DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUIT µPC1663 DC to VHF WIDEBAND DIFFERENTIAL INPUT AND OUTPUT AMPLIFIER IC DESCRIPTION The µPC1663 is a differential input, differential output wideband amplifier IC that uses an high frequency silicon bipolar process. This process improves bandwidth phase characteristics, input noise voltage characteristics, and low power consumption when compared to conventional HF-band differential amplifier ICs. These features make this device suitable as a wideband amplifier in high-definition TVs, high-resolution monitors, broadcasting satellite receivers, and video cameras, as a sense amplifier in high-density CCD and optical pick-up products, or as a pulse amplifier for optical data links. TM These ICs are manufactured using NEC’s 6 GHz fT NESAT I silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, these ICs have excellent performance, uniformity and reliability. FEATURES • Bandwidth and typical gain : 120 MHz @ AVOL = 300 700 MHz @ AVOL = 10 • Phase delay : –85 deg. @ AVOL = 100, 100 MHz • Input Noise Voltage : 3 µVr.m.s. (RS = 50 Ω, 10 k to 10 MHz) • Supply Current : 13mA TYP. @ VCC± = ±6 V • Gain adjustable from 10 to 300 with external resistor • No frequency compensation required (Small phase delay at 10 MHz or less) ORDERING INFORMATION Part Number Package Marking µPC1663G-E1 8-pin plastic SOP (225 mil) µPC1663GV-E1 8-pin plastic SSOP (175 mil) 1663 Supplying Form Embossed tape 12 mm wide. Pin 1 is in tape pull-out direction. Qty 2.5 kp/reel. Embossed tape 8 mm wide. Pin 1 is in tape pull-out direction. Qty 1 kp/reel. Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: µPC1663G, µPC1663GV) Caution µPC1663C (8-pin plastic DIP) is discontinued. Caution Electro-static sensitive devices The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. G11024EJ6V0DS00 (6th edition) Date Published September 1999 N CP(K) Printed in Japan The mark shows major revised points. © 1987, 1999 µPC1663 CONNECTION DIAGRAM (Top View) 1 8 2 7 3 6 4 Pin No. Pin Name 1 IN2 2 G1B 3 VCC− 4 OUT2 5 OUT1 6 VCC 7 G1A 8 IN1 5 + PIN EXPLANATIONS Pin No. Pin Name 8 IN1 1 IN2 5 OUT1 4 OUT2 6 VCC 3 + In Dual Bias (V) In Single Bias (V) Pin voltage 0 Apply voltage VCC/2 Input pin Pin voltage 0 Apply voltage VCC/2 Output pin ±2 to ±6.5 –0.3 to +14 – VCC 7 G1A 2 G1B GND — — Functions and Applications Internal Equivalent Circuit 6 Plus voltage supply pin. This pin should be connected with bypass capacitor to minimize AC impedance. 8 1 7 Note Note (G2A) (G2B) Minus voltage supply pin. This pin should be connected with bypass capacitor to minimize AC impedance. Gain adjustment pin. External resistor from 0 to 10 kΩ can be inserted between pin 2 and 7 to determine gain value. 3 Internal circuit constants should be referred to application note. Note µPC1664 which had G2A, G2B of the other gain adjustment pins is discontinued. 2 Data Sheet G11024EJ6V0DS00 5 4 2 µPC1663 ABSOLUTE MAXIMUM RATINGS (TA = +25 °C) Parameter Supply Voltage µPC1663G Symbol ± µPC1663GV ±7 VCC Unit ±7 V 280 (TA = +75 °C) Note Note 280 (TA = +75°C) Power Dissipation PD mW Differential Input Voltage VID ±5 ±5 V Input Voltage VICM ±6 + (within VCC− to VCC range) ±6 + (within VCC− to VCC range) V Output Current IO 35 35 mA Operating Ambient Temperature TA −45 to +75 −45 to +75 °C Storage Temperature Tstg −55 to +150 −55 to +150 °C Note Mounted on double sided copper clad 50 × 50 × 1.6 mm epoxy glass PWB RECOMMENDED OPERATING CONDITIONS Parameter Supply Voltage Output Source Current Output Sink Current Operating Frequency Range Symbol MIN. TYP. MAX. Unit VCC ±2 ±6 ±6.5 V IO source — — 20 mA IO sink — — 2.5 mA fopt DC — 200 MHz ± Data Sheet G11024EJ6V0DS00 3 µPC1663 ELECTRICAL CHARACTERISTICS (TA = +25 °C, VCC± = ±6 V) Parameter Differential Voltage Gain Symbol Gain 1 Avd Gain 2 Bandwidth Gain 1 BW Conditions MIN. TYP. MAX. Unit Note 1 200 320 500 — Note 2 f = 10 MHz 8 10 12 RS = 50 Ω (3 dB down point) — 120 — — 700 — — 2.9 — — 2.7 — — 2 — — 1.2 — — 4.0 — 50 180 — f = 10 MHz Gain 2 Rise Time Gain 1 tr RS = 50 Ω, Vout = 1 VP-P Gain 2 Propagation Delay Gain 1 tpd RS = 50 Ω, Vout = 1 VP-P Gain 2 Input Resistance Gain 1 Rin Gain 2 ns ns kΩ Input Capacitance Cin — 2 — pF Input Offset Current IIO — 0.4 5.0 µA Input Bias Current IB — 20 40 µA Input Noise Voltage Vn — 3 — µVr.m.s. Input Voltage Range VI ±1.0 — — V RS = 50 Ω, 10 k to 10 MHz CMR Vcm = ±1 V, f ≤ 100 kHz 53 94 — dB Supply Voltage Rejection Ratio SVR ∆V = ±0.5 V 50 70 — dB Output Offset Voltage VO(off) VO(off) = |OUT1 – OUT2| — 0.3 1.5 V — 0.1 1.0 2.4 2.9 3.4 V 3.0 4.0 — VP-P Common Mode Rejection Ratio Gain 2 Gain 1 Gain 2 Output Common Mode Voltage VO(CM) Output Voltage Swing VOP-P Single-ended Output Sink Current Isink 2.5 3.6 — mA Power Supply Current ICC — 13 20 mA Notes 1. Gain select pins G1A and G1B are connected. 2. All gain select pins are opened. 4 MHz Data Sheet G11024EJ6V0DS00 µPC1663 TEST CIRCUIT 50 Ω 1 000 pF VCC– 0.1µF 1 kΩ Remark 50 Ω 1 8 2 7 3 6 4 5 ZS = 50 Ω IN 0.1 µF 1 000 pF VCC+ 0.1 µF 950 Ω OUT ZL = 50 Ω Remark Measurement value at OUT connector should be converced into DUT’s output value at pin 5. Definition and test circuit of each characteristic should be referred to application note ‘Usage of µPC1663 (Document No. G12290E)’. NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired (3) The bypass capacitor should be attached to VCC line. (4) When gain between Gain 1 and Gain 2 is necessary, insert adjustment resistor (0 to 10 kΩ Ω ) between oscillation). G1A and G1B to determine gain value. (5) Due to high-frequency characteristics, the physical circuit layout is very critical. Supply voltage line bypass, double-sided printed-circuit board, and wide-area ground line layout are necessary for stable operation. Two signal resistors connected to both inputs and two load resistors connected to both outputs should be balanced for stable operation. VCC+ 50 Ω (150 Ω to ∞) (150 Ω to ∞) 50 Ω VCC– Data Sheet G11024EJ6V0DS00 5 µPC1663 TYPICAL CHARACTERISTICS (Unless otherwise specified TA = +25 °C) RELATIVE VOLTAGE GAIN vs. OPERATING AMBIENT TEMPERATURE 1.4 VCC± = ± 6 V 60 1.2 50 40 Gain 1 30 20 Gain 2 10 0 100 K 1M 10 M 100 M Frequency f (Hz) Relative Voltage Gain Avr Single-ended Voltage Gain AVS (dB) SINGLE-ENDED VOLTAGE GAIN vs. FREQUENCY Remark Differential voltage gain is double of Gain 2 1.0 0.8 0.6 Gain 1 0.4 0.2 single-ended voltage gain. 0.1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 Supply Voltage VCC± (V) OUTPUT SINK CURRENT vs. OPERATING AMBIENT TEMPERATURE RELATIVE GAIN vs. OPERATING AMBIENT TEMPERATURE 4.0 VCC±= ±6 V Gain 2 1.00 0.95 Output Sink Current IOsink (mA) Relative Gain Avr 1.05 3.5 3.0 Gain 1 0.90 –20 0 +20 +50 +80 2.5 Operating Ambient Temperature TA (°C) VCC± = ±6 V –20 0 +20 Remark Relative voltage gains are described based on gains 1.00 at TA = +25°C, VCC± = ±6 V 6 Data Sheet G11024EJ6V0DS00 +50 +80 Operating Ambient Temperature TA (°C) µPC1663 DIFFERENTIAL VOLTAGE GAIN vs. GAIN ADJUST RESISTANCE 5.0 1000 Differential Voltage Gain AVD Single-ended Output Voltage Swing VO (VP-P) SINGLE-ENDED OUTPUT VOLTAGE SWING vs. OPERATING AMBIENT TEMPERATURE 4.5 4.0 3.5 3.0 VCC± = ±6 V 100 10 10 2.5 100 1k 10 k Gain Adjust Resistance RADJ (Ω) VCC± = ±6 V –20 0 +20 +50 +80 Operating Ambient Temperature TA (°C) INPUT BIAS CURRENT vs. SUPPLY CURRENT vs. OPERATING AMBIENT TEMPERATURE OPERATING AMBIENT TEMPERATURE 16 VCC± = ±6 V 40 30 20 10 0 VCC± = ±6 V 15 Supply Current ICC (mA) Input Bias Current IB ( µ A) 50 –20 0 +20 +50 +80 14 13 12 11 Operating Ambient Temperature TA (°C) 10 –20 0 +20 +50 +80 Operating Ambient Temperature TA (°C) SUPPLY CURRENT vs. SUPPLY VOLTAGE Supply Current ICC (mA) 30 15 10 5 0 ±2 ±4 ±6 ±8 ±10 Supply Voltage VCC± (V) Data Sheet G11024EJ6V0DS00 7 µPC1663 APPLICATION CIRCUIT EXAMPLES EXAMPLE 1 Video Line Driver Circuit Example +6 V 0.1 µ F 75 Ω Input 200 Ω µ PC1663 75 Ω COAXIAL 75 Ω Output 75 Ω 200 Ω –6 V Maximum Output Voltage VOUT (VP-P) MAXIMUM OUTPUT VOLTAGE vs. FREQUENCY (VIDEO LINE, SINGLE-ENDED) VCC± = ±6 V 2.0 1.0 Remark Differential output voltage is double of single-ended output voltage. 0 100 k 1M 10 M 100 M Frequency f (Hz) 1G PHASE CHARACTERISTICS vs. FREQUENCY Phase Characteristics (degree) VCC± = ±6 V 0 –45 Gain 2 –90 –135 Gain 1 –180 100 k 8 1M 10 M Frequency f (Hz) 100 M Data Sheet G11024EJ6V0DS00 µPC1663 EXAMPLE 2 VCC single supply application example (Outline) VCC R1 R1 C µ PC1663 RL R2 R2 RL R1 = R2 EXAMPLE 3 Photo signal detector circuit example (Outline) V+ L VCC+ C PIN Photo Diode NDL2102 NDL2104 NDL2208 NDL5200 (Refer to data sheet of each part number) OUT1 µ PC1663 RS RL RL RS OUT2 VCC– Caution When signal source impedance for µPC1663 is critical, FET source follower buffer should be inserted between PIN Photo diode and µPC1663 input. The application circuits and their parameters are for reference only and are not intended for use in actual design-ins. Precautions for design in and detail application circuit examples should be referred to application note ‘Usage of µPC1663 (Document No. G12290E)’. Data Sheet G11024EJ6V0DS00 9 µPC1663 PACKAGE DIMENSIONS 8 PIN PLASTIC SOP (225 mil) (Unit: mm) − µPC1663G − 8 5 detail of lead end P 4 1 A H F I G J S B C E D M L M NOTE ITEM Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition. 10 N K Data Sheet G11024EJ6V0DS00 MILLIMETERS A 5.2±0.2 B 0.85 MAX. C 1.27 (T.P.) D 0.42 +0.08 −0.07 E F 0.1±0.1 1.57±0.2 G 1.49 H 6.5±0.3 I 4.4±0.15 J 1.1±0.2 K 0.17 +0.08 −0.07 L M 0.6±0.2 0.12 N 0.10 P +7° 3° −3° S µPC1663 8 PIN PLASTIC SSOP (175 mil) (Unit: mm) − µPC1663GV − 8 5 3° –3° +7° detail of lead end 1 4 4.94 ± 0.2 3.0 MAX. 0.1± 0.1 0.87 ± 0.2 0.15 –0.05 +0.10 1.5± 0.1 1.8 MAX. 3.2 ± 0.1 0.5 ± 0.2 0.15 0.65 0.575 MAX. 0.30 +0.10 –0.05 0.10 M Data Sheet G11024EJ6V0DS00 11 µPC1663 RECOMMENDED SOLDERING CONDITIONS This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative. Soldering Method Soldering Conditions Recommended Condition Symbol Infrared Reflow Package peak temperature: 235 °C or below Time: 30 seconds or less (at 210 °C) Note Count: 3, Exposure limit: None IR35-00-3 VPS Package peak temperature: 215 °C or below Time: 40 seconds or less (at 200 °C) Note Count: 3, Exposure limit: None VP15-00-3 Wave Soldering Soldering bath temperature: 260 °C or below Time: 10 seconds or less Note Count: 1, Exposure limit: None WS60-00-1 Partial Heating Pin temperature: 300 °C Time: 3 seconds or less (per side of device) Note Exposure limit: None — Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E) 12 Data Sheet G11024EJ6V0DS00 µPC1663 [MEMO] Data Sheet G11024EJ6V0DS00 13 µPC1663 [MEMO] 14 Data Sheet G11024EJ6V0DS00 µPC1663 [MEMO] Data Sheet G11024EJ6V0DS00 15 µPC1663 ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation. • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8