APT15GP60K 600V POWER MOS 7 IGBT ® TO-220 The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 400V, 19A • Low Gate Charge • 200 kHz operation @ 400V, 12A • Ultrafast Tail Current shutoff • SSOA rated G C C E G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM I C1 Continuous Collector Current @ TC = 25°C 56 I C2 Continuous Collector Current @ TC = 110°C 27 I CM Pulsed Collector Current SSOA PD TJ,TSTG TL UNIT APT15GP60K 1 Volts Amps 65 @ TC = 25°C 65A @ 600V Switching Safe Operating Area @ TJ = 150°C 250 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range °C 300 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 10-2005 MIN Rev A Characteristic / Test Conditions 050-7418 Symbol APT15GP60K DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 1685 VGE = 0V, VCE = 25V 210 Reverse Transfer Capacitance f = 1 MHz 15 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 VCE = 300V 12 15 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 15A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V 55 nC 65 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time I C = 15A Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon1 Eon2 Eoff 8 12 VGE = 15V 69 I C = 15A Current Fall Time 55 ns 88 R G = 5Ω 44 Turn-on Switching Energy (Diode) µJ 121 Inductive Switching (125°C) VCC = 400V Turn-off Delay Time Turn-off Switching Energy 152 6 Current Rise Time Turn-on Switching Energy 130 TJ = +25°C 5 ns 58 R G = 5Ω 4 Eon2 tf 29 Current Fall Time Turn-on Switching Energy td(off) 12 VGE = 15V Turn-off Delay Time Eon1 tr 8 Inductive Switching (25°C) VCC = 400V 130 TJ = +125°C 267 66 µJ 268 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .50 RΘJC Junction to Case (DIODE) N/A Package Weight 1.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7418 Rev A 10-2005 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES TC=25°C 10 0 TC=-55°C TC=125°C 5 FIGURE 1, Output Characteristics(VGE = 15V) 100 VGE, GATE-TO-EMITTER VOLTAGE (V) 60 40 TJ = 25°C 20 TJ = 125°C 3.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3 IC =30A 2.5 IC = 15A 2 IC = 7.5A 1.5 1 0.5 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 14 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature VCE = 120V VCE = 300V 8 VCE = 480V 6 4 2 0 10 20 30 40 50 GATE CHARGE (nC) FIGURE 4, Gate Charge 60 3.5 3 IC =30A 2.5 IC = 15A 2 IC = 7.5A 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 70 0.95 IC = 15A TJ = 25°C 10 1.15 1.0 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 12 80 1.05 TC=-55°C TC=125°C 5 1.2 1.10 TC=25°C 10 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 15 FIGURE 2, Output Characteristics (VGE = 10V) 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 80 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = -55°C 20 0 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE 25 -25 60 50 40 30 10-2005 15 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev A IC, COLLECTOR CURRENT (A) 20 IC, COLLECTOR CURRENT (A) VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 25 APT15GP60K 30 050-7418 30 APT15GP60K 80 16 14 VGE= 10V 12 VGE= 15V 10 8 6 VCE = 400V TJ = 25°C or 125°C RG = 5Ω L = 100 µH 4 2 0 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 18 VGE =15V,TJ=125°C 70 60 VGE =10V,TJ=125°C 50 40 VGE =15V,TJ=25°C 30 VGE =10V,TJ=25°C 20 10 VCE = 400V RG = 5Ω L = 100 µH 0 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 30 100 TJ = 25 or 125°C,VGE = 10V 80 TJ = 125°C, VGE = 10V or 15V 20 tf, FALL TIME (ns) tr, RISE TIME (ns) 25 15 10 TJ = 25 or 125°C,VGE = 15V 5 0 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 600 700 VCE = 400V L = 100 µH RG = 5 Ω 500 TJ =125°C, VGE=15V TJ =125°C,VGE=10V 400 300 200 TJ = 25°C, VGE=15V 100 TJ = 25°C, VGE=10V 0 800 Eoff 30A 600 500 400 Eon2 15A 300 Eoff 15A 200 Eon2 7.5A 100 Eoff 7.5A 0 0 500 400 300 200 100 700 Eon2 30A 700 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance TJ = 125°C, VGE = 10V or 15V TJ = 25°C, VGE = 10V or 15V 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 10-2005 Rev A 050-7418 VCE = 400V VGE = +15V TJ = 125°C 600 VCE = 400V L = 100 µH RG = 5 Ω 0 0 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 900 RG =5Ω, L = 100µH, VCE = 400V 5 10 15 20 25 30 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 700 TJ = 25°C, VGE = 10V or 15V 40 20 RG =5Ω, L = 100µH, VCE = 400V 0 60 600 VCE = 400V VGE = +15V RG = 5 Ω 500 Eon2 30A Eoff 30A 400 300 200 Eon2 15A 100 0 -50 Eon2 7.5A Eoff 15A Eoff 7.5A -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 4,000 P C, CAPACITANCE ( F) 1,000 500 Coes 100 50 IC, COLLECTOR CURRENT (A) Cies Cres 10 APT15GP60K 70 60 50 40 30 20 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.50 0.9 0.40 0.7 0.30 0.5 0.20 0.3 t1 t2 0.10 0 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 Duty Factor D = t1/t2 0.1 0.05 10-5 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.284 0.164 Case temperature 100 50 10 FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 5 10 15 20 25 30 35 40 45 50 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Fmax = min(f max1 , f max 2 ) f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 10-2005 0.00600 Rev A 0.216 Power (Watts) 050-7418 Junction temp. ( ”C) FMAX, OPERATING FREQUENCY (kHz) 292 RC MODEL APT15GP60K Gate Voltage APT15DF60 10% TJ = 125 C td(on) V CE IC V CC Collector Current tr 90% A 5% D.U.T. 10% 5% Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage TJ = 125 C Collector Voltage td(off) A tf V CE 90% IC 100uH V CLAMP 10% Switching Energy 0 A Collector Current D.U.T. DRIVER* Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit TO-220AC Package Outline 1.39 (.055) 0.51 (.020) 16.51 (.650) 14.23 (.560) Collector 4.08 (.161) Dia. 3.54 (.139) 3.42 (.135) 2.54 (.100) 10.66 (.420) 9.66 (.380) 5.33 (.210) 4.83 (.190) 6.85 (.270) 5.85 (.230) 6.35 (.250) MAX. 0.50 (.020) 0.41 (.016) Rev A 10-2005 2.92 (.115) 2.04 (.080) 050-7418 B 14.73 (.580) 12.70 (.500) 1.01 (.040) 3-Plcs. 0.38 (.015) 4.82 (.190) 3.56 (.140) 2.79 (.110) 2.29 (.090) 5.33 (.210) 4.83 (.190) Gate Collector Emitter 1.77 (.070) 3-Plcs. 1.15 (.045) Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.