ADPOW APT200GN60JDQ4

APT200GN60JDQ4
600V
TYPICAL PERFORMANCE CURVES
APT200GN60JDQ4
®
C
G
ISOTOP ®
• 600V Field Stop
•
•
•
•
•
E
E
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and
a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures
extremely reliable operation, even in the event of a short circuit fault. Low gate charge
simplifies gate drive design and minimizes losses
Trench Gate: Low VCE(on)
Easy Paralleling
5µs Short Circuit Capability
Intergrated Gate Resistor: Low EMI, High Reliability
175°C Rated
S
OT
22
7
"UL Recognized"
file # E145592
C
G
E
Applications: welding, inductive heating, solar inverters, motor drives, UPS, pass transistor
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT200GN60JDQ4
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
I C1
Continuous Collector Current @ TC = 25°C
283
I C2
Continuous Collector Current @ TC = 110°C
158
I CM
SSOA
PD
TJ,TSTG
Pulsed Collector Current
1
UNIT
Volts
Amps
600
Switching Safe Operating Area @ TJ = 175°C
600A @600V
Total Power Dissipation
Operating and Storage Junction Temperature Range
682
Watts
-55 to 175
°C
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA)
600
VGE(TH)
Gate Threshold Voltage
(VCE = VGE, I C = 3.2mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 200A, Tj = 25°C)
VCE(ON)
I CES
I GES
RGINT
TYP
MAX
5
5.8
6.5
1.05
1.45
1.85
Collector-Emitter On Voltage (VGE = 15V, I C = 200A, Tj = 125°C)
1.65
Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 25°C)
1.15
Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 125°C)
1.19
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
50
2
600
2
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
µA
TBD
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
UNIT
nA
Ω
3-2005
MIN
Rev B
Characteristic / Test Conditions
050-7611
Symbol
APT200GN60JDQ4
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
SCSOA
td(on)
tr
td(off)
tf
Eon1
8.2
VGE = 15V
1180
VGE =
V
nC
A
5
µs
80
ns
560
I C = 200A
100
RG = 1.0Ω 7
13
TJ = +25°C
5
pF
600
50
4
UNIT
660
7,
VCC = 400V
Current Fall Time
MAX
85
Inductive Switching (25°C)
Turn-off Delay Time
mJ
15
6
11
Turn-on Delay Time
Inductive Switching (125°C)
50
VCC =400V
80
Current Rise Time
Turn-off Delay Time
VGE = 15V
620
RG = 1.0Ω 7
70
14
I C = 200A
Current Fall Time
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
Gate Charge
VGE = 15V
Eon1
Eoff
4000
VCC = 360V, VGE = 15V,
Current Rise Time
Turn-off Switching Energy
tf
f = 1 MHz
TJ = 150°C, R G = 1.0Ω 7
Turn-on Delay Time
Eoff
td(off)
4610
15V, L = 100µH, VCE = 600V
Turn-on Switching Energy (Diode)
tr
VGE = 0V, VCE = 25V
TJ = 175°C, R G = 1.0Ω
Eon2
td(on)
14100
I C = 100A
Short Circuit Safe Operating Area
TYP
Capacitance
VCE = 300V
Switching Safe Operating Area
Turn-on Switching Energy
MIN
44
55
TJ = +125°C
ns
16
66
mJ
10
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.22
RθJC
Junction to Case (DIODE)
.33
VIsolation
WT
Torque
1
Characteristic
RMS Voltage (50-60Hz Sinusoidal
Wavefom from Terminals to Mounting Base for 1 Min.)
Package Weight
Maximum Terminal & Mounting Torque
2500
UNIT
°C/W
Volts
1.03
oz
29.2
gm
10
Ib•in
1.1
N•m
Repetitive Rating: Pulse width limited by maximum junction temperature.
3 See MIL-STD-750 Method 3471.
Rev B
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
050-7611
3-2005
2 For Combi devices, Ices includes both IGBT and FRED leakages
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TJ = -55°C
TJ = 25°C
300
TJ = 125°C
250
TJ = 175°C
200
150
100
50
0
IC, COLLECTOR CURRENT (A)
TJ = -55°C
TJ = 25°C
300
TJ = 125°C
250
200
150
100
TJ = 175°C
50
0
0
250
9V
200
8.5V
150
8V
100
7.5V
50
7V
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
12V
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
350
300
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
400
15V
13V
350
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
= 15V
J
VCE = 120V
12
VCE = 300V
10
VCE = 480V
8
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 200A
C
T = 25°C
14
0
200
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
2.0
IC = 150A
1.5
IC = 75A
1.0
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC = 300A
2.5
3.0
2.5
IC = 150A
1.5
0.5
0
350
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
50
75 100 125 150 175
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
1.10
1.00
IC = 75A
1.0
400
1.05
IC = 300A
2.0
1.15
IC, DC COLLECTOR CURRENT(A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.0
400 600 800 1000 1200 1400
GATE CHARGE (nC)
0
300
250
200
150
100
50
0
-50 -25
0 25 50 75 100 125 150 175
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
3-2005
GE
Rev B
V
350
APT200GN60JDQ4
400
050-7611
400
30
20
VCE = 400V
10 T = 25°C, or 125°C
J
RG = 1.0Ω
L = 100µH
700
600
500
VGE =15V,TJ=125°C
VGE =15V,TJ=25°C
400
300
200
V = 400V
100 RCE= 1.0Ω
G
0
L = 100µH
120 160 200 240 280 320
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
120 160 200 240 280 320
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
180
250
40
RG = 1.0Ω, L = 100µH, VCE = 400V
160
40
200
140
tr, RISE TIME (ns)
td (OFF), TURN-OFF DELAY TIME (ns)
40
TJ = 25 or 125°C,VGE = 15V
120
tf, FALL TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VGE = 15V
50
0
APT200GN60JDQ4
800
60
100
80
60
40
150
TJ = 25°C, VGE = 15V
100
TJ = 125°C, VGE = 15V
50
20
0
0
30,000
G
TJ = 125°C
25,000
20,000
15,000
10,000
TJ = 25°C
5,000
J
50,000
Eon2,300A
40,000
Eoff,200A
30,000
Eon2,200A
20,000
Eoff,100A
10,000
0
Eon2,100A
20
15
10
5
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
TJ = 125°C
15,000
10,000
5,000
TJ = 25°C
35,000
Eoff,300A
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
3-2005
Rev B
050-7611
60,000
G
20,000
80 120 160 200 240 280 320
40
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
80 120 160 200 240 280 320
40
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
= 400V
V
CE
= +15V
V
GE
T = 125°C
= 400V
V
CE
= +15V
V
GE
R = 1.0Ω
0
0
70,000
40
25,000
= 400V
V
CE
= +15V
V
GE
R = 1.0Ω
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
35,000
RG = 1.0Ω, L = 100µH, VCE = 400V
80 120 160 200 240 280 320
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
80 120 160 200 240 280 320
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
40
= 400V
V
CE
= +15V
V
GE
R = 1.0Ω
30,000
Eon2,300A
G
25,000 Eoff,300A
20,000
Eon2,200A
15,000
Eoff,200A
10,000
Eon2,100A
5,000
0
Eoff,100A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
20,000
5000
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
10,000
1000
500
APT200GN60JDQ4
700
C0es
600
500
400
300
200
Cres
100
0
100
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.20
0.7
0.15
0.5
Note:
0.10
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
0.3
t2
0.05
t
SINGLE PULSE
0.1
0
t1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
10-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
Power
(watts)
0.132
0.0414
0.0120
0.483
8.30
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 1.0Ω
G
40
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
60
80 100 120 140 160 180 200
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
3-2005
0.0463
Rev B
RC MODEL
050-7611
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
60
APT200GN60JDQ4
APT100DQ60
Gate Voltage
10%
TJ = 125°C
td(on)
tr
V CE
IC
V CC
Collector Current
90%
5%
A
Switching Energy
D.U.T.
90%
Gate Voltage
TJ = 125°C
td(off)
90%
tf
10%
0
Collector Voltage
Switching Energy
Rev B
3-2005
Figure 23, Turn-off Switching Waveforms and Definitions
050-7611
5%
Collector Voltage
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
Collector Current
10%
TYPICAL PERFORMANCE CURVES
APT200GN60JDQ4
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT200GN60LDQ4
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 108°C, Duty Cycle = 0.5)
100
RMS Forward Current (Square wave, 50% duty)
156
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
1000
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
MIN
Forward Voltage
TYP
IF = 200A
2.0
IF = 400A
2.6
IF = 200A, TJ = 125°C
MAX
UNIT
Volts
1.67
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 100A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 100A, diF/dt = -200A/µs
IF = 100A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
MIN
TYP
MAX
UNIT
-
34
-
160
-
290
-
5
-
220
ns
-
1530
nC
-
13
-
100
ns
-
2890
nC
-
44
Amps
ns
nC
-
-
Amps
Amps
D = 0.9
0.30
0.25
0.7
0.20
0.5
Note:
0.15
PDM
0.3
0.10
t1
t2
0.05
0
10-5
t
0.1
0.05
0.05
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE
SINGLE PULSE
PULSE
10-4
10-3
10-2
10-1
1.0
10
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
0.0182
0.188
0.361
0.0743
5.17
Case temperature (°C)
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
Rev B
Power
(watts)
0.0673
3-2005
Junction
temp (°C)
050-7611
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.35
300
trr, REVERSE RECOVERY TIME
(ns)
TJ = 25°C
250
IF, FORWARD CURRENT
(A)
APT200GN60JDQ4
300
200
TJ = 175°C
150
TJ = 125°C
100
50
T =125°C
J
V =400V
R
250
200A
200
100A
50A
150
100
50
TJ = -55°C
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
60
T =125°C
J
V =400V
3500
R
200A
3000
100A
2500
2000
50A
1500
1000
500
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
0.6
IRRM
Qrr
CJ, JUNCTION CAPACITANCE
(pF)
3-2005
Rev B
Duty cycle = 0.5
T =175°C
J
100
80
60
40
20
0
1400
050-7611
10
120
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
1200
1000
800
600
400
200
0
50A
20
140
0.2
0.0
100A
30
160
trr
0.4
200A
40
180
trr
0.8
R
50
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
Qrr
1.0
T =125°C
J
V =400V
0
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
IRRM, REVERSE RECOVERY CURRENT
(A)
Qrr, REVERSE RECOVERY CHARGE
(nC)
4000
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT200GN60JDQ4
Vr
diF /dt Adjust
+18V
APT60M75L2LL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a Registered Trademark of SGS Thomson. APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
3-2005
3.3 (.129)
3.6 (.143)
Rev B
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
050-7611
7.8 (.307)
8.2 (.322)