bit bus interface architecture for high-performance microprocessor. All the functional Blocks of ST7781 starts to work after receiving the correct instruction from the external microprocessor by the 18-, 16-, 9-, 8-bit interface. The index register (IR) stores the register address to which the instructions and Display data will be written. The register selection signal (RS), the read/write signals (/RD//WR) and data bus DB[17:0] are used to read/write the instructions and data of ST7781. The registers of the ST7781 are categorized into the following groups. 1. Specify the index of register (IR) 2. Read a status 3. Display control 4. Power management Control 5. Graphics data processing 6. Set internal DRAM address (AC) 7. Transfer data to/from the internal DRAM (R22) 8. Internal grayscale γ-correction (R30 ~ R3D) Normally, the display data (DRAM) is most often updated, and in order since the ST7781 can update internal DRAM address automatically as it writes data to the internal DRAM and minimize data transfer by using the window address function, there are fewer loads on the program in the microprocessor. The way of assigning data to the 16 register bits ( DB [15:0]) varies for each interface. Send registers in accordance with the following data transfer format. Ver. 1.7 42 ST7781 11.1 Instruction Description No Registers W/R IR Index Register W 00h Driver ID Code Read R 01h Driver Output Control W 02h LCD Driving Wave Control W 03h Entry Mode W 04h Resize Control W 07h Display Control 1 W 08h Display control 2 W 09h Display Control 3 W 0Ah Display Control 4 W 0Dh Frame Marker Position W 10h Power Control 1 W 11h Power Control 2 W 12h Power Control 3 W 13h Power Control 4 W DRAM Horizontal Address 20h W Set 21h DRAM Vertical Address Set W 22h Write Data to DRAM W 22h Read Data from DRAM R 29h VCOMH Control W Frame Rate and Color 2Bh W Control 30h Gamma Control 1 W 31h Gamma Control 2 W 32h Gamma Control 3 W 35h Gamma Control 4 W 36h Gamma Control 5 W 37h Gamma Control 6 W 38h Gamma Control 7 W 39h Gamma Control 8 W 3Ch Gamma Control 9 W 3Dh Gamma Control 10 W Horizontal Address Start 50h W Position Horizontal Address End 51h W Position Vertical Address Start 52h W Position Vertical Address End 53h W Position 60h Gate Scan Control 1 W 61h Gate Scan Control 2 W Partial Image 1 Display 80h W Position 81h 82h 83h 84h 85h 90h 92h D2h D9h Partial Image 1 Start Address Partial Image 1 End Address Partial Image 2 Display Position Partial Image 2 Start Address Partial Image 2 End Address Panel Interface Control 1 Panel Interface Control 2 EEPROM ID Code EEPROM Control Status DFh EEPROM Wite Command FAh FEh FFh EEPROM Enable EEPROM VCOM Offset FAh/FEh Enable Ver. 1.7 RS 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D15 0 0 0 TRI 0 0 0 0 0 0 0 0 0 0 D14 1 0 0 DFM 0 0 FP6 0 0 0 0 0 0 0 D13 1 0 0 0 0 PTDE1 FP5 0 0 0 0 0 0 0 D12 1 0 0 BGR 0 PTDE0 FP4 0 0 0 SAP 0 0 VDV4 D11 0 0 0 0 0 0 FP3 0 0 0 0 0 0 VDV3 D10 1 SM 1 0 0 0 FP2 PTS2 0 0 BT2 DC12 0 VDV2 D9 1 0 BC0 HWM RCV1 1 0 0 0 0 0 0 0 0 AD7 AD6 AD5 AD4 AD3 1 1 1 1 0 0 0 0 0 0 0 AD16 AD15 AD14 AD13 AD12 AD11 0 0 0 0 0 0 0 0 0 0 VCM5 VCM4 VCM3 1 0 0 0 0 0 0 0 0 0 0 0 0 FRS3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VRP1[4] 0 0 0 0 VRN1[4] 0 0 0 0 VRP1[3] 0 0 0 0 VRN1[3] KP1[2] KP3[2] KP5[2] RP1[2] VRP1[2] KN1[2] KN3[2] KN5[2] RN1[2] VRN1[2] KP1[1] KP3[1] KP5[1] RP1[1] VRP1[1] KN1[1] KN3[1] KN5[1] RN1[1] VRN1[1] KP1[0] KP3[0] KP5[0] RP1[0] VRP1[0] KN1[0] KN3[0] KN5[0] RN1[0] VRN1[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VRP0[3] 0 0 0 0 VRN0[3] KP0[2] KP2[2] KP4[2] RP0[2] VRP0[2] KN0[2] KN2[2] KN4[2] RN0[2] VRN0[2] 1 0 0 0 0 0 0 0 0 HSA7 HSA6 HSA5 HSA4 HSA3 HSA2 HSA1 HSA0 1 0 0 0 0 0 0 0 0 HEA7 HEA6 HEA5 HEA4 HEA3 HEA2 HEA1 HEA0 1 0 0 0 0 0 0 0 VSA8 VSA7 VSA6 VSA5 VSA4 VSA3 VSA2 VSA1 VSA0 1 0 0 0 0 0 0 0 VEA8 VEA7 VEA6 VEA5 VEA4 VEA3 VEA2 VEA1 VEA0 1 1 GS 0 0 0 NL5 0 NL4 0 NL3 0 NL2 0 NL1 0 NL0 0 0 0 0 0 SCN5 0 SCN4 0 SCN3 0 SCN2 NDL SCN1 VLE FP1 PTS1 0 0 BT1 DC11 0 VDV1 D8 1 SS EOR 0 RCV0 BASEE FP0 PTS0 0 FMP8 BT0 DC10 0 VDV0 D7 ID7 1 0 0 0 0 0 0 0 0 FMP7 APE 0 VCIRE 0 D6 ID6 0 0 0 0 0 0 BP6 0 0 FMP6 AP2 DC02 0 0 D5 ID5 0 0 0 I/D1 RCH1 GON BP5 PTG1 0 FMP5 AP1 DC01 0 0 D4 ID4 0 0 0 I/D0 RCH0 DTE BP4 PTG0 0 FMP4 AP0 DC00 0 0 D3 ID3 0 0 0 AM 0 CL BP3 ISC3 FMARKOE FMP3 0 0 VRH3 0 D1 ID1 1 0 0 0 RSZ1 D1 BP1 ISC1 FMI1 FMP1 STB VC1 VRH1 0 D0 ID0 1 0 0 0 RSZ0 D0 BP0 ISC0 FMI0 FMP0 0 VC0 VRH0 0 AD2 AD1 AD0 AD10 AD9 AD8 VCM2 VCM1 VCM0 FRS2 FRS1 FRS0 DRAM Write Data (WD17-0) / Read Data (RD17-0) 1 0 0 0 0 0 0 0 PTDP08 PTDP07 PTDP06 PTDP05 PTDP04 PTDP03 W 1 0 0 0 0 0 0 0 PTSA08 PTSA07 PTSA06 PTSA05 PTSA04 PTSA03 W 1 0 0 0 0 0 0 0 PTEA08 PTEA07 PTEA06 PTEA05 PTEA04 PTEA03 W 1 0 0 0 0 0 0 0 PTDP18 PTDP17 PTDP16 PTDP15 PTDP14 PTDP13 W 1 0 0 0 0 0 0 0 PTSA18 PTSA17 PTSA16 PTSA15 PTSA14 PTSA13 W 1 0 0 0 0 0 0 0 PTEA18 PTEA17 PTEA16 PTEA15 PTEA14 PTEA13 W W W W 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NOWI2 0 0 0 DIVI1 NOWI1 0 0 0 DIVI0 NOWI0 0 0 0 0 0 0 0 EE_IB7 RTNI6 0 ID6 ID_EN EE_IB6 RTNI5 0 ID5 VCM_EN EE_IB5 RTNI4 0 ID4 0 EE_IB4 RTNI3 0 ID3 0 EE_IB3 W 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W W W D2 ID2 0 0 0 0 0 0 BP2 ISC2 FMI2 FMP2 0 VC2 VRH2 0 43 EE_CMD7 EE_CMD6 EE_CMD5 EE_CMD4 EE_CMD3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 VCMF4 0 0 0 VCMF3 0 KP0[1] KP0[0] KP2[1] KP2[0] KP4[1] KP4[0] RP0[1] RP0[0] VRP0[1] VRP0[0] KN0[1] KN0[0] KN2[1] KN2[0] KN4[1] KN4[0] RN0[1] RN0[0] VRN0[1] VRN0[0] SCN0 REV PTDP0 PTDP02 PTDP01 0 PTSA0 PTSA02 PTSA01 0 PTEA0 PTEA02 PTEA01 0 PTDP1 PTDP12 PTDP11 0 PTSA1 PTSA12 PTSA11 0 PTEA1 PTEA12 PTEA11 0 RTNI2 RTNI1 RTNI0 0 0 0 ID2 ID1 ID0 0 0 0 EE_IB2 EE_IB1 EE_IB0 EE_CMD EE_CMD2 EE_CMD1 0 1 0 1 0 MTPPROG 0 VCMF2 VCMF1 VCMF0 0 0 FXEN ST7781 11.1.1 Index (IR) Index(IR) RS 0 /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ↑ 1 - - - - - - - - ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 Note: “-“Don’t care Description The index register specifies the index R00h to RFFh of the control register or RAM control to be accessed. The access to the register and instruction bits in it is prohibited unless the index is specified in the index register. 11.1.2 Device ID Code Read (R00h) Device ID Code Read Out (R00h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 1 ↑ 0 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 Description When read this register, the device output device ID code 11.1.3 Device Output Control (R01H) Device Output Control (R01H) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 SM 0 SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value SS: Select the shift direction of outputs from the source driver. When SS = 0, the shift direction of outputs is from S1 to S720 When SS = 1, the shift direction of outputs is from S720 to S1. In addition to the shift direction, the settings for both SS and BGR bits are required to change the Assignment of R, G, B dots to the source driver pins. To assign R, G, B dots to the source driver pins from S1 to S720, set SS = 0. To assign R, G, B dots to the source driver pins from S720 to S1, set SS = 1. Note: When changing SS or BGR bits, DRAM data must be rewritten. SM: Sets the gate driver pin arrangement in combination with the GS bit (R60h) to select the optimal scan mode for the module. Description SM GS 0 0 Scan Direction Gate Output Sequence G1,G2,G3,G4…..,G316 G317,G318,G319, G320 Ver. 1.7 44 ST7781 G320,G319,…...…G316 0 1 G7,G6,G5,G4,G3,G2,G1 G1,G3,G5….……G311 G313,G315,G317,G319 1 0 G2,G4,G6….……G312 G314,G316,G318,G320 G320,G318,….…..G14 G12,G10,G8,G6,G4,G2 1 1 G319,G317….….G13 G11,G9,G7,G5,G3,G1 11.1.4 LCD Driving Wave Control (R02h) LCD Driving Wave Control (R02h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 1 B/C EOR 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Default value Description Ver. 1.7 B/C: VCOM Driving Wave Control. When B/C = 0, the frame/field inversion is selected When B/C = 1 and EOR=1, the line inversion is selecte. 45 ST7781 11.1.5 Entry Mode (R03h) Entry Mode (R03h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 TRI DFM 0 BGR 0 0 HWM 0 0 0 I/D1 I/D0 AM 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 Default value AM: Sets the DRAM Updata Direction When AM = “0”, set the horizontal writing direction. When AM = “1”, set the vertical writing direction. When a window area is set by registers R50h ~R53h, only the addressed DRAM area is updated based on I/D [1:0] and AM bits setting. I/D [1:0]: Control the address counter (AC) to automatically increase or decrease by 1 when update one pixel display data. Description Ver. 1.7 AM ID[1:0] 0 Write DRAM Direction AM ID[1:0] 00 1 00 0 01 1 01 0 10 1 10 0 11 1 11 46 Write DRAM Direction ST7781 HWM: The ST7781 writes data in high speed with low power consumption by setting HWM = 1. The data to be written within the window address area is buffered in order to write the data in units of horizontal lines. This can minimize the Number of RAM access and the power consumption required in data write operation. When HWM = 1, make sure to set AM = 0 (horizontal direction) and write the data in each horizontal line of the window address area at a time. If the data is not enough to rewrite the horizontal line of the window address area, the DRAM data in that line is not overwritten. Notes1: The ST7781 requires no dummy write operation in high-speed write operation. Note 2. When terminating DRAM data write operation in the middle of the line and executing another instruction, the data in the buffer is cleared. BGR: Reverses the order from RGB to BGR in writing 18-bit pixel data in the DRAM. BGR = 0: Write data in the order of RGB to the DRAM. BGR=0 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 BGR = 1: Reverse the order from RGB to BGR in writing data to the DRAM. BGR=1 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 B5 B4 B3 B2 B1 B0 G5 G4 G3 G2 G1 G0 R5 R4 R3 R2 R1 R0 TRI: When TRI = “1”, data are transferred to the internal DRAM in 8-bit x 3 transfers mode via the 8-bit interface.It is also possible to send data via the 16-bit interface in the transfer mode that realizes display in 262k colors in combination with DFM bits. When not using these interface modes, be sure to set TRI = “0”. DFM: Set the mode of transferring data to the internal RAM when TRI = “1”. Ver. 1.7 TRI DFM 0 * 1 0 1 1 8080-16bits Interface Color Format 47 ST7781 TRI DFM 0 * 1 0 1 1 8080-8bits Interface Color Format 11.1.6 Resizing Control (R04h) Resizing Control (R04h) RS /WR /RD D15 D14 D13 D12 D11 D10 1 ↑ 1 0 0 0 0 0 0 Default value 0 0 0 0 0 D9 D8 RCV RCV 0 1 0 0 0 D7 D6 D5 0 0 RCH1 D4 D3 D2 0 0 RCH 0 0 0 0 0 0 0 D1 D0 RSZ RSZ 1 0 0 0 RSZ [1:0]: Sets the resizing factor. When the RSZ [1:0] are set for resizing, the ST7781 writes the data according to the resizing factor so that the original image is displayed in horizontal and vertical dimensions contracted according to the factor. Description Ver. 1.7 RSZ1 RSZ0 Resizing Scale 0 0 No Resizing ( X1 ) 0 1 X 1/2 1 0 Setting Inhibited 1 1 X1/4 48 ST7781 RCH [1:0]: Sets the number of pixels made as the remainder in horizontal direction when resizing a picture. By specifying the number of remainder pixels with RCH [1:0] the data can be transferred without taking the reminder pixels into consideration. Make sure that RCH [1:0] = “00” when not using the resizing function (RCH [1:0]=”00”) or there are no remainder pixels. RCH1 RCH0 Number of Remainder Pixels in Horizontal Direction 0 0 0 Pixel 0 1 1 Pixel 1 0 2 Pixel 1 1 3 Pixel RCV [1:0]: Sets the number of pixels made as the remainder in vertical direction when resizing a picture.By specifying the number of remainder pixels with the RCV bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCV [1:0] =”00 “when not using the resizing function RCV [1:0] =”00 “or there are no remainder pixels. RCV1 RCV0 Number of Remainder Pixels in Vertical Direction 0 0 0 Pixel 0 1 1 Pixel 1 0 2 Pixel 1 1 3 Pixel 11.1.7 Display Control 1 (R07h) Display Control 1 (R07h) RS /WR /RD D15 D14 1 ↑ 1 0 0 Default value 0 0 D13 D12 PTD PTD E1 E0 0 0 D11 D10 D9 0 0 0 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 GON DTE CL 0 D1 D0 0 0 0 0 0 0 0 0 BAS EE 0 0 0 0 D [1:0]: A graphics display is turned on the screen when writing D1 = “1”, and is turned off when writing D1 = “0”. When writing D1 = “0”, the graphics display data is retained in the internal DRAM and the ST7781 displays the data when writing D1 = “1”. When D1 = “0”, i.e. while no display is shown on the panel, all source outputs becomes the GND level to reduce charging/discharging current, which is generated within the LCD while driving liquid crystal with AC voltage. When the display is turned off by setting D [1:0] =00, the ST7781’s internal display operation is halted completely. In combination with the GON setting, the D [1:0] setting controls display ON/OFF. Description D1 0 0 1 1 1 D0 0 1 0 1 1 BASEE 0 1 0 0 1 Source,VCOM Output GND GND Non-lit display Non-lit display Base Image display Internal Operation Halt Operate Operate Operate Operate Note1: Data write operation from the microcontroller is performed irrespective of the setting of D [1:0] bits. Note2: The D [1:0] setting is valid on both 1st and 2nd displays. Ver. 1.7 49 ST7781 Note3: The non-lit display level from the source output pins is determined by instruction (PTS). CL: When CL = “1”, the ST7781 halt grayscale amplifiers to display 8-color with low power consumption. When setting 8-color display mode, follow the sequence of 8-color display mode setting. CL Display color 0 262,144 1 8 Note: When CL = 1, do not write the data corresponding to the grayscales, for which the operation of amplifier is halted. GON, DTE: The combination of GON and DTE settings set the output level form gate lines (G1 ~ G320). GON 0 0 1 1 DTE 0 1 0 1 Gate Output VGH VGH VGL Normal display BASEE: Base image display enable bit. BASEE = 0: No base image is displayed. The ST7781 drives liquid crystal with non-lit display level or drives only partial image display areas. BASEE = 1: A base image is displayed on the screen. PTDE [1:0]: Partial image 2 and Partial image 1 enable bits PTDE1/0 = 0: turns off partial image. Only base image is displayed. PTDE1/0 = 1: turns on partial image. Ver. 1.7 50 ST7781 11.1.8 Display Control 2 (R08h) Display Control 2 (R08h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 FP6 FP5 FP4 FP3 FP2 FP1 FP0 0 BP6 BP5 BP4 BP3 BP2 BP1 BP0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Description FP[6:0] BP[6:0] 7’h00 Setting Prohibited 7’h01 Setting Prohibited 7’h02 2 lines 7’h03 3 lines 7’h04 4 lines 7’h05 5 lines 7’h06 6 lines 7’h07 7 lines 7’h08 8 lines 7’h09 9 lines 7’h0A 10 lines 7’h0B 11 lines : : 7’h7D 125 lines 7’h7E 126 lines 7’h7F 127 lines Porch Lines FP [6:0]: Sets the number of lines for a front porch period (a blank period following the end of display). BP [6:0]: Sets the number of lines for a back porch period (a blank period made before the beginning of display). Note:IN 8080 interface operation mode, BP>=2 lines, FP>=2 lines In external display interface operation, a back porch (BP) period starts on the falling edge of the FMARK signal and the display operation starts after the back porch period. A blank period will start after a front porch (FP) period and it will continue until next FMARK input is detected. Back Porch FMARK Default value Display Area Front Porch Note:The output timing to the LCD is delayed by 2 lines period from the input FMARK signal. Ver. 1.7 51 ST7781 11.1.9 Display Control 3 (R09h) Display Control 3 (R09h) RS /WR /RD D15 D14 D13 D12 D11 1 ↑ 1 0 0 0 0 0 Default value 0 0 0 0 D10 D9 D8 PTS PTS PTS 0 2 1 0 0 0 0 D7 D6 0 0 0 0 D5 D4 D3 D2 D1 D0 PTG PTG ICS ICS ICS ICS 1 0 3 2 1 0 0 0 0 0 0 0 ICS [3:0]: Set the scan cycle when PTG [1:0] selects interval scan in non-display area drive period. The scan cycle is defined by n frame periods, where n is an odd number from 0 to 29. The polarity of liquid crystal drive voltage from the gate driver is inverted in the same timing as the interval scan cycle. Description ICS[3:0] Scan Cycle fFLM = 60Hz 0000 0 frame - 0001 1 frame 17ms 0010 3 frame 50ms 0011 5 frame 84ms 0100 7 frame 117ms 0101 9 frame 150ms 0110 11 frame 184ms 0111 13 frame 217ms 1000 15 frame 251ms 1001 17 frame 284ms 1010 19 frame 317ms 1011 21 frame 351ms 1100 23 frame 384ms 1101 25 frame 418ms 1110 27 frame 451ms 1111 29 frame 484ms PTG [1:0]: Sets the scan mode in non-display area. The scan mode selected by PTG [1:0] bits is applied in the non-display area when the base image is turned off and the non-display area other than the first and second partial display areas. PTG[1:0] Gate Output in Non-Display Area Source Output in Non-Display Area VCOM Output 00 Normal Scan Set with the PTS[2:0] VCOMH/VCOML 01 Setting Prohibited - - 10 Interval Scan Set with the PTS[2:0] VCOMH/VCOML 11 Setting Prohibited 0 - PTS [2:0]: Sets the source output level in non-display area drive period. When PTS[2] = 1, the operation of amplifiers which generates the grayscales other than V0 and V63 are halted and the step-up clock frequency becomes half the normal frequency in non-display drive period in order to reduce power consumption. Grayscale Source Output Level PTS[2:0] Step-Up Clock Frequency Amplifier Positive Polarity Negative Polarity in Operation 000 V63 V0 V63 to V0 Register Setting (DC1,DC0) 001 Setting inhibited Setting inhibited - - 010 GND GND V63 to V0 Register Setting(DC1,DC0) 011 Hi-Z Hi-Z V63 to V0 Register Setting(DC1,DC0) 100 V63 V0 V63 and V0 Frequency setting by(DC1,DC0) 101 Setting inhibited Setting inhibited - - 110 GND GND V63 and V0 Frequency setting by(DC1,DC0) 111 Hi-Z Hi-Z V63 and V0 Frequency setting by (DC1,DC0) Note1: The power efficiency improved by halting grayscale amplifiers and slowing down the step-up clock frequency can be obtained in non-display drive period. Ver. 1.7 52 ST7781 Note2: The gate output level in non-display drive period is controlled by the PTG setting (off-scan mode). 11.1.10 Display Control 4 (R0Ah) Display Control 4 (R0Ah) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 0 0 0 0 0 0 0 FMARKOE FMI2 FMI1 FMI0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value FMARKOE: When FMARKOE = 1, the ST7781 starts outputting FMARK signal from the FMARK pin in the output interval set by FMI[2:0] bits FMI [2:0]: Sets the output interval of FMARK signal according to the display data rewrite cycle and data transfer rate. FMI[2:0] 000 001 011 101 Others Description Output Interval 1 Frame 2 Frame 4 Frame 6 Frame Setting Prohibited 11.1.11 Frame Marker Position (R0Dh) Frame Marker Position (R0Dh) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 0 0 FMP8 FMP7 FMP6 FMP5 FMP4 FMP3 FMP2 FMP1 FMP0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value FMP [8:0]: Sets the output position of frame cycle signal (frame marker). When FMP[8:0] = 9’h000, a high-active pulse FMARK is output at the start of back porch period for 1H period. FMARK can be used as the trigger signal for frame synchronous write operation. Description Ver. 1.7 FMP[8:0] 9’h000 9’h001 9’h002 9’h003 FMARK Output Position 0th line 1st line 2nd line 3rd line . . . . . . 9’h174 9’h175 9’h176 9’h177 372th line 373th line 374th line 375th line 53 ST7781 11.1.12 Power Control 1 (R10h) Power Control 1 (R10h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 SAP 0 BT2 BT1 BT0 APE AP2 AP1 AP0 0 0 STB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value SAP: Source Driver output control SAP=”0”, Source driver is disabled. SAP=”1”, Source driver is enabled. When starting the charge-pump of LCD in the Power ON stage, make sure that SAP=”0”, and set the SAP=”1”, after starting up the LCD power supply circuit. BT [2:0]: Sets the factor used in the step-up circuits. Select the optimal step-up factor for the operating voltage. To reduce power consumption, set a smaller factor. BT[2:0] AVDD VCL VGH VGL 0 Vci1X2 -Vci1 -Vci1X5 Vci1X6 1 -Vci1X4 Vci1X2 -Vci1 2 -Vci1X3 3 -Vci1X5 Vci1X2 -Vci1 Vci1X5 4 -Vci1X4 5 -Vci1X3 6 -Vci1X4 Vci1X2 -Vci1 Vci1X4 7 -Vci1X3 Note1: Connect capacitors to the capacitor connection pins when generating AVDD, VGH, VGL and VCL levels. Note2: Make sure AVDD = 6.0V (max.), VGH = 15.0V (max.), VGL = – 12.5V (max) and VCL= -3.0V (max.) Description APE: Power supply enable bit. Set APE = “1” to start generation of power supply according to the power supply startup sequence. AP [2:0]: Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. The larger constant current enhances the drivability of the LCD, but it also increases the current consumption. Adjust the constant current taking the trade-off into account between the display quality and the current consumption. In no-display period, set AP[2:0]= “000” to halt the operational amplifier circuits and the step-up circuits to reduce current consumption. AP[2:0] 000 001 010 011 100 101 110 111 Gamma Driver Amplifier Halt 1.5 1.25 1.00 0.75 0.5 0.25 Setting Prohibited Source Driver Amplifier Halt 1.5 1.25 1.00 0.75 0.5 0.25 Setting Prohibited STB: When STB = “1”, ST7781 enters the standby mode and the display operation stops except the DRAM power supply to reduce the power consumption. No change to the DRAM data and instruction setting is accepted and he DRAM data and the instruction setting are maintained in STB mode. Ver. 1.7 54 ST7781 11.1.13 Power Control 2 (R11h) Power Control 2 (R11h) RS /WR /RD D15 D14 D13 D12 D11 1 ↑ 1 0 0 0 0 0 Default value 0 0 0 0 D10 D9 D8 DC1 DC1 DC1 0 D7 D6 D5 D4 DC0 DC0 DC0 0 2 1 0 1 1 1 0 D3 D2 1 0 1 1 1 D0 VC1 VC0 0 0 VC 0 2 D1 2 0 0 DC0 [2:0]: Selects the operating frequency of the step-up circuit 1. The higher step-up operating frequency enhances the drivability of the step-up circuit and the quality of display but increases the current consumption. Adjust the frequency taking the trade-off between the display quality and the current consumption into account. DC1 [2:0]: Selects the operating frequency of the step-up circuit 2. The higher step-up operating frequency enhances the drivability of the step-up circuit and the quality of display but increases the current consumption. Adjust the frequency taking the trade-off between the display quality and the current consumption into account. Step-Up Circuit 1 Description DC0[2:0] 000 001 010 011 100 101 110 111 Note: Be sure Step-Up Circuit 2 Step-Up Frequency ( fDCDC1 ) DC1[2:0] Step-Up Frequency ( f DCDC2 ) Fosc/4 Fosc/8 Fosc/16 Fosc/32 Fosc/64 Fosc/128 Fosc/256 Halt step-up circuit 1 000 001 010 011 100 101 110 111 Fosc/8 Fosc/16 Fosc/32 Fosc/64 Fosc/128 Fosc/256 Fosc/512 Halt step-up circuit 2 fDCD1 ≥ fDCDC2 when setting DC0[2:0] and DC1[2:0] VC [2:0] Sets the ratio factor of VDD to generate the reference voltages Vci1. VC[2:0] 000 001 010 011 100 101 110 111 Ver. 1.7 Vci1 voltage 0.95 X VDD 0.90 X VDD 0.85 X VDD 0.80 X VDD 0.75 X VDD 0.70 X VDD Disable 1.0 X VDD 55 ST7781 11.1.14 Power Control 3 (R12h) Power Control 3 (R12h) RS /WR D1 D1 D1 D1 D1 D1 5 4 3 2 1 0 0 0 0 0 0 0 /RD D9 D8 0 0 D7 D6 D5 0 0 D4 VCIR 1 ↑ 1 0 0 0 0 0 0 0 0 1 0 0 D2 D1 D0 VRH VRH VRH VRH 3 2 1 0 0 0 0 0 0 E Default value D3 0 VCIRE: Select the external reference voltage VDD or internal reference voltage VCIR. When VCIRE=”0” using external reference voltage When VCIRE=”1” using internal reference voltage 2.5V VRH [3:0]:Set the amplifying rate (1.6 ~ 2.4) of VDD applied to output the GVDD level, which is a reference level for the VCOM level and the grayscale voltage level. Description Ver. 1.7 VCIRE=0 VCIRE=1 VRH[3:0] GVDD VRH[3:0] GVDD 0000 Halt 0000 Halt 0001 VDDX 2.00 0001 2.5V X 2 0010 VDDX 2.05 0010 2.5V X 2.05 0011 VDDX 2.10 0011 2.5V X 2.1 0100 VDDX 2.20 0100 2.5V X 2.2 0101 VDDX 2.30 0101 2.5V X 2.3 0110 VDDX 2.40 0110 2.5V X 2.4 0111 VDDX 2.40 0111 2.5V X 2.4 1000 VDDX 1.60 1000 2.5V X 1.6 1001 VDDX 1.65 1001 2.5V X1.65 1010 VDDX 1.70 1010 2.5V X 1.7 1011 VDDX 1.75 1011 2.5V X 1.75 1100 VDDX 1.80 1100 2.5V X 1.8 1101 VDDX 1.85 1101 2.5V X 1.85 1110 VDDX 1.90 1110 2.5V X 1.9 1111 VDDX 1.95 1111 2.5V X 1.95 Note1: When VDD<2.5V, internal reference voltage will be same as VCI. Note2: Make sure VDD >= 2.6V, when using VCIRE =1. Note3: Make sure that VC and VRH setting restriction: GVDD <=(AVDD-0.5)V 56 ST7781 11.1.15 Power Control 4 (R13h) Power Control 4 (R13h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 VDV4 VDV3 VDV2 VDV1 VDV0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 Default value VDV [4:0]: Selects the factor of GVDD to set the amplitude of VCOM alternating voltage from 0.70 to 1.24. VDV[4:0] VCOM Amplitude VDV[4:0] 00000 GVDD X 0.70 10000 00001 GVDD X 0.72 10001 00010 GVDD X 0.74 10010 00011 GVDD X 0.76 10011 00100 GVDD X 0.78 10100 00101 GVDD X 0.80 10101 00110 GVDD X 0.82 10110 00111 GVDD X 0.84 10111 01000 GVDD X 0.86 11000 01001 GVDD X 0.88 11001 01010 GVDD X 0.90 11010 01011 GVDD X 0.92 11011 01100 GVDD X 0.94 11100 01101 GVDD X 0.96 11101 01110 GVDD X 0.98 11110 01111 GVDD X 1.00 11111 Note :Set VDV[4:0] to let VCOM amplitude less than 6V Description VCOM Amplitude GVDD X 1.02 GVDD X 1.04 GVDD X 1.06 GVDD X 1.08 GVDD X 1.10 GVDD X 1.12 GVDD X 1.14 GVDD X 1.16 GVDD X 1.18 GVDD X 1.20 GVDD X 1.22 GVDD X 1.24 GVDD X 1.24 GVDD X 1.24 GVDD X 1.24 GVDD X 1.24 11.1.16 DRAM Horizontal/Vertical Address Set (R20h, R21h) DRAM Horizontal/Vertical Address Set (R20h,R21h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 0 0 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AD16 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value 1 ↑ 1 Default value AD [16:0]: A DRAM address set initially in the AC (Address Counter). The address in the AC is automatically updated according to the combination of AM, I/D[1:0] settings as the ST7781 writes data to the internal DRAM so that data can be written consecutively without resetting the address in the AC. Description Ver. 1.7 AD[16:0] 17’h00000~17’h000EF 17’h00100~17’h001EF 17’h00200~17’h002EF 17’h00300~17’h003EF . . . 17’h13D00~17’h13DEF 17’h13E00~17’h13EEF 17’h13F00~17’h13FFE DRAM Data Map 1st line DRAM Data nd 2 line DRAM Data rd 3 line DRAM Data th 4 line DRAM Data . . . th 318 line DRAM Data th 319 line DRAM Data h 320 line DRAM Data 57 ST7781 11.1.17 Write Data to DRAM (R22h) Write Data to DRAM (R22h) RS /WR /RD 1 ↑ 1 Description D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 WD [17:0] - DRAM Write Data WD [17:0]: The ST7781 develops data into 18 bits internally in write operation. The format to develop data into 18 bits is different in different interface operation. The DRAM data represents the grayscale level. The DRAM data represents the grayscale level. ST7783 automatically updates the address to the begin point according to AM and I/D[1:0] settings as it’s wrote this register. The DFM bit sets the format to develop 16-bit data into the 18-bit data in 16-bit or 8-bit interface operation. 11.1.18 Read Data from DRAM (R22h) Read Data from DRAM (R22h) RS /WR /RD 1 1 ↑ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 RD [17:0] - DRAM Read Data RD [17:0]: 18-bit data read from the DRAM. RAM read data RD [17:0] is transferred via different data bus in different interface operation. When the ST7781 reads data from the DRAM to the microcomputer, the first word read immediately after RAM address set is executed is taken in the internal read-data latch and invalid data is sent to the data bus. Valid data is sent to the data bus when the ST7781 reads out the second and subsequent words. When either 8-bit or 16-bit interface is selected, the LSBs of R and B dot data are not read out. Description Ver. 1.7 58 ST7781 The ST7781 also support function that automatically updates the address according to AM and I/D[1:0] settings as it read data continuously address in the DRAM 11.1.19 VCOMH Control (R29h) VCOMH Control (R29h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 0 0 0 0 0 VCM5 VCM4 VCM3 VCM2 VCM1 VCM0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value VCM [5:0]: Sets a factor of GVDD from 0.685 to 1.00 to generate the VCOMH voltage (Higher level of VCOM alternating voltage). VCOMH voltage can be set either by internal electronic volume or external resistor. Set the VCMR bit to select either external resistor or internal electronic volume for VCOMH adjustment. Description Ver. 1.7 VCM[5:0] 000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111 010000 010001 010010 010011 010100 010101 VCOMH GVDD X 0.685 GVDD X 0.690 GVDD X 0.695 GVDD X 0.700 GVDD X 0.705 GVDD X 0.710 GVDD X 0.715 GVDD X 0.720 GVDD X 0.725 GVDD X 0.730 GVDD X 0.735 GVDD X 0.740 GVDD X 0.745 GVDD X 0.750 GVDD X 0.755 GVDD X 0.760 GVDD X 0.765 GVDD X 0.770 GVDD X 0.775 GVDD X 0.780 GVDD X 0.785 GVDD X0.790 VCM[5:0] 100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111 110000 110001 110010 110011 110100 110101 59 VCOMH GVDD X 0.845 GVDD X 0.850 GVDD X0.855 GVDD X 0.860 GVDD X 0.865 GVDD X0.870 GVDD X0.875 GVDD X 0.880 GVDD X 0.885 GVDD X0.890 GVDD X 0.895 GVDD X 0.900 GVDD X0.905 GVDD X 0.910 GVDD X 0.915 GVDD X0.920 GVDD X 0.925 GVDD X 0.930 GVDD X 0.935 GVDD X 0.940 GVDD X 0.945 GVDD X 0.950 ST7781 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111 GVDD X 0.795 GVDD X 0.800 GVDD X0.805 GVDD X0.810 GVDD X 0.815 GVDD X 0.820 GVDD X0.825 GVDD X 0.830 GVDD X 0.835 GVDD X0.840 110110 110111 111000 111001 111010 111011 111100 111101 111110 111111 GVDD X 0.955 GVDD X 0.960 GVDD X 0.965 GVDD X 0.970 GVDD X 0.975 GVDD X 0.980 GVDD X 0.985 GVDD X 0.990 GVDD X 0.995 GVDD X 1.000 11.1.20 Frame Rate and Color Control (R2Bh) Frame Rate and Color Control (R2Bh) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 0 0 0 0 0 0 0 FRS3 FRS2 FRS1 FRS0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Default value FRS[3:0] :Set the frame rate when the internal resistor is used for oscillator circuit. Description Ver. 1.7 FRS[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Frame Rate 27.5 29.3 33 36.7 40.3 44 47.7 51.3 55 64.2 73.3 82.5 91.7 100.8 110 114.1 60 ST7781 11.1.21 Gamma Control (R30h~R3Dh) Gamma Control (R30h~R3Dh) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 R30h 1 ↑ 1 Default value R31h 1 ↑ 1 Default value R32h 1 ↑ 1 Default value R35h 1 ↑ 1 Default value R36h 1 ↑ 1 Default value R37h 1 ↑ 1 Default value R38h 1 ↑ 1 Default value R39h 1 ↑ 1 Default value R3Ch 1 ↑ 1 Default value R3Dh 1 ↑ 1 Default value Description Ver. 1.7 0 0 0 0 0 KP1[2] KP1[1] KP1[0] 0 0 0 0 0 KP0[2] KP0[1] KP0[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KP3[2] KP3[1] KP3[0] 0 0 0 0 0 KP2[2] KP2[1] KP2[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KP5[2] KP5[1] KP5[0] 0 0 0 0 0 KP4[2] KP4[1] KP4[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RP1[2] RP1[1] RP1[0] 0 0 0 0 0 RP0[2] RP0[1] RP0[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VRP0[3] VRP0[2] VRP0[1] VRP0[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KN1[2] KN1[1] KN1[0] 0 0 0 0 0 KN0[2] KN0[1] KN0[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KN3[2] KN3[1] KN3[0] 0 0 0 0 0 KN2[2] KN2[1] KN2[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KN5[2] KN5[1] KN5[0] 0 0 0 0 0 KN4[2] KN4[1] KN4[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RN1[2] RN1[1] RN1[0] 0 0 0 0 0 RN0[2] RN0[1] RN0[0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VRN0[3] VRN0[2] VRN0[1] VRN0[0] 0 0 0 0 0 0 0 0 0 0 0 VRP1[4] VRP1[3] VRP1[2] VRP1[1] VRP1[0] VRN1[4] VRN1[3] VRN1[2] VRN1[1] VRN1[0] 0 0 0 0 0 KP5-0[2:0]: γfine Adjustment Register for Positive Polarity. RP1-0[2:0]: γgradient Adjustment Register for Positive Polarity. VRP1 [4:0]: γamplitude Adjustment Register for Positive Polarity. VRP0 [3:0]: γamplitude Adjustment Register for Positive Polarity. KN5-0[2:0]: γfine Adjustment Register for Negative Polarity. RN1-0[2:0]: γgradient Adjustment Register for Negative Polarity. VRN1 [4:0]: γamplitude Adjustment Register for Negative Polarity. VRN0 [3:0]: γamplitude Adjustment Register for Negative Polarity. 61 ST7781 11.1.22 Horizontal and Vertical RAM Address Position (R50h, R51h, R52h, R53h) Horizontal and Vertical RAM Address Position(R50h,R51h,R52h,R53h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 0 0 0 0 0 0 0 1 ↑ 1 0 0 0 0 0 0 0 Default value 0 0 0 0 0 0 0 R51h 1 ↑ 1 0 0 0 0 0 0 0 Default value 0 0 0 0 0 0 0 R52h 1 ↑ 1 0 0 0 0 0 0 0 Default value 0 0 0 0 0 0 0 R53h 1 ↑ 1 0 0 0 0 0 0 0 Default value R50h D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 VSA8 HSA7 0 HEA7 HSA6 0 HEA6 HSA5 0 HEA5 HSA4 HSA3 HSA2 HSA1 HSA0 0 0 0 0 0 HEA4 HEA3 HEA2 HEA1 HEA0 1 1 1 0 1 1 1 1 VSA7 VSA6 VSA5 VSA4 VSA3 VSA2 VSA1 VSA0 0 0 0 0 0 0 0 0 0 VEA8 VEA7 VEA6 VEA5 VEA4 VEA3 VEA2 VEA1 VEA0 1 0 0 1 1 1 1 1 1 HSA [7:0], HEA [7:0] HSA[7:0] and HEA[7:0] are the start and end addresses of the window address area in horizontal direction, respectively. HSA [7:0] and HEA [7:0] specify the horizontal range to write data. Set HSA [7:0] and HEA [7:0] before starting RAM write operation. In setting, make sure that 8’h00 ≤ HAS < HEA ≤ 8’hEF VSA [8:0], VEA [8:0] VSA [8:0] and VEA [8:0] are the start and end addresses of the window address area in vertical direction, respectively. VSA [8:0] and VEA [8:0] specify the vertical range to write data. Set VSA [8:0] and VEA [8:0] before starting RAM write operation. In setting, make sure that 9’h000 ≤ VSA < VEA ≤ 9’h13F. Description 11.1.23 Gate Scan Control (R60h, R61h) Gate Scan Control (R60h,R61h) RS /WR /RD D15 D14 GS 0 1 ↑ 1 0 0 Default value 0 0 R61h 1 ↑ 1 0 0 Default value R60h D13 D12 D11 D10 D9 D8 D7 D6 NL5 0 0 0 NL4 0 0 0 NL3 0 0 0 NL2 0 0 0 NL1 0 0 0 NL0 0 0 0 0 0 0 0 0 0 0 0 D5 D4 D3 D2 D1 D0 SCN5 SCN4 SCN3 SCN2 SCN1 SCN0 0 0 0 0 0 0 0 0 0 NDL 0 REV 0 0 0 0 0 0 GS: Sets the direction of scan by the gate driver. Set GS bit in combination with SM and SS bits for the convenience of the display module configuration and the display direction. When GS=0, the scan direction is from G1 to G320 When GS=1, the scan direction is from G320 to G1 Description Ver. 1.7 NL [5:0]: Sets the number of lines to drive the LCD at an interval of 8 lines. The DRAM address mapping is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than the number of lines necessary for the size of the liquid crystal panel. 62 ST7781 NL[5:0] 6’h1D 6’h1E 6’h1F 6’h20 6’h21 6’h22 LCD Drive Line 240 lines 248 lines 256 lines 264 lines 272 lines 280 lines NL[5:0] 6’h23 6’h24 6’h25 6’h26 6’h27 Others LCD Drive Line 288 lines 296 lines 304 lines 312 lines 320 lines Setting inhibited SCN [5:0]: Specifies the gate line where the gate driver starts scan. Scanning Start Position SCN[5:0] 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h 27h 28h ~ 3Fh SM=0 GS=0 G1 G9 G17 G25 G33 G41 G49 G57 G65 G73 G81 G89 G97 G105 G113 G121 G129 G137 G145 G153 G161 G169 G177 G185 G193 G201 G209 G217 G225 G233 G241 G249 G257 G265 G273 G281 G289 G297 G305 G313 Setting disabled GS=1 G320 G312 G304 G296 G288 G280 G272 G264 G256 G248 G240 G232 G224 G216 G208 G200 G192 G184 G176 G168 G152 G152 G144 G136 G128 G120 G112 G104 G96 G88 G80 G72 G64 G56 G48 G40 G32 G24 G16 G8 Setting disabled SM=1 GS=0 GS=1 G1 G320 G17 G304 G33 G288 G49 G272 G65 G265 G81 G240 G97 G224 G113 G208 G129 G192 G145 G176 G161 G160 G177 G144 G193 G128 G209 G112 G2 G96 G18 G80 G34 G64 G50 G48 G66 G32 G82 G16 G114 G303 G114 G303 G130 G287 G146 G271 G162 G255 G178 G239 G194 G223 G114 G207 G130 G191 G146 G175 G162 G159 G178 G143 G194 G127 G210 G111 G226 G95 G242 G79 G258 G63 G274 G47 G290 G31 G30 G15 Setting disabled Setting disabled NDL: Sets the source output level in non display area. NDL bit can keep the non-display area lit on. NDL 0 1 Non- Display Area Positive Polarity Negative Polarity V63 V0 V0 V63 REV: Enables the grayscale inversion of the image by setting REV = 1. This enables the ST7781 to display the same image from the same set of data whether the liquid crystal panel is normally black or white. The source output level during front, back porch periods and blank periods is determined by register setting (PTS). Ver. 1.7 63 ST7781 REV Non- Display Area Positive Polarity Negative Polarity V63 V0 . . . . . . V0 V63 V0 V63 . . . . . . V63 V0 DRAM Data 18’h00000 . . . 18’h3FFFF 18’h00000 . . . 18’h3FFFF 0 1 11.1.24 Partial Image 1 Display Position (R80h) Partial Image 1 Display Position (R80h) RS /WR /RD 1 ↑ 1 D15 D14 D13 D12 D11 D10 Default value D9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D8 D7 D6 D5 D4 D3 D2 D1 D0 PTDP08 PTDP07 PTDP06 PTDP05 PTDP04 PTDP03 PTDP02 PTDP01 PTDP00 0 0 0 0 0 0 0 0 0 PTDP0 [8:0]: Sets the display start position of partial image 1. The display areas of the partial images 1 and 2 must not overlap each another. Description 11.1.25 Partial Image 1 Start/End Address (R81h, R82h) Partial Image 1 Start/End Address(R81h,R82h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 R81h 1 ↑ 1 Default value R82h 1 ↑ 1 Default value Description 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PTSA08 PTSA07 PTSA06 PTSA05 PTSA04 PTSA03 PTSA02 PTSA01 PTSA00 0 0 0 0 0 0 0 0 0 PTEA08 PTEA07 PTEA06 PTEA05 PTEA04 PTEA03 PTEA02 PTEA01 PTEA00 0 0 0 0 0 0 0 0 0 PTSA0 [8:0] and PTEA0 [8:0]: Sets the start line and end line addresses of the RAM area, respectively for the partial image Note1: Make sure that PTSA0 ≤ PTEA0. 11.1.26 Partial Image 2 Display Position (R83h) Partial Image 2 Display Position (R83h) RS /WR /RD 1 ↑ 1 Default value Description Ver. 1.7 D15 D14 D13 D12 D11 D10 D9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D8 D7 D6 D5 D4 D3 D2 D1 D0 PTDP18 PTDP17 PTDP16 PTDP15 PTDP14 PTDP13 PTDP12 PTDP11 PTDP10 0 0 0 0 0 PTDP1 [8:0]: Sets the display start position of partial image Note1. The display areas of the partial images 1 and 2 must not overlap each another. 64 0 0 0 0 ST7781 11.1.27 Partial Image 2 Start / End Address (R84h, R85h) Partial Image 2 Start/End Address(R84h,R85h) RS /WR 1 ↑ /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 R84h 1 Default value R85h 1 ↑ 1 Default value Description Ver. 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PTSA18 PTSA17 PTSA16 PTSA15 PTSA14 PTSA13 PTSA12 PTSA11 PTSA10 0 0 0 PTEA18 PTEA17 PTEA1 0 0 0 0 0 0 0 0 PTEA15 PTEA14 PTEA13 PTEA12 PTEA11 PTEA10 0 0 0 0 0 PTSA1[8:0] and PTEA1[8:0]: Sets the start line and end line addresses of the DRAM area, respectively for the partial image Note1: Make sure that PTSA1 ≤ PTEA1. 65 0 0 ST7781 11.1.28 Panel Interface Control 1 (R90h) Panel Interface Control 1 (R90h) RS /WR /RD 1 ↑ 1 Default value D15 D14 D13 D12 D11 D10 D9 D8 D7 0 0 0 0 0 0 DIVI1 DIVI0 0 0 0 0 0 0 0 0 0 0 D6 D5 D4 D3 D2 D1 D0 RTNI6 RTNI5 RTNI4 RTNI3 RTNI2 RTNI1 RTNI0 1 0 0 0 0 0 0 DIVI [1:0]: Sets the division ratio of the internal clock frequency. The ST7781’s internal operation is synchronized with the frequency divided internal clock. When DIVI[1:0] setting is changed, the width of the reference clock for liquid crystal panel control signals is changed. The frame frequency can be adjusted by register setting (RTNI and DIVI bits). When changing the number of lines to drive the liquid crystal panel, adjust the frame frequency too. DIVI[1:0] 00 01 10 11 Division Ratio 1 2 4 8 Internal Operation Clock Frequency Fosc/1 Fosc/2 Fosc/4 Fosc/8 RTNI [6:0]: Sets 1H (line) period. This setting is enabled while the ST7781’s display operation is synchronized with internal clock. Description Ver. 1.7 RTNI[6:0] 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh Clocks/Line 0 clock 1 clock 2 clocks 3 clocks 4 clocks 5 clocks 6 clocks 7 clocks 8 clocks 9 clocks 10 clocks 11 clocks 12 clocks 13 clocks 14 clocks 15 clocks 16 clocks 17 clocks 18 clocks 19 clocks 20 clocks 21 clocks 22 clocks 23 clocks 24 clocks 25 clocks 26 clocks 27 clocks 28 clocks 29 clocks 30 clocks 31 clocks RTNI[6:0] 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh Clocks/Line 32 clocks 33 clocks 34 clocks 35 clocks 36 clocks 37 clocks 38 clocks 39 clocks 40 clocks 41 clocks 42 clocks 43 clocks 44 clocks 45 clocks 46 clocks 47 clocks 48 clocks 49 clocks 50 clocks 51 clocks 52 clocks 53 clocks 54 clocks 55 clocks 56 clocks 57 clocks 58 clocks 59 clocks 60 clocks 61 clocks 62 clocks 63 clocks 66 RTNI[6:0] 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh Clocks/Line 64 clocks 65 clocks 66 clocks 67 clocks 68 clocks 69 clocks 70 clocks 71 clocks 72 clocks 73 clocks 74 clocks 75 clocks 76 clocks 77 clocks 78 clocks 79 clocks 80 clocks 81 clocks 82 clocks 83 clocks 84 clocks 85 clocks 86 clocks 87 clocks 88 clocks 89 clocks 90 clocks 91 clocks 92 clocks 93 clocks 94 clocks 95 clocks RTNI[6:0] 60h 61h 62h 63h 64h 65h 66h 67h 68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh 70h 71h 72h 73h 74h 75h 76h 77h 78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh Clocks/Line 96 clocks 97 clocks 98 clocks 99 clocks 100 clocks 101 clocks 102 clocks 103 clocks 104 clocks 105 clocks 106 clocks 107 clocks 108 clocks 109 clocks 110 clocks 111 clocks 112 clocks 113 clocks 114 clocks 115 clocks 116 clocks 117 clocks 118 clocks 119 clocks 120 clocks 121 clocks 122 clocks 123 clocks 124 clocks 125 clocks 126 clocks 127 clocks ST7781 11.1.29 Panel Interface Control 2 (R92h) Panel Interface Control 2 (R92h) RS /WR /RD 1 ↑ 1 Default value D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 NOWI2 NOWI1 NOWI0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 NOWI [2:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation synchronizing with the internal clock. Description NOWI[2:0] Gate Non-Overlap Period 000 0 clocks 001 1 clocks 010 2 clocks 011 3 clocks 100 4 clocks 101 5 clocks 110 6 clocks 111 7 clocks Note: The gate output non-overlap period is defined by the number of frequency-divided internal clocks, the frequency of which is determined by instruction (DIVI), from the reference point. 11.1.30 EEPROM ID Code (RD2h) EEPROM ID Code (RD2h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 0 0 0 0 ID6 ID5 ID4 ID3 ID2 ID1 ID0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value Description ID [6:0]: ST7781 supply 7bit ID code for LCD module version ID 11.1.31 EEPROM Control Status (RD9h) EEPROM Control Status (RD9h) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 1 ↑ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value D6 D5 ID_EN VCM_EN 0 0 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 0 0 ID_EN: ”1” = Command EEPROM ID Code (RD2h) Enable. ”0” = Command EEPROM ID Code (RD2h) Disable. VCM_EN: ”1” = Command EEPROM VCOM Offset Control (RFEh) Enable. ”0” = Command EEPROM VCOM Offset Control (RFEh) Disable. Description 11.1.32 EEPROM Read Command (RDEh) EEPROM Read Command (RDEh) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value Description Ver. 1.7 EEPROM Read Command. 67 ST7781 11.1.33 EEPROM Wite Command (RDFh) EEPROM Write Command (RDFh) /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 EE_IB7 EE_IB6 EE_IB5 EE_IB4 EE_IB3 EE_IB2 EE_IB1 EE_IB0 RS /WR 1 ↑ 1 0 0 0 0 0 0 0 0 1 ↑ 1 0 0 0 0 0 0 0 0 EE_CMD7 EE_CMD6 EE_CMD5 EE_CMD4 EE_CMD3 EE_CMD2 EE_CMD1 EE_CMD0 1 ↑ 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 EE_IB[7:0]: Write Operation Selection. EE_IB[7:0]=D2h,Write ID Code EE_IB[7:0]=FEh,Write VCOM Offest EE_CMD[7:0]: Select to Program/Erase ; Program Command : 3Ah ; Erase Command : C5h Description 11.1.34 EEPROM Enable (RFAh) EEPROM Enable (RFAh) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MTPPROG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value Description MTPPROG:”1” for enable EEPROM function with SW_EE =1 11.1.35 EEPROM VCOM Offset (RFEh) EEPROM VCOM Offset (RFEh) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 1 ↑ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value VCMF[4:0]: Set VCOMH Voltage level for reduce the flicker issue VCMF[4:0] Description Ver. 1.7 VCOMH Output Level 00000 “VCOMH” 00001 “VCOMH”+1d 00010 “VCOMH”+2d | | 01110 “VCOMH”+14d 01111 “VCOMH”+15d 10000 “VCOMH”-16d 10001 “VCOMH”-15d 10010 “VCOMH”-14d | | 11110 “VCOMH”-2d 11111 “VCOMH”-1d Note: 1d=GVDDX0.005, 2d= GVDDX0.01, 3d = GVDDX0.015.... 3V <= VCOMH + nd <=5V (n= -16~15) 68 D4 D3 D2 D1 D0 VCMF4 VCMF3 VCMF2 VCMF1 VCMF0 0 0 0 0 0 ST7781 11.1.36 FAh/FEh Enable (RFFh) FAh/FEh Enable Enable (RFFh) RS /WR /RD D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 ↑ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FXEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value Description Ver. 1.7 FXEN:”1” for enable FAh and FEh function. 69 ST7781 12. Reset Function The ST7781 is initialized by the RESET input. During reset period, the ST7781 is in a busy state and instruction from the MCU and DRAM access are not accepted. The ST7781’s internal power supply circuit unit is initialized also by the RESET input. The RESET period must be secured for at least 1ms. In case of power-on reset, wait until the RC oscillation frequency stabilizes (for 1 ms). During this period, DRAM access and initial instruction setting are prohibited. 12.1. Initial State of Instruction Bits (Default) See the Instruction desscription.The default value is shown in the parenthesis of each instruction bit cell. 12.2. RAM Data Initialization The RAM data is not automatically initialized by the RESET input. It must be initialized by software in display-off period. 12.3. Note on Reset Function (1) When a RESET input is entered into the ST7781 while it is in deep standby mode, the ST7781 starts up the inside logic regulator and makes a transition to the initial state. During this period, the state of the interface pins may become unstable. For this reason, do not enter a RESET input in deep standby mode. (2) When transferring instruction in either two or three transfers via 8-/9-/16-bit interface, make sure to execute data transfer synchronization after reset operation. 12.4 Reset Timing Characterics Fig. 12.4 Reset timing Signal RESET Ver. 1.7 Symbol TRESL TREST VDDI=1.65 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=25℃ Parameter Min Max Unit Description 1 Reset Low Level Width ms 1 Reset Complete Time ms Table 12.4.1: Reset timing Characteristics 70 ST7781 13. FMARK Function The ST7781 outputs an FMARK pulse when the ST7781 is driving the line specified by FMP[8:0] bits. The FMARK signal can be used as a trigger signal to write display data in synchronization with display operation by detecting the address where data is read out for display operation. The FMARK output interval is set by FMI[2:0] bits. Set FMI[2:0] bits in accordance with display datarewrite cycle and data transfer rate. Set FMARKOE = 1 when outputting FMARK pulse from the FMARK pin. FMI[2:0] 000 001 011 101 Others FMP[8:0] 9’h000 9’h001 9’h002 9’h003 Output Interval 1 Frame 2 Frame 4 Frame 6 Frame Setting Prohibited . . . Table 13.1: FMARK Interval 9’h174 9’h175 9’h176 9’h177 FMARK Output Position 0 th line 1 st line 2 nd line 3 rd line . . . 372 th line 373 th line 374 th line 375 th line Table 13.2: FMARK Output Position 13.1 FMP Setting Example Fig. 13.1.1 FMARK Setting Example Ver. 1.7 71 ST7781 13.2 Display Operation Synchronous Data Transfer using FMARK The ST7781 uses FMARK signal as a trigger signal to start writing data to the internal DRAM in synchronization with display scan operation. Fig. 13.2.1 Display Synchronous Data Transfer Interface In this operation, moving picture display is enabled via system interface by writing data at higher than the internal display operation frequency to a certain degree, which guarantees rewriting the moving picture DRAM area without causing flicker on the display. The data is written in the internal RAM in order to transfer only the data written over the moving picture display area and minimize the data transfer required for moving picture display. Fig. 13.2.2 Moving Picture Data Transfers via FMARK Function When transferring data in synchronization with FMARK signal, minimum DRAM data write speed and internal clock frequency must be taken into consideration. They must be more than the values calculated from the following equations. Internal clock frequency ( fosc )[Hz ] = Frame Frequency (min .)[Hz ]× (DisplayPor ch ( NL ) + FrontPorch (FP ) + BackPorch (BP )) × 16 (clocks ) × var iance RAMWriteSp eed (min .)[Hz ] > 240 × DisplayLin es ( NL ) (FrontPorch (FP ) + BackPorch (BP ) + DisplayLin es (NL ) − m arg ins ) × 16 (clocks ) × 1 fosc Note: When RAM write operation is not started immediately following the rising edge of FMARK, the time from the rising edge of FMARK until the start of RAM write operation must also be taken into account. Examples of DRAM writes speed and the frequency of the internal clocks are as follows. Example: Ver. 1.7 Display size 320 RGB x 240 lines, Total number of lines (NL) 320 lines Back/Front porch: 14/2 lines Frame frequency 60 Hz 72 ST7781 Internal Clock Frequency (fosc) [Hz] = 60Hz x (320+2+14) x 16 clocks x 1.1/0.9 = 394 kHz Note1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of ±10% for variances and guarantee that display operation is completed within one FMARK cycle. Note2. This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in external resistors and voltage change are not considered in this example. It is necessary to include a margin for these factors. Minimum Speed for DRAM Writing [Hz] > 240x320 / {((14+320-2)lines x 16 clocks) / 394kHz} = 5.7MHz Note1. In this example, it is assumed that the ST7781 starts writing data in the internal DRAM on the rising edge of FMARK. Note2. There must be at least a margin of 2 lines between the line to which the ST7781 has just written data and the line where display operation on the LCD is performed. Note3. The FMARK signal output position is set to the line specified by FMP[8:0] bits. Line Processing In this example, DRAM write operation at a speed of 5.67MHz or more, when starting on the rising edge of FMARK, guarantees the completion of data write operation in a certain line address before the ST7781 starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display. Fig. 13.2.3 Write/Display Operation Timing Ver. 1.7 73 ST7781 14. 8 - Color Display Mode The ST7781 has a function to display in 8 colors. In this display mode, only V0 and V63 are used and power supplies to other grayscales are turned off to reduce power consumption. In 8-color display mode, the γ-adjustment registers KP5-0[2:0], RP1-0[2:0], VRP0 [3:0], KN5-0[2:0], RN1-0[2:0], VRN1 [4:0], VRN0 [3:0], are disabled and the power supplies to V1 to V62 are halted. The ST7781 does not require DRAM data rewrite for 8-color display by writing the MSB to the rest in each dot data to display in 8 colors. Fig. 14.1 8-Color Display Mode Ver. 1.7 74 ST7781 15. Window Address Function The window address function enables writing display data consecutively in a rectangular area (a window address area) made on the internal DRAM. The window address area is made by setting the horizontal address register (star: HAS[7:0], end HEA[7:0] bits) and the vertical address register(start: VSA[8:0], end: VEA[8:0] bits) The AM bits sets the transition direction of RAM address(either increment or decrement). These bits enable the ST7781 to write data including image data consecutively not taking data wrap positions into account. The window address area must be made within the GRAN address map area. Also, DRAM address bits (RAM address set register) must be an address within the window address area. [Window address setting area] (Horizontal direction) 00H ≦ HSA[7:0] ≦ HEA[7:0] ≦ ”EF”H (Vertical direction) 00H ≦VSA[8:0] ≦ VEA[8:0] ≦ ”13F”H [RAM address, AD (an address within a window address area)] (RAM address) HSA[7:0] ≦AD[7:0] ≦HEA[7:0] VSA[8:0] ≦AD[15:8] ≦VEA[8:0] DRAM Address Map 0"0000"h 0"00EF”h Window Address Area 2010h 203Fh 2110h 213Fh 4F10h 4F3Fh I”3F00"h I"3FEF"h Window address setting area HSA[7 :0 ] = 1 0 h , HSA[7 :0 ] = 3 Fh , I/D = 1 (increment) VSA[8 :0 ] = 2 0 h , VSA[8 :0 ] = 4 Fh , AM = 0 (horizontal writing ) Fig.15.1 DRAM Access Window Map Ver. 1.7 75 ST7781 16. Gamma Correction ST7781 incorporate the γ- correction function to display 262,244 colors for the LCD panel. Theγ-correction is performed with 3 groups of registers determining eight reference grayscale levels, which are gradient adjustment, amplitude adjustment and fine- adjustment registers for positive and negative polarities, to make ST7781 available with liquid crystal panels of various characteristics. Fig.16.1 Grayscale Voltage Generation Ver. 1.7 76 ST7781 GVDD VR0P0 0~30R 5R 1uF/10V VgP0 VRPO[3:0] RP0 PKP0[2:0] VP1 RP1 VP2 4R RP2 VP3 RP3 VP4 RP4 RP5 VP6 RP6 VP7 RP7 VRCP0 0~28R 8 to 1 Selection VP5 VgP1 VP8 PRPO[2:0] VP9 PKP1[2:0] RP8 VP10 RP9 VP11 RP10 VP12 1R RP11 VP13 RP12 VP14 8 to 1 Selection VgP8 RP13 VP15 RP14 VP16 RP15 PKP2[2:0] VP17 RP16 VP18 RP17 VP19 RP18 VP20 1R RP19 VP 21 8 to 1 Selection VgP20 RP20 VP22 RP21 VP23 RP22 RP23 RP24 VP24 PKP3[2:0] VP25 VP26 RP25 VP27 RP26 VP28 1R RP27 VP29 8 to 1 Selection VgP43 RP28 VP30 RP29 VP31 RP30 VP32 PKP4[2:0] RP31 VP33 RP32 VP34 RP33 VP35 RP34 VP36 1R RP35 VP37 8 to 1 Selection VgP55 RP36 VP38 RP37 VP39 RP38 VP40 VRCP1 0~28R VP41 RP39 PRP1[2:0] VP42 RP40 VP43 RP41 VP44 4R PKP5[2:0] RP42 VP45 8 to 1 Selection VgP62 RP43 VP46 RP44 VP47 RP45 VP48 RP46 VP49 VR0P1 0~31R 8R VRP1[4:0] RP47 Fig.16.2 Grayscale Voltage Adjustment Ver. 1.7 77 VgP63 ST7781 1. Gradient Adjustment Registers The gradient adjustment registers are used to adjust the gradient of the curve representing the relationship between the grayscale and the grayscale reference voltage level. To adjust the gradient, the resistance values of variable resistors in the middle oh the ladder resistor are adjusted by registers PRP0[2:0]/PRN0[2:0], PRP1[2:0]/PRN1[2:0]. The registers consist of positive and negative polarity registers, allowing asymmetric drive. 2. Amplitude Adjustment Registers The amplitude adjustment registers, VRP0[3:0]/VRN0[3:0], VRP1[4:0], are used to adjust the amplitude of grayscale voltages. To adjust the amplitude, the resistance values of variable resistors at the top and the bottom of the ladder resister are adjusted. Grayscale Voltage Grayscale Voltage Grayscale Voltage 3. Fine Adjustment Registers The fine adjustment registers are used to fine-adjust grayscale voltage levels. To fine-adjust grayscale voltage levels, fine adjustment registers adjust the reference voltage level, 8 levels for each register generated from the ladder resistor, in respective 8-to-1 selectors. Same with other registers, the fine adjustment registers consist of positive and negative polarity registers. Fig.16.3 Gamma curve adjustment Register Groups Gradient Adjustment Amplitude Adjustment Fine Adjustment Positive Polarity PRP0[2:0] PRP1[2:0] VRP0[3:0] VRP1[4:0] KP0[2:0] KP1[2:0] KP2[2:0] KP3[2:0] KP4[2:0] KP5[2:0] Negative Polarity PRN0[2:0] PRN1[2:0] VRN0[3:0] VRN1[4:0] KN0[2:0] KN1[2:0] KN2[2:0] KN3[2:0] KN4[2:0] KN5[2:0] Description Variable Resistor VRCP0,VRCN0 Variable Resistor VRCP1,VRCN1 Variable Resistor VROP0,VRON0 Variable Resistor VROP1,VRON1 8-to-1 Selector (Voltage Level of Grayscale1) 8-to-1 Selector (Voltage Level of Grayscale8) 8-to-1 Selector (Voltage Level of Grayscale20) 8-to-1 Selector (Voltage Level of Grayscale43) 8-to-1 Selector (Voltage Level of Grayscale55) 8-to-1 Selector (Voltage Level of Grayscale62) Table 16.4: Register Description Ver. 1.7 78 ST7781 Ladder Resistors and 8-to-1 Selector Block Configuration The reference voltage generation block consists of two ladder resistor units including variable resistors and 8-to-1 selectors. Each 8-10-1 selector selects one of the 8 voltage levels generated from the ladder resistor unit to output as a grayscale reference voltage. Both variable resistors and 8-to-1 selectors are controlled according to theγ-correction registers. This unit has pins to connect a volume resistor externally to compensate differences in various characteristic of panels. Variable Resistors ST7781 uses variable resistors of the following three purposes: gradient adjustment (VRCP(N)0/VRCP(N)1);amplitude adjustment (1) (VROP(N)0); and the amplitude adjustment (2) (VROP(N)1). The resistance values of these variable resistors are set by gradient adjustment registers and amplitude adjustment registers as follows. Gradient Adjustment PRP(N)0/1[2:0] VRCP(N)0 Register Resistance 000 0R 001 4R 010 8R 011 12R 100 16R 101 20R 110 24R 111 28R Amplitude Adjustment (1) VRP(N)0[3:0] VROP(N)0 Register Resistance 0000 0R 0001 2R 0010 4R : : : : 1101 26R 1111 28R 1111 30R Amplitude Adjustment (2) VRP(N)1[4:0] VROP(N)1 Register Resistance 00000 0R 00001 1R 00010 2R : : : : 11101 29R 11110 30R 11111 31R Table 16.5: Resistance Adjustment 8-to-1 selectors The 8-to-1 selector selects one of eight voltage levels generated from the ladder resistor unit according to the fine adjustment register and output the selected voltage level as a reference grayscale voltage (VgP(N)1~6). The table below shows the setting in the fine adjustment register and the selected voltage levels for respective reference grayscale voltages. Register KP(N)[2:0] 000 001 010 011 100 101 110 111 Fine Adjustment Registers and Selected Voltage Selected Voltage VgP(N)1 VgP(N)8 VgP(N)20 VgP(N)43 VgP(N)55 VP(N)1 VP(N)9 VP(N)17 VP(N)25 VP(N)33 VP(N)2 VP(N)10 VP(N)18 VP(N)26 VP(N)34 VP(N)3 VP(N)11 VP(N)19 VP(N)27 VP(N)35 VP(N)4 VP(N)12 VP(N)20 VP(N)28 VP(N)36 VP(N)5 VP(N)13 VP(N)21 VP(N)29 VP(N)37 VP(N)6 VP(N)14 VP(N)22 VP(N)30 VP(N)38 VP(N)7 VP(N)15 VP(N)23 VP(N)31 VP(N)39 VP(N)8 VP(N)16 VP(N)24 VP(N)32 VP(N)40 Table 16.7: Fine Adjustment Registers and Selected Voltage Ver. 1.7 79 VgP(N)62 VP(N)41 VP(N)42 VP(N)43 VP(N)44 VP(N)45 VP(N)46 VP(N)47 VP(N)48 ST7781 Source Output Levels Fig.16.8 Relationship between Source Output and VCOM Fig.16.9 Relationship between DRAM Data and Output Level Ver. 1.7 80 ST7781 17. Application 17.1. Configuration of Power Supply Circuit Fig.17.1 Power Supply Circuit Block Ver. 1.7 81 ST7781 The following table shows specifications of external elements connected to the ST7781 power supply circuit. Items Recommended Specification Pin Connection GVDD, VCI1, VCC, VCL, VCOMH, VCOML, C11P/N, C12P/N, C21P/N, AVDD 6.3 V 1 µF Capacity 10 V Schottky Diode C22P/N ,C23P/N 25 V VF<0.4V/20mA at 25°C, VR ≥30V VGH, VGL (GND – VGL), Table 17.1.1: Outside Compoments 17.2. Standby Mode Into Standby flow Exit Standby flow Display Off Power Supply Setting Set STB (STB=1) Set STB (STB=0) Into Standby mode Display On Normal mode Fig.17.2 Standby Mode Register Setting Sequence Ver. 1.7 82 ST7781 17.3. Power Supply Configuration When supplying and cutting off power, follow the sequence below. The setting time for oscillators, circuits and operational amplifiers depends on external resistance and capacitance. Power Supply on Sequence VDD VDDI Normal Display VSS VDD VDDI or VDDI,VDD Simultaneously Display Off DTE=0 D[1:0]=00 GON=1 BASEE=0 Reset Signal Initial IC Into Standby Mode STB=1 Display Control Setting Power Control Registers Initial LCD Power Supply Halt Setting SAP=0 AP[2:0]=000 PON=0 Set Display Windows Power Supply Off Sequence Power Supply Startup 1 Setting VDDI VDD Frame Rate Setting VSS VDD or VDDI,VDD Simultaneously VDDI Power Supply Startup 2 Setting Gamma Cluster Setting Display On Normal Display Fig.17.3 Power Supply ON/OFF Sequence Ver. 1.7 83 ST7781 17.4. Voltage Generation The pattern diagram for setting the voltages and the waveforms of the voltages of the ST7781 are as follows. BT[2:0] AVDD VGH (10~16.5)V VCI1 VRH[3:0] AVDD GVDD(3~(AVDD-0.5))V GVDD VCOM[5:0] VDDI AVDD (4.5~5.6)V VCOMH(3~(AVDD-0.5))V VDV [4:0] VDD VCOML((VCL+0.5)~0.0)V VCI1 VCL BT[2:0] VCL=-VCI1 VGL(-14~-5)V Fig.17.4 Voltage Configuration Diagram Note1: The AVDD, VGH, VGL, and VCL output voltage levels are lower than their theoretical levels (ideal voltage levels) due to current consumption at respective outputs. The voltage levels in the following relationships (AVDD – GVDD ) >0.5V, (VCOML – VCL) > 0.5V, are the actual voltage levels. When the alternating cycles of VCOM are set high (e.g. the polarity inverts every line cycle), current consumption is large. In this case, check the voltage before use. Note 2: In operation, setting voltages within the respective voltage ranges are recommended. 17.5. Applied Voltage to the TFT panel Fig.17.5 Voltage Output to TFT LCD Panel Ver. 1.7 84 ST7781 17.6. Partial Display Function The ST7781 allows selectively driving two partial images on the screen at arbitrary positions set in the screen drive position registers.The following example shows the setting for partial display function: BASEE NL[5:0] PTDE0 PTSA0[8:0] PTEA0[8:0] PTDP0[8:0] PTDE1 PTSA1[8:0] PTEA1[8:0] PTDP1[8:0] Base Image Display Setting 0 6’h27 Partial Image 1 Display Setting 1 9’h000 9’h00F 9’h080 Partial Image 2 Display Setting 1 9’h020 9’h02F 9’h0C0 Table 17.6.1: Partial Setting Example Fig.17.6 Partial Display Example Ver. 1.7 85 ST7781 17.7. Resizing Function ST7781 supports resizing function (x1/2, x1/4), which is performed when writing image data to DRAM. The resizing function is enabled by setting a window address area and the RSZ bit which represents the resizing factor (x1/2, x1/4) of image. The resizing function allows the system to transfer the original-size image data into the DRAM with resized image data. 160 320 Fig.17.8 Data Transfer in Resizing Mode Fig.17.8.1 Resizing Example Original Image Size (X × Y) 640 × 480 352 × 288 320 × 240 176 × 144 120 × 160 132 × 132 Resized Image Resolution 1/2 (RSZ=2’h1) 1/4 (RSZ=2’h3) 320 × 240 160 × 120 176 × 144 88 × 72 60 × 120 80× 60 88 × 72 44× 36 60× 80 30 × 40 66 × 66 33 × 33 Table 17.8.1: Resized Image Resolution The RSZ bit sets the resizing factor of an image. When setting a window address area in the internal DRAM, the DRAM window address area must fit the size of resized image. The following examples show the resizing setting. Ver. 1.7 86 ST7781 Original image data number in horizontal direction Original image data number in Vertical direction Resizing Ration Resizing Setting Remainder pixels in horizontal direction Remainder pixels in vertical direction DRAM writing start address DRAM window setting Table 17.8.2: Resized Coefficient Ver. 1.7 87 RSZ RCH RCV AD HAS HEA VSA VEA X Y 1/N N-1 H V (X0, Y0) X0 X0+dX-1 Y0 Y0+dY-1 ST7781 18. Revise History ST7781 Serial Specification Revision History Version Date Description 1.0 2009/02/10 Release Version 1.1 2009/03/16 1.2 2009/03/30 Application Flow (Page80) TESTI PIN Name Modify (Page4) Recommended Specification (Page79) Pad Arrangement (Page2) Pad Center Coordinates(Page4) 1.3 2009/04/16 Add DRAM Address Map Table(Page39) Configuration of Power Supply Circuit(Page79) Recommended Specification (Page80) 1.4 2009/04/29 Modify Power Consumption Table(Page 24) Modfity Pad Center Coordinates (Page2 ) 1.5 2009/04/30 Modifty Pad Pump Specification (Page3 ) Configuration of Power Supply Circuit (Page79) 1.7 Ver. 1.7 2009/08/27 Add SPI interface related Description (Page 1,2,4,22,40,41,80) 88