TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 D IEEE Standard for a 1394-1995 Compliant D IEEE Standard for a 1212-1991 Compliant D Supports IEEE 1394-1995 Link Layer D D D D D D D D Provides 4 General-Purpose Input/Outputs D Supports Plug-and-Play (PnP) Specification D Generates 32-bit CRC for Transmission of Control PCI Local Bus Specification Rev. 2.1 Compliant Supports IEEE 1394 Transfer Rates of 100, 200, and 400 Mb per second 3.3-V Core Logic while Maintaining 5-V Tolerant Inputs Performs the Function of 1394 Cycle Master Provides 4K Bytes of Configurable FIFO RAM Provides 5 Scatter-Gather DMA Channels Provides Software Control of Interrupt Events D D D D D D 1394 Packets Performs 32-bit CRC Checking on Reception of 1394 Packets Provides PCI Bus Master Function for Supporting DMA Operations Provides PCI Slave Function for Read/Write Access of Internal Registers Supports Distributed DMA Transfers Between 1394 and Local Bus RAM, ROM, AUX, or Zoomed Video Advanced Submicron, Low-Power CMOS Technology Packaged in a 176-Pin PQFP (PGF) Table of Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Terminal Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Signal Name/Terminal Number Sort Tables . . . . . . . . . . . . . . . . . 4 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCI Interface Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 12 13 15 20 21 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1998, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 description The TSB12LV21B (PCILynx-2) provides a high-performance IEEE 1394-1995 interface with the capability to transfer data between the 1394 PHY-link interface, the PCI bus interface, and external devices connected to the local bus interface. The 1394 PHY-link interface provides the connection to the 1394 physical layer device; it is supported by the on-board link layer controller (LLC). The LLC provides the control for transmitting and receiving 1394 packet data between the FIFO and PHY-link interface at rates of 100 Mbit/s, 200 Mbit/s, and 400 Mbit/s. The link layer also provides the capability to receive status from the physical layer device and to access the physical layer control and status registers by the application software. The PCILynx–2 complies with D D D D PCI Local Bus Specification, Revision 2.1 IEEE Standard for a 1394-1995 High Performance Serial Bus IEEE Standard 1212-1991 IEEE Standard Control and Status Register (CSR) Architecture for Microcomputer Buses An internal 4Kbyte-memory can be configured as multiple variable-size FIFOs, eliminating the need for external FIFOs. Separate FIFOs are user configurable to support 1394 receive, asynchronous transmit, and isynchronous transmit transfer operations. The PCI interface supports 32-bit burst transfers up to 33 MHz and is capable of operating both as a master and as a target device. Configuration registers can be loaded from an external serial EEPROM, allowing board and system designers to assign their own unique identification codes. An autoboot mode allows data-moving systems (such as docking stations) to be designed to operate on the PCI bus without the need for a host CPU. The DMA controller uses packet control list (PCL) data structures to control the transfer of data and allow the DMA to operate without host CPU intervention. These PCLs can reside in PCI memory or in memory that is connected to a local bus port. The PCLs implement an instruction set that allows linking, conditional branching, 1394 data transfer control, auxiliary support commands, and status reporting. Five DMA channels accommodate programmable data types. PCLs can be chained together to form a channel control program that can be developed to support each DMA channel. Data can be stored in either big endian or little endian format, eliminating the need for the host CPU to perform byte swapping. Data can be transferred either to 4-byte aligned locations, to provide the highest performance, or to nonaligned locations, to provide the best memory use. The RAM, ROM, AUX, ZV, and general purpose I/O (GPIO) ports collectively make up the local bus interface. These ports mapped into the PCI address, can be accessed either through the PCI bus or through internal DMA transactions. Internal transactions do not appear on the external PCI bus, thereby conserving PCI bandwidth. DMA packet control lists or other data may be stored in external RAM or ROM attached to the local bus interface. This further reduces PCI bus use and generally improves performance. The ZV local bus port is designed to transfer data from 1394 video devices to an external device connected to the PCILynx-2 ZV port. This interface provides a method for receiving 1394 digital camera packets directly from a ZV-compliant device attached to the local bus interface. Built-in test registers, a dedicated test output terminal, and four GPIO terminals allow observation of internal states and provide a convenient software debug capability. Programmable interrupts are available to inform driver software of important events, such as 1394 bus resets and DMA-to-PCL transfer completion. The 3.3-V internal operation provides reduced power consumption, while maintaining compatibility with 5-V signaling environments. The PCI interface is compatible with both 3-V and 5-V PCI systems. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 terminal assignment PGF QUAD FLATPACK PACKAGE zv_data_valid zv_hsync GND zv_ext_clk 3.3V VCC zv_vsync zv_pix_clk gpio_data0 gpio_data1 gpio_data2 gpio_data3 GND NC aux_adr0 aux_adr1 aux_adr2 3.3V VCC aux_adr3 GND aux_adr4 aux_adr5 aux_adr6 aux_adr7 5V VCC aux_adr8 3.3V VCC aux_adr9 aux_adr10 aux_adr11 aux_adr12 GND aux_adr13 3.3V VCC aux_adr14 aux_adr15 aux_data0 aux_data1 GND aux_data2 3.3V VCC aux_data3 aux_data4 aux_data5 GND TOP VIEW Î 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 TSB12LV21B Î Î aux_data6 aux_data7 3.3V VCC au_data8 5VVCC aux_data9 aux_data10 aux_data11 aux_data12 GND aux_data13 aux_data14 aux_data15 3.3V VCC aux_oe aux_we0 GND aux_we1 3.3V VCC aux_cs rom_cs ram_cs aux_rst GND aux_clk 5V VCC aux_rdy aux_int 5V VCC pci_ad0 pci_ad1 pci_ad2 3.3V VCC pci_ad3 pci_ad4 pci_ad5 pci_ad6 GND pci_ad7 3.3V VCC pci_cbe0 pci_ad8 NC GND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ÎÎ 89 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 3.3V VCC NC pci_ad25 pci_ad24 pci_cbe3 GND pci_idsel 3.3V VCC pci_ad23 pci_ad22 pci_ad21 5V VCC pci_ad20 GND pci_ad19 pci_ad18 pci_ad17 pci_ad16 3.3V VCC pci_cbe2 GND pci_frame pci_irdy pci_trdy pci_devsel 3.3V VCC pci_stop GND NC pci_perr pci_serr pci_par 3.3V VCC pci_cbe1 GND pci_ad15 pci_ad14 pci_ad13 pci_ad12 5V VCC pci_ad11 3.3V VCC pci_ad10 pci_ad9 seeprom_clk seeprom_data 5V VCC 3V VCC link_cyclein 3.3V VCC link_cycleout test_out GND phy_ctl0 phy_ctl1 phy_lreq 3.3V VCC phy_data0 phy_data1 phy_data2 phy_data3 GND phy_data4 phy_data5 phy_data6 phy_data7 GND phy_clk50 3.3V VCC GND/test_enable autoboot GND pci_clk 5V VCC pci_reset pci_gnt 3.3V VCC pci_inta pci_req GND pci_ad31 pci_ad30 pci_ad29 3.3V VCC pci_ad28 pci_ad27 GND pci_ad26 Figure 1. PCILynx-2 Terminal Assignment/Pinout POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 pin description table This sections identifies and classifies the functionality of each pin on the PCILynx–2. Table 1. Signals Sorted by Pin Number PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME 1 3.3V VCC 42 3.3V VCC 83 aux_data9 124 gpio_data1 2 NC 43 pci_ad10 84 125 gpio_data0 3 pci_ad25 44 pci_ad9 85 5.0VVCC aux_data8 126 zp_pix_clk 4 pci_ad24 45 GND 86 3.3V VCC 127 zv_vsync 5 pci_cbe3 46 NC 87 aux_data7 128 3.3V VCC 6 GND 47 pci_ad8 88 aux_data6 129 zv_ext_clk 7 pci_idsel 48 pci_cbe0 89 GND 130 GND 8 3.3V VCC 49 3.3V VCC 90 aux_data5 131 zv_hsync 9 pci_ad23 50 pci_ad7 91 aux_data4 132 zv_data_valid 10 pci_ad22 51 GND 92 aux_data3 133 seeprom_clk 11 pci_ad21 52 pci_ad6 93 seeprom_data 5.0V VCC 53 pci_ad5 94 3.3V VCC aux_data2 134 12 135 5V VCC 13 pci_ad20 54 pci_ad4 95 GND 136 14 GND 55 pci_ad3 96 aux_data1 137 3V VCC link_cyclein 15 pci_ad19 56 3.3V VCC 97 aux_data0 138 16 pci_ad18 57 pci_ad2 98 aux_adr15 139 3.3VVCC link_cylceout 17 pci_ad17 58 pci_ad1 99 aux_adr14 140 test_out 18 pci_ad16 59 pci_ad0 100 GND 3.3V VCC 60 5.0V VCC 101 3.3V VCC aux_adr13 141 19 142 phy_ctl0 20 pci_cbe2 61 aux_int 102 GND 143 phy_ctl1 21 GND 62 aux_rdy 103 aux_adr12 144 phy_lreq 22 pci_frame 63 5.0V VCC 104 aux_adr11 145 3.3V VCC 23 pci_irdy 64 aux_clk 105 aux_adr10 146 phy_data0 24 pci_trdy 65 GND 106 aux_adr9 147 phy_data1 25 pci_devsel 66 aux_rst 107 3.3V VCC 148 phy_data2 26 3.3V VCC 67 ram_cs 108 aux_adr8 149 phy_data3 27 pci_stop 68 rom_cs 109 5.0V VCC 150 GND 28 GND 69 aux_cs 110 aux_adr7 151 phy_data4 29 NC 70 3.3V VCC 111 aux_adr6 152 phy_data5 30 pci_perr 71 aux_we1 112 aux_adr5 153 phy_data6 31 pci_serr 72 GND 113 aux_adr4 154 phy_data7 32 pci_par 73 aux_we0 114 GND 155 GND 33 3.3V VCC 74 aux_oe 115 aux_adr3 156 phy_clk50 34 pci_cbe1 75 3.3V VCC 157 GND 76 3.3V VCC aux_data15 116 35 117 aux_adr2 158 3.3V VCC test_out/GND 36 pci_ad15 77 aux_data14 118 aux_adr1 159 auto_boot 37 pci_ad14 78 aux_data13 119 aux_adr0 160 GND 38 pci_ad13 79 GND 120 NC 161 pci_clk 39 pci_ad12 80 aux_data12 121 GND 162 5.0V VCC 40 5.0V VCC 81 aux_data11 122 gpio_data3 163 pci_reset 41 pci_ad11 82 aux_data10 123 gpio_data2 164 pci_gnt 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 Table 1. Signals Sorted by Pin Number (Continued) PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME PIN NO. 165 3.3V VCC 166 pci_inta 167 pci_req SIGNAL NAME PIN NO. SIGNAL NAME 168 GND 169 pci_ad31 171 pci_ad29 174 pci_ad27 172 3.3V VCC 175 170 pci_ad30 GND 173 pci_ad28 176 pci_ad26 Terminal Functions power supply terminals TERMINAL NAME I/O TYPE NO. FUNCTION GND 6, 14, 21, 28, 35, 45, 51, 65, 72, 79, 89, 95, 102, 114, 121, 130, 141, 150, 155, 160, 168, 175 I Device ground terminals 3.3V VCC 1, 8, 19, 26, 33, 42, 49, 56, 70, 75, 86, 93, 100, 107, 116, 128, 136, 138, 145, 157, 165, 172 I 3.3-V power supply terminal for core logic 5.0V VCC 12, 40, 60, 63, 84, 109, 162 I 5-V power rail for 5-V tolerant Input buffers PCI system terminals TERMINAL NO. I/O TYPE FUNCTION pci_clk 161 I System PCI bus clock. This signal ranges from 0MHz–-33MHz MHz and provides timing for all transactions on the PCI bus. All PCI signals are sampled at the rising edge of PCLK. pci_reset 163 I pci_reset. When the PCI bus reset is asserted the pci_reset signal causes the PCILynx-2 to 3-state all output buffers and reset all internal registers. When pci_reset is asserted, the device is completely nonfunctional. After pci_reset is deasserted, the PCILynx-2 is in its default state. pci_inta 166 OD NAME PCI system interrupt A. This is an open drain signal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 Terminal Functions (Continued) PCI address and data terminals TERMINAL NAME pci_ad31 – pci_ad29 pci_ad28 pci_ad27 pci_ad26 pci_ad25 pci_ad24 pci_ad23 – pci_ad21 pci_ad20 pci_ad19 – pci_ad16 pci_ad15 – pci_ad12 pci_ad11 pci_ad10 pci_ad9 pci_ad8 pci_ad7 pci_ad6 – pci_ad3 pci_ad2 – pci_ad0 pci_cbe3 pci_cbe2 pci_cbe1 pci_cbe0 pci_par 6 I/O TYPE FUNCTION 169 – 171 173 174 176 3 4 9 – 11 13 15 – 18 36 – 39 41 43 44 47 50 52 – 55 57 – 59 I/O Multiplexed PCI address and data signals. During the address phase of a primary bus PCI cycle, pci_ad31:0 contain a 32-bit address or other destination information. During the data phase pci_ad31:0 contain data 5 20 34 48 I/O PCI Command/Byte enables I/O PCI bus parity. In all PCI bus read and write cycles the PCILynx–2 calculates even paritacross the pci_ad31:0 and pci_cbe3:0 signals. As an initiator during PCI cycles, the PCILynx-2 outputs this parity indicator with a one pci_clk delay. As a target during PCI cycles, the calculated parity is compared to the initiator’s parity indicator. A miscompare can result in the assertion of a parity error (pci_perr). NO. 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 Terminal Functions (Continued) PCI interface control TERMINAL NO. I/O TYPE FUNCTION pci_devsel 24 I/O PCI device select. The PCILynx-2 asserts this signal to claim a PCI cycle as the target device. As a PCI initiator on the bus, the PCILynx-2 monitors this signal until a target responds. If no target responds before time-out occurs, then the PCILynx-2 will terminate the cycle with an initiator abort. pci_frame 22 I/O PCI cycle frame. This signal is driven by the initiator of a bus cycle. pci_frame is asserted to indicate that a bus transaction is beginning, and data transfers continue while this signal is asserted. When pci_frame is deasserted the PCI bus transaction is in the final data phase. pci_gnt 164 I PCI bus grant. This signal is driven by the PCI bus arbiter to grant the PCILynx-2 access to the PCI bus after the current data transaction has completed. This signal may or may not follow a PCI bus request depending upon the PCI bus parking algorithm. pci_idsel 7 I Initialization device select. pci_idsel selects the PCILynx-2 during configuration space accesses. pci_idsel can be connected to one of the upper 24 PCI address lines on the PCI bus. pci_irdy 23 I/O PCI initiator ready. pci_irdy indicates the PCI bus initiator’s ability to complete the current data phase of the transaction. A data phase is completed upon a rising edge of pci_clk where both pci_irdy and pci_trdy are asserted. Until pci_irdy and pci_trdy are both sampled asserted, wait states are inserted. pci_perr 30 I/O PCI parity error indicator. This signal is driven by a PCI device to indicate that calculated parity does not match pci_par, when pci_perr is enabled through bit 6 of the command register. pci_req 167 O PCI bus request. Asserted by the PCILynx-2 to request access to the PCI bus as an initiator. pci_serr 31 OD PCI system error. Output that is pulsed from the PCILynx-2 when enabled through the command register, indicating a system error has occurred. The PCILynx-2 needs not be the target of the PCI cycle in order to assert this signal. pci_stop 27 I/O PCI cycle stop signal. This signal is driven by a PCI target to request the initiator to stop the current PCI bus transaction. This signal is used for target disconnects and is commonly asserted by target devices which do not support burst data transfers. pci_trdy 24 I/O PCI target ready. pci_trdy indicates the primary bus target’s ability to complete the current data phase of the transaction. A data phase is completed upon a rising edge of pci_clk where both pci_irdy and pci_trdy are asserted. Until both pci_irdy and pci_trdy are asserted, wait states are inserted. NAME IEEE 1394 PHY/LINK interface terminals TERMINAL NAME NO. I/O TYPE FUNCTION phy_ctl1 phy_ctl0 143 142 I/O PHY-link bidirectional control lines phy_data7 – phy_data4 phy_data3 – phy_data0 154 – 151 149 – 146 I/O PHY-link bidirectional data lines phy_clk50 156 I 50MHz-System clock from PHY chip phy_lreq 144 O PHY-link request signal generated by the PCILynx-2 controller POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 Terminal Functions (Continued) auxiliary/zoom video port terminals TERMINAL NO. I/O TYPE aux_clk 64 O Auxiliary port clock out. This signal is output at the frequency of the PCI clock. aux_rst 66 O Auxiliary port reset out aux_int 61 I Auxiliary port interrupt input 98 – 99 101 103 – 106 108 110 – 113 115 117 – 119 O Auxiliary port address lines output to external logic 76 – 78 80 – 83 85 87 – 88 90 – 92 94 96 – 97 I/O Auxiliary port bidirectional data bus to external logic aux_cs 69 O Auxiliary port chip select to external logic aux_oe 74 O Auxiliary port output enable to enable external logic data onto the auxiliary data bus aux_rdy 62 I Auxiliary port ready indication from external logic aux_we1 aux_we0 71 73 O Auxiliary port write strobes to external logic ram_cs 67 O External RAM chip select rom_cs 68 O External ROM chip select zv_data_valid 132 O Zoom video port data valid signal zv_ext_clk 129 I Zoom video port external clock input zv_hsync 131 O Zoom video port horizontal sync signal zv_pix_clk 126 I/O Zoom video port pixel clock for zoomed video data zv_vsync 127 O Zoom video port vertical sync signal NAME aux_adr15 – aux_adr14 aux_adr13 aux_adr12 –aux_adr9 aux_adr8 aux_adr7 –aux_adr4 aux_adr3 aux_adr2 – aux_adr0 aux_data15 – aux_data13 aux_data12 – aux_data9 aux_data8 aux_data7 – aux_data6 aux_data5 – aux_data3 aux_data2 aux_data1 – aux_data0 FUNCTION miscellaneous TERMINAL NAME autoboot gpio_data3 – gpio_data2 NO. I/O TYPE FUNCTION 159 I Autoboot. Selects autoboot mode. When this terminal is tied high, autoboot mode is selected. 122 – 125 I/O link_cyclein 137 I Optional 8kHz clock for use as the cycle clock link_cycleout 140 O Cycle timer 8kHz clock output seeprom_clk 133 I/O External serial EEPROM data clock seeprom_data 134 I/O External serial EEPROM read/write data line test_enable/GND 158 I Enables TEST_OUT for AND tree testing. This pin should be tied to GND if AND tree testing is not used. test_out 140 O Output for AND tree testing 8 Auxiliary port general-purpose programmable I/O signals POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 system block diagram The following figure illustrates a typical system implementation of the PCILynx-2. Personal Computer Host CPU PCI Host Bridge Local Memory 1394 Peripheral Devices 1394 CD ROM PCI Bus 1394 Laser Printer IDE Controller Video Controller PCILynx-2 TSB12LV21B 1394 3 Port Physical Layer 1394 Digital VCR Local Bus PCI Expansion ROM DMA Channel Control (SRAM) User Defined Function (AUX) 1394 Desktop Camera ZV Port (Video) 1394 Video Cable Set Top Box Figure 2. System Block Diagram POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 functional block diagram seeprom_data seeprom_clk 32 pci_ad31 – pci_ad0 aux_clk aux_rst Serial EPROM Interface aux_int / 4 4 pci_cbe3 – pci_cbe0 pci_par pci_frame pci_irdy pci_trdy pci_devsel pci_stop pci_idsel pci_perr pci_serr pci_req pci_gnt pci_clk pci_reset pci_inta / / gpio_data3 – gpio_data0 16 / PCI Master Local Bus Interface Logic / RAM ROM AUX ZV PCI Slave aux_adr15 – aux_adr0 16 2 / aux_data15 – aux_data0 aux_oe aux_we1 – aux_we0 aux_rdy 3 / zv_hsync, zv_vsync, zv_pix_clk zv_data_valid 3 PCI Configuration Control and Status Registers / aux_cs, rom_cs, ram_cs zv_ext_clk PCI Bus Logic DMA Engine DMA Control and Status Registers DMA Logic General Receiver FIFO Asynchronous Transmit FIFO Isosynchronous Transmit FIFO Pointer Address Mapping Logic FIFO Control and Status Registers FIFO Logic 2 1394 Link Layer Control (LLC) Logic 1394 LLC Control and Status Registers Cycle Timer 1394 Packet Transmit Control Logic / Phy-Link Interface Logic Parallel-to-Serial Cycle Monitor Serial-to-Parallel Figure 3. Functional Block Diagram 10 POST OFFICE BOX 655303 / phy_data0 – phy_data7 phy_clk50 phy_lreq link_cyclein CRC Logic 1394 Packet Receive Control Logic phy_ctl0 – phy_ctl1 8 • DALLAS, TEXAS 75265 link_cycleout TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 absolute maximum ratings over operating temperature ranges (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V VCCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V VCC5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V Input voltage range for Universal PCI, VI: PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCCP + 0.5 V Input voltage range for 5-V tolerant TTL/LVCMOS, VI: . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC5V + 0.5 V Output voltage range for Universal PCI, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCCP + 0.5 V Output voltage range for 5-V tolerant TTL/LVCMOS, VO . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC5V + 0.5 V Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. Applies to external input and bidirectional buffers. For 5-V tolerant buffers, use VI > VCC5V. For Universal PCI, use VI > VCCP. 2. Applies to external output and bidirectional buffers. For 5-V tolerant buffers, use VO > VCC5V. For Universal PCI, use VO > VCCP. recommended operating conditions (see Note 3) OPERATION MIN NOM MAX UNIT Core voltage, VCC Commercial 3.3 3 3.3 3.6 V I/O voltage, VCCP Commercial 5 3 5 5.5 V I/O voltage, VCC5V Commercial 5 3 5 5.5 V High-level Input voltage, VIH† V 2 Low-level Input voltage, VIL† Input voltage, voltage VI 0.8 Universal PCI 0 5-V tolerant 0 Output voltage, VO‡ 0 Input transition times (tr and tf), tt 0 Operating ambient temperature range, TA Virtual junction temperature, TJ§ 0 VCCP VCC5V VCC V V V 6 ns 25 70 °C 0 25 † Applies for external input and bidirectional buffers without hysteresis. ‡ Applies for external output buffers. § These junction temperatures reflect simulation conditions. Customer is responsible for verifying junction temperature. NOTE 3: Unused or floating pins (input or I/O) must be held high or low. 115 °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 electrical characteristics over recommended operating conditions (unless otherwise noted) PARAMETER 3.3 V PCI VOH High level out High-level output ut voltage (see Note 4) 5V TTL/LVCMOS† TTL/LVCMOS‡ 3.3 V PCI VOL Low level output voltage Low-level 5V TTL/LVCMOS† TTL/LVCMOS‡ Bushold Input pins IIL Low level input current Low-level Others Bushold I/O pins Others Bushold Input pins IIH High level input current High-level Others Bushold I/O pins Others † All PHY-link pins, aux_clk(64), aux_we1(71), and aux_we0(73). ‡ All other TTL/LVCMOS pins NOTE 4: VOH is not tested on pci_serr(31) or pci_inta(166) due to open-drain output. 12 TEST CONDITIONS OPERATION POST OFFICE BOX 655303 MIN IOH = –0.5 mA IOH = –2 mA 0.9 VCC IOH = –18 mA IOH = –14 mA 2.4 MAX 2.4 V 2.4 IOL = 1.5 mA IOL = 6 mA 0.1 VCC IOL = 18 mA IOL = 14 mA 0.5 VI = 0.8 V VI = GND 20 VI = 0.8 V VI = GND 400 VI = 2 V VI = 5.5 V –20 VI = 2 V VI = 5.5 V –20 • DALLAS, TEXAS 75265 UNIT 0.5 V 0.5 –1 µA A –20 20 20 A µA TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 PCI interface switching characteristics, see Figure 4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ Á ÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ Á ÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ Á ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ PARAMETER tsu1 th1 td1 tsu2 MEASURED TEST CONDITION MIN TYP MAX UNIT Setup time, pci_xx low or high to pci_clk high† Hold time, pci_clk high to pci_xx low or high†, pci_gnt low or high 40% to 40% 7 ns 40% to 40% 0 ns Delay time, pci_clk high to pci_xx low or high† 40% to 40% 2 Setup time, pci_gnt low or high to pci_clk high 40% to 40% 10 11 ns ns td2 Delay time, pci_clk high to pci_inta low or high 40% to 40% 2 13 ns † In this case, pci_xx refers to the following signals; pci_ad31–0, pci_cbe3–0, pci_par, pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop, pci_idsel, pci_perr, pci_serr, pci_req. phy-link interface switching characteristics, see Figure 5 PARAMETER tsu3 th2 td3 tsu4 MEASURED TEST CONDITION MIN TYP MAX UNIT Setup time, phy_xx low or high to phy_clk high† 1.3 V to 1.3 V 4 ns Hold time, phy_clk high to phy_xx, link_cyclein low or high Delay time, phy_clk high to phy_xx, phy_lreq low or high† 1.3 V to 1.3 V 1 ns 1.3 V to 1.3 V 3 Setup time, phy_clk high to link_cyclein low or high 1.3 V to 1.3 V 5 td4 Delay time, phy_clk high to link_cycleout low or high 1.3 V to 1.3 V † In this case, phy_xx refers to the following bidirectional signals; phy_ctl1–0, phy_data7–0. 11 ns ns 3 13 ns local bus switching characteristics, see Figure 6 PARAMETER MEASURED TEST CONDITION MIN TYP MAX UNIT td5 Delay time, aux_clk high to aux_adr, aux_data15–0 (write), aux_oe valid† 1.3 V to 1.3 V 0 15 ns td6 Delay time, aux_clk high to rom_cs, ram_cs, aux_cs valid 1.3 V to 1.3 V 0 20 ns td7 Delay time, aux_we0, aux_we1 high (deasserted) to aux_adr, aux_data15–0 (write), aux_oe, rom_cs, ram_cs, aux_cs valid 1.3 V to 1.3 V 0.5 td8 Delay time, aux_clk low to aux_we0, aux_we1 low (asserted) 1.3 V to 1.3 V 0 10 ns td9 Delay time, aux_clk high to aux_we0, aux_we1 high (deasserted) 1.3 V to 1.3 V 0 10 ns td10 Delay time, aux_clk high to gpio_data3–0 valid 1.3 V to 1.3 V 2 15 ns tsu5 Setup time, aux_adr, adr_data15–0 (write), aux_oe, rom_cs, ram_cs, aux_cs valid before aux_we0, aux_we1 low (asserted) 1.3 V to 1.3 V 5 ns tsu6 Setup time, aux_data15–0 (read), aux_rdy, gpio_data3–0 valid before aux_clk high 1.3 V to 1.3 V 10 ns th3 Hold time, aux_data15–0 (read), aux_rdy, gpio_data3–1 invalid after aux_clk high 1.3 V to 1.3 V 0 ns ns † These signals are asserted asynchronously when a ZOOM port transfer imediately preceeds the local bus transfer. In all cases, the setup time to aux_we1 and aux_we0 and the number of waitstates remain the same. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 zoom video port switching characteristics, source clock = 30 ns with a 50% duty cycle ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ PARAMETER MEASURED TEST CONDITION MIN TYP MAX UNIT tsu7 Setup time, zv_hsync low, zv_vsync, zv_data_valid high before zv_pix_clk high 1.3 V to 1.3 V See Figure 4 12 ns th4 Hold time, zv_hsync high, zv_vsync, zv_data_valid low after zv_pix_clk low 1.3 V to 1.3 V See Figure 4 14 ns Setup time, aux_data7–0 valid before zv_pix_clk high or low 1.3 V to 1.3 V See Figure 4 10 ns Hold time, aux_data7–0 valid after zv_pix_clk high or low 1.3 V to 1.3 V See Figure 4 14 ns Delay time, zv_hsync low, zv_vsync, zv_data_valid high after zv_pix_clk low 1.3 V to 1.3 V See Figure 5 –1 3 ns td12 tsu9 Delay time, aux_data7–0 invalid after zv_pix_clk low 1.3 V to 1.3 V See Figure 5 –1 5 ns Setup time, zv_hsync low before zv_pix_clk high 1.3 V to 1.3 V See Figure 6 25 ns th6 Hold time, zv_hsync high after zv_pix_clk high 1.3 V to 1.3 V See Figure 6 14 ns tsu10 Setup time, zv_vsync high before zv_pix_clk high 1.3 V to 1.3 V See Figure 6 10 ns tsu11 Setup time, aux_data7–0 valid, zv_data_valid high before zv_pix_clk high 1.3 V to 1.3 V See Figure 6 25 ns th7 Hold time, aux_data7–0 valid, zv_data-valid low after zv_pix_clk high 1.3 V to 1.3 V See Figure 6 14 ns tsu8 th5 td11 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 PARAMETER MEASUREMENT INFORMATION pci_clk td1 tsu1 th1 pci_xx (Bidirectional see Note A) td2 pci_inta tsu2 th1 pci_gnt NOTE A: In this case, pci_xx refers to the following bidirectional signals; pci_ad31–0, pci_cbe3–0, pci_par, pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop, pci_idsel, pci_perr, pci_serr, pci_req. Figure 4. PCI Interface Timing Waveforms phy_clk td3 tsu3 th2 phy_xx (Bidirectional see Note A) td3 phy_lreq td4 link_cycleout tsu4 th2 link_cyclein NOTE A: In this case, phy_xx refers to the following bidirectional signals; phy_ctl1–0, phy_data7–0. Figure 5. Phy-Link Interface Timing Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 PARAMETER MEASUREMENT INFORMATION OUTPUTS aux_clk ÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏ td5 aux_adr15 – 0 aux_data15 – 0 (write) aux_oe (see Note A) DATA VALID td6 rom_cs ram_cs aux_cs td7 DATA VALID tsu5 td8 td9 td9 aux_we0 aux_we1 ÏÏÏÏÏÏ ÏÏÏÏÏÏ ÏÏÏÏÏÏ td10 gpio_data7 – 0 INPUTS Wait States = 0 Wait States > 0 DATA VALID tsu6 ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏ th3 aux_data DATA VALID aux_rdy DATA VALID gpio_data7 – 0 DATA VALID NOTE A: These signals are asserted asynchronously when a ZOOM port transfer immediately preceeds the local bus transfer. In all cases, the setup time to aux_we and the number of wait states remains valid. Figure 6. Local Bus Timing Waveforms 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 PARAMETER MEASUREMENT INFORMATION 15 ns 15 ns Internal Clock Source internal zv_pix_clk zv_pix_clk (gated, 8 bit) tsu7 th4 zv_hsync zv_vsync zv_data_valid aux_data15–0 (Write) ÏÏÏÏÏÏ ÏÏÏÏÏÏ tsu8 th5 8-BIT DATA VALID tsu8 th5 8-BIT DATA VALID ÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏ NOTES: A. The data is in 8-bit mode and zv_pix_clk is in divide-by-2 mode. B. The timing for these waveforms is for write access to zoom address space. C. The aux_datax signal meets timing while the zv_data_valid signal is asserted. The aux_datax signal can be asynchronous to zv_pix_clk at other times. D. The polarity of zv_pix_clk depends on the setting of the invert_zv_clk register bit. The polarity shown in this figure is with invert_zv_clk = 0. E. The timing of these waveforms is with a 30-ns source clock and a 50/50 duty cycle. Figure 7. Zoom Video IF Timing Waveforms (8 Bit, Divide-By-2 Mode) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 PARAMETER MEASUREMENT INFORMATION Internal zv_pix_clk zv_pix_clk (gated, 16 bit) td11 td11 zv_hsync zv_vsync zv_data_valid aux_data15–0 (16 bit only) ÏÏÏÏ ÏÏÏÏ td12 td12 16-BIT DATA VALID ÏÏÏÏÏÏ ÏÏÏÏÏÏ NOTES: A. The data is in 16-bit mode and zv_pix_clk is in divide-by-1 mode. B. The timing for these waveforms is for write access to zoom address space. C. The aux_datax signal meets timing while the zv_data_valid signal is asserted. The aux_datax signal can be asynchronous to zv_pix_clk at other times. D. The polarity of zv_pix_clk depends on the setting of the invert_zv_clk register bit. The polarity shown in this figure is with invert_zv_clk = 0. Figure 8. Zoom Video IF Timing Waveforms (16 Bit, Divide-By-1 Mode) 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 PARAMETER MEASUREMENT INFORMATION 15 ns 15 ns Internal Clock Source Internal zv_pix_clk (see Note A) zv_pix_clk (gated, 16 bit) tsu9 th6 zv_hsync tsu10 zv_vsync zv_data_valid aux_data15–0 (Write) ÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏ tsu9 th7 16-BIT DATA VALID ÏÏÏÏÏ ÏÏÏÏÏ NOTES: A. The data is in 16-bit mode and zv_pix_clk is in divide-by-2 mode. B. The timing for these waveforms is for write access to zoom address space. C. The aux_datax signal meets timing while the zv_data_valid signal is asserted. The aux_datax signal can be asynchronous to zv_pix_clk at other times. D. The polarity of zv_pix_clk depends on the setting of the invert_zv_clk terminal. The polarity shown in this figure is with invert_zv_clk = 0. E. The timing of these waveforms is with a 30-ns source clock and a 50/50 duty cycle. Figure 9. Zoom Video IF Timing Waveforms (16 Bit, Divide-By-2 Mode) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 APPLICATION INFORMATION power supply sequencing Turning power supplies on and off within a mixed 5-V/3.3-V system is an important consideration. A few basic rules need to be observed to avoid damaging PCILynx-2 devices. Check with the manufacturers of all components used in the 3.3-V to 5-V interface to ensure that no unique device characteristics exist that would lead to more restrictive rules. D When the 3.3-V supply is turned on before turning on the 5-V supply, PCILynx-2 output buffers in a logic 1 state can supply large amounts of current through their clamp diodes to the 5-V supply terminals (5V VCC ). This can lead to excessive power dissipation and violation of current density limits. However, if the 5-V supply is turned on before the 3.3-V supply, the maximum drain-to-gate voltage of the n-channel transistors in the 5-V tolerant buffers exceeds the recommended value and the effects of channel-hot carries can be accelerated. D When turning on the power supply, all 3.3-V and 5-V supplies should start ramping up from 0 V and reach 95% of their end-point values within a 25-ms time window. All bus contention between the PCILynx-2 and external devices is eliminated by the end of the 25-ms time window. The preferred order of supply ramping is to ramp the 3.3-V supply followed by the 5-V supply. This order is not mandatory, but it allows a larger cumulative number of power supply events than the reverse order. D When turning off the power supply, all 3.3-V and 5-V supplies should start ramping down from steady state values and reach 5% of these values within a 25-ms window. All bus contention between the PCILynx–2 and external devices is eliminated by the end of the 25-ms time window. The preferred order of supply ramping is to ramp down the 5-V supply followed by the 3.3-V supply. This order is not mandatory, but it allows a larger cumulative number of power-supply off events than the reverse order. D A cumulative total of 250 seconds of power supply turnon and turnoff events is allowed during the operating lifetime of the PCILynx-2 under worst-case conditions. Worst-case conditions are where the 5-V supply is ramped up before the 3.3-V supply and the 3.3-V supply is ramped down before the 5-V supply. If the maximum time window of the 25 ms is used, a total of 10,000 power supply on or off events can occur as long as the 25-ms time window is observed. D An additional precaution must be observed when the PCILynx–2 is connected to a 5-V IEEE 1394 physical-layer device that is powered from the 1394 cable. In this case, it is possible for the physical-layer device to have power while the PCILynx–2 does not. It is essential that the physical-layer device must not supply a high signal on any terminal that connects to the PCILynx–2 while the PCILynx-2 power is off. This is normally achieved through the use of the link-power status terminal on the physical-layer device. If any of these precautions and guidelines are not followed, the PCILynx-2 device can experience possible failures related to overheating, accumulation of channel-hot carriers, and/or metal migration due to excessive current density. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TSB12LV21B (PCILynx-2) IEEE 1394 LINK LAYER CONTROLLER SLLS306– JULY 1998 MECHANICAL INFORMATION PGF (S-PQFP-G176) PLASTIC QUAD FLATPACK 132 89 88 133 0,27 0,17 0,08 M 0,50 0,13 NOM 176 45 1 44 Gage Plane 21,50 SQ 24,20 SQ 23,80 26,20 SQ 25,80 0,25 0,05 MIN 0°–ā7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040134 / B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 2000, Texas Instruments Incorporated