TYPICAL PERFORMANCE CURVES 600VAPT50GT60BR_SR(G) APT50GT60BR APT50GT60SR APT50GT60BRG* APT50GT60SRG* *G Denotes RoHS Compliant, Pb Free Terminal Finish. Thunderbolt IGBT® (B) TO The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 100KHz • Low Tail Current • Ultra Low Leakage Current D3PAK -2 47 (S) C G G C E E C • RBSOA and SCSOA Rated G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT50GT60BR_SR(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 7 @ TC = 25°C UNIT Volts 110 52 1 Amps 150 150A @ 600V Switching Safe Operating Area @ TJ = 150°C Watts 446 Total Power Dissipation Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES (VCE = VGE, I C = 1mA, Tj = 25°C) 3 TYP 4 Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C) 1.7 2.0 Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C) 2.2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 Gate-Emitter Leakage Current (VGE = ±20V) MAX 5 Volts 2.5 25 TBD 120 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. MicrosemiWebsite-http://www.microsemi.com Units µA nA 6-2008 MIN Rev C Characteristic / Test Conditions 052-6273 Symbol DYNAMIC CHARACTERISTICS Symbol APT50GT60BR_SR(G) Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge 3 Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) Turn-on Delay Time tr Current Rise Time td(off) Turn-off Delay Time tf Eon1 Capacitance 2660 VGE = 0V, VCE = 25V 250 f = 1 MHz 153 Gate Charge 7.5 VGE = 15V 240 VCE = 300V 20 110 I C = 50A I C = 50A 4 Eoff Turn-off Switching Energy td(on) Turn-on Delay Time tr Current Rise Time RG = 4.3Ω TJ = +25°C 5 6 VGE = 15V Turn-off Delay Time I C = 50A Current Fall Time Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy V nC RG = 4.3Ω 44 55 TJ = +125°C 6 A 14 32 240 36 995 1110 1070 Inductive Switching (125°C) VCC = 400V UNIT pF 150 15V, L = 100µH,VCE = 600V Current Fall Time Turn-on Switching Energy MAX TJ = 150°C, R G = 4.3Ω, VGE = VGE = 15V Turn-on Switching Energy (Diode) tf TYP Inductive Switching (25°C) VCC = 400V Eon2 td(off) MIN Test Conditions Characteristic ns µJ 14 32 270 95 1035 1655 1505 ns µJ THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN RθJC Junction to Case (IGBT) .28 RθJC Junction to Case (DIODE) 5.9 N/A WT Package Weight TYP MAX UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 052-6273 Rev C 6-2008 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Continuous current limited by package lead temperature. Microsemi reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES = 15V TJ = 25°C TJ = -55°C 80 TJ = 125°C 60 40 10 FIGURE 1, Output Characteristics(TJ = 25°C) 250µs PULSE TEST<0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 140 TJ = -55°C 120 100 80 60 TJ = 25°C 40 TJ = 125°C 20 0 0 9V 100 80 8V 60 40 7V 6V 0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 125°C) J VCE = 120V 12 VCE = 300V 10 VCE = 480V 8 6 4 2 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 50A C T = 25°C 14 0 5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 100A 3 IC = 50A 2 IC = 25A 1 0 3.5 2.5 IC = 50A 2.0 1.5 0.5 0 140 0.95 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 1.10 1.00 IC = 25A 1.0 160 1.05 IC = 100A 3.0 1.15 IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 6 50 100 150 200 250 GATE CHARGE (nC) FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 120 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 160 10V 140 0 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 11V 160 20 0 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 120 100 15V 13V 180 0 120 100 80 60 Lead Temperature Limited 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 6-2008 GE 140 Rev C V APT50GT60BR_SR(G) 200 052-6273 160 VGE = 15V 15 10 5 VCE = 400V TJ = 25°C, or 125°C 0 RG = 4.3Ω, L = 100µH, VCE = 400V 160 70 140 30 TJ = 125°C 3000 2000 1000 TJ = 25°C 3000 J 8,000 6,000 4,000 Eoff,100A Eoff,50A Eon2,50A 2,000 Eoff,25A Eon2,25A 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance V = 400V CE V = +15V GE R = 4.3Ω G TJ = 125°C 2000 1500 1000 TJ = 25°C 500 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (µJ) Eon2,100A TJ = 25°C, VGE = 15V 2500 5,000 V = 400V CE V = +15V GE T = 125°C 0 60 0 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 80 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 0 10,000 TJ = 125°C, VGE = 15V 100 0 EOFF, TURN OFF ENERGY LOSS (µJ) G 4000 120 3500 V = 400V CE V = +15V GE R = 4.3Ω RG = 4.3Ω, L = 100µH, VCE = 400V 20 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current EON2, TURN ON ENERGY LOSS (µJ) L = 100µH 0 40 TJ = 25 or 125°C,VGE = 15V 0 SWITCHING ENERGY LOSSES (µJ) 50 VCE = 400V RG = 4.3Ω 80 40 6-2008 150 180 5000 Rev C VGE =15V,TJ=25°C 200 90 10 052-6273 VGE =15V,TJ=125°C 20 40 60 80 100 125 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 50 250 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 60 300 0 0 tf, FALL TIME (ns) tr, RISE TIME (ns) RG = 4.3Ω L = 100µH 20 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 20 APT50GT60BR_SR(G) 350 25 V = 400V CE V = +15V GE R = 4.3Ω G 4,000 Eon2,100A Eoff,100A 3,000 2,000 Eon2,50A 1,000 0 Eoff,50A Eon2,25A Eoff,25A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) Cies 1,000 500 Coes 140 120 100 80 60 40 20 Cres 100 APT50GT60BR_SR(G) 160 4,000 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.20 0.7 0.15 0.5 0.10 0.3 PDM Note: t1 SINGLE PULSE t2 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration TJ (°C) 1.0 TC (°C) 0.114 0.113 Dissipated Power (Watts) 0.0057 0.0276 ZEXT ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 120 50 = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 2 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 4.3Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 6-2008 F Rev C 10-5 052-6273 0.05 0 D = 0.9 0.25 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 APT50GT60BR_SR(G) Gate Voltage APT40DQ60 10% TJ = 125°C td(on) tr Collector Current 90% V CE IC V CC 5% 5% 10% Collector Voltage A D.U.T. Switching Energy Figure 22, Turn-on Switching Waveforms and Definitions Figure21,InductiveSwitchingTestCircuit 90% Gate Voltage TJ = 125°C td(off) 90% Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions 3 TO-247 Package Outline D PAKPackageOutline e1 SAC: Tin, Silver, Copper 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) Collector 6-2008 Rev C 052-6273 5.38 (.212) 6.20 (.244) Collector (HeatSink) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) e3 SAC: Tin, Silver, Copper 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) 13.41 (.528) 13.51(.532) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 0.46 (.018) 0.56 (.022) {3 Plcs} 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} Gate Collector Emitter 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Emitter Collector Gate Dimensions in Millimeters (Inches) Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 3.81 (.150) 4.06 (.160) (Base of Lead) HeatSink(Collector) andLeads arePlated