MICROSEMI APT50GT60SR

TYPICAL PERFORMANCE CURVES
600VAPT50GT60BR_SR(G)
APT50GT60BR
APT50GT60SR
APT50GT60BRG* APT50GT60SRG*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
(B)
TO
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 100KHz
• Low Tail Current
• Ultra Low Leakage Current
D3PAK
-2
47
(S)
C
G
G
C
E
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT50GT60BR_SR(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
7
@ TC = 25°C
UNIT
Volts
110
52
1
Amps
150
150A @ 600V
Switching Safe Operating Area @ TJ = 150°C
Watts
446
Total Power Dissipation
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
(VCE = VGE, I C = 1mA, Tj = 25°C)
3
TYP
4
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C)
1.7
2.0
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C)
2.2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
2
Gate-Emitter Leakage Current (VGE = ±20V)
MAX
5 Volts
2.5
25
TBD
120
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
MicrosemiWebsite-http://www.microsemi.com
Units
µA
nA
6-2008
MIN
Rev C
Characteristic / Test Conditions
052-6273
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT50GT60BR_SR(G)
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
Turn-on Delay Time
tr
Current Rise Time
td(off)
Turn-off Delay Time
tf
Eon1
Capacitance
2660
VGE = 0V, VCE = 25V
250
f = 1 MHz
153
Gate Charge
7.5
VGE = 15V
240
VCE = 300V
20
110
I C = 50A
I C = 50A
4
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
tr
Current Rise Time
RG = 4.3Ω
TJ = +25°C
5
6
VGE = 15V
Turn-off Delay Time
I C = 50A
Current Fall Time
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
V
nC
RG = 4.3Ω
44
55
TJ = +125°C
6
A
14
32
240
36
995
1110
1070
Inductive Switching (125°C) VCC = 400V
UNIT
pF
150
15V, L = 100µH,VCE = 600V Current Fall Time
Turn-on Switching Energy
MAX
TJ = 150°C, R G = 4.3Ω, VGE =
VGE = 15V
Turn-on Switching Energy (Diode)
tf
TYP
Inductive Switching (25°C) VCC = 400V
Eon2
td(off)
MIN
Test Conditions
Characteristic
ns
µJ
14
32
270
95
1035
1655
1505
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
RθJC
Junction to Case (IGBT)
.28
RθJC
Junction to Case (DIODE)
5.9
N/A
WT
Package Weight
TYP
MAX
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6273
Rev C
6-2008
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
= 15V
TJ = 25°C
TJ = -55°C
80
TJ = 125°C
60
40
10
FIGURE 1, Output Characteristics(TJ = 25°C)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
IC, COLLECTOR CURRENT (A)
140
TJ = -55°C
120
100
80
60
TJ = 25°C
40
TJ = 125°C
20
0
0
9V
100
80
8V
60
40
7V
6V
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 125°C)
J
VCE = 120V
12
VCE = 300V
10
VCE = 480V
8
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 50A
C
T = 25°C
14
0
5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 100A
3
IC = 50A
2
IC = 25A
1
0
3.5
2.5
IC = 50A
2.0
1.5
0.5
0
140
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25 0 25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
1.10
1.00
IC = 25A
1.0
160
1.05
IC = 100A
3.0
1.15
IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED)
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
6
50 100 150 200 250
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
120
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
160
10V
140
0
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
11V
160
20
0
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
120
100
15V 13V
180
0
120
100
80
60
Lead Temperature
Limited
40
20
0
-50 -25 0 25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2008
GE
140
Rev C
V
APT50GT60BR_SR(G)
200
052-6273
160
VGE = 15V
15
10
5 VCE = 400V
TJ = 25°C, or 125°C
0
RG = 4.3Ω, L = 100µH, VCE = 400V
160
70
140
30
TJ = 125°C
3000
2000
1000
TJ = 25°C
3000
J
8,000
6,000
4,000 Eoff,100A
Eoff,50A
Eon2,50A
2,000
Eoff,25A
Eon2,25A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
G
TJ = 125°C
2000
1500
1000
TJ = 25°C
500
0
20
40
60
80
100 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
Eon2,100A
TJ = 25°C, VGE = 15V
2500
5,000
V
= 400V
CE
V
= +15V
GE
T = 125°C
0
60
0
0
20
40
60
80
100 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
80
0
20
40
60
80
100 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
0
10,000
TJ = 125°C, VGE = 15V
100
0
EOFF, TURN OFF ENERGY LOSS (µJ)
G
4000
120
3500
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
RG = 4.3Ω, L = 100µH, VCE = 400V
20
0
20
40
60
80
100 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
EON2, TURN ON ENERGY LOSS (µJ)
L = 100µH
0
40
TJ = 25 or 125°C,VGE = 15V
0
SWITCHING ENERGY LOSSES (µJ)
50 VCE = 400V
RG = 4.3Ω
80
40
6-2008
150
180
5000
Rev C
VGE =15V,TJ=25°C
200
90
10
052-6273
VGE =15V,TJ=125°C
20
40
60
80
100
125
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
50
250
20
40
60
80
100 120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
60
300
0
0
tf, FALL TIME (ns)
tr, RISE TIME (ns)
RG = 4.3Ω
L = 100µH
20
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
20
APT50GT60BR_SR(G)
350
25
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
G
4,000
Eon2,100A
Eoff,100A
3,000
2,000
Eon2,50A
1,000
0
Eoff,50A
Eon2,25A
Eoff,25A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
Cies
1,000
500
Coes
140
120
100
80
60
40
20
Cres
100
APT50GT60BR_SR(G)
160
4,000
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0 100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.20
0.7
0.15
0.5
0.10
0.3
PDM
Note:
t1
SINGLE PULSE
t2
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
TJ (°C)
1.0
TC (°C)
0.114
0.113
Dissipated Power
(Watts)
0.0057
0.0276
ZEXT
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
120
50
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
2
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 4.3Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
10 20 30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
6-2008
F
Rev C
10-5
052-6273
0.05
0
D = 0.9
0.25
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
APT50GT60BR_SR(G)
Gate Voltage
APT40DQ60
10%
TJ = 125°C
td(on)
tr
Collector Current
90%
V CE
IC
V CC
5%
5%
10%
Collector Voltage
A
D.U.T.
Switching Energy
Figure 22, Turn-on Switching Waveforms and Definitions
Figure21,InductiveSwitchingTestCircuit
90%
Gate Voltage
TJ = 125°C
td(off)
90%
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
3
TO-247 Package Outline
D PAKPackageOutline
e1 SAC: Tin, Silver, Copper
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
Collector
6-2008
Rev C
052-6273
5.38 (.212)
6.20 (.244)
Collector
(HeatSink)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
e3 SAC: Tin, Silver, Copper
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
13.41 (.528)
13.51(.532)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Gate
Collector
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786
5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
3.81 (.150)
4.06 (.160)
(Base of Lead)
HeatSink(Collector)
andLeads arePlated