ETC STB70NH03L

STB70NH03L
N-CHANNEL 30V - 0.0075 Ω - 60A D2PAK
STripFET™ III POWER MOSFET FOR DC-DC CONVERSION
TYPE
STB70NH03L
■
■
■
■
■
■
■
VDSS
RDS(on)
ID
30 V
<0.009 Ω
60 A(1)
TYPICAL RDS(on) = 0.0075 Ω @ 10V
TYPICAL RDS(on) = 0.009 Ω @ 5 V
RDS(ON) * Qg INDUSTRY’s BENCHMARK
CONDUCTION LOSSES REDUCED
SWITCHING LOSSES REDUCED
LOW THRESHOLD DEVICE
SURFACE-MOUNTING D2PAK (TO-263)
POWER PACKAGE IN TUBE (NO SUFFIX) OR
IN TAPE & REEL (SUFFIX “T4”)
3
1
D2PAK
TO-263
(Suffix “T4”)
DESCRIPTION
The STB70NH03L utilizes the latest advanced design
rules of ST’s proprietary STripFET™ technology. It is ideal
in high performance DC-DC converter applications where
efficiency is to be achieved at very high output currents.
INTERNAL SCHEMATIC DIAGRAM
APPLICATIONS
■ SPECIFICALLY DESIGNED AND OPTIMISED
FOR HIGH EFFICIENCY DC-DC
CONVERTERS
Ordering Information
SALES TYPE
STB70NH03LT4
MARKING
B70NH03L
PACKAGE
TO-263
PACKAGING
TAPE & REEL
■
ABSOLUTE MAXIMUM RATINGS
Symbol
VDS
Parameter
Drain-source Voltage (VGS = 0)
Value
30
Unit
V
30
± 20
V
V
VDGR
Drain-gate Voltage (RGS = 20 kΩ)
VGS
ID(1)
Gate- source Voltage
Drain Current (continuous) at TC = 25°C
60
A
ID(1)
Drain Current (continuous) at TC = 100°C
43
A
Drain Current (pulsed)
Total Dissipation at TC = 25°C
240
A
85
1
300
W
W/°C
mJ
-55 to 175
°C
IDM(2)
Ptot
EAS (1)
Tstg
Tj
Derating Factor
Single Pulse Avalanche Energy
Storage Temperature
Max. Operating Junction Temperature
September 2003
1/11
STB70NH03L
THERMAL DATA
Rthj-case
Rthj-amb
Tl
Thermal Resistance Junction-case
Thermal Resistance Junction-ambient
Maximum Lead Temperature For Soldering Purpose
Max
Max
1.87
62.5
300
°C/W
°C/W
°C
ELECTRICAL CHARACTERISTICS (Tcase = 25 °C unless otherwise specified)
OFF
Symbol
Parameter
Test Conditions
Drain-source
Breakdown Voltage
ID = 250 µA
IDSS
Zero Gate Voltage
Drain Current (VGS = 0)
VDS = Max Rating
VDS = Max Rating TC = 125°C
IGSS
Gate-body Leakage
Current (VDS = 0)
VGS = ± 20V
V(BR)DSS
VGS = 0
Min.
Typ.
Max.
30
Unit
V
1
10
µA
µA
±100
nA
Max.
Unit
ON (*)
Symbol
Parameter
Test Conditions
VGS(th)
Gate Threshold Voltage
VDS = VGS
RDS(on)
Static Drain-source On
Resistance
VGS = 10 V
VGS = 5 V
ID = 250 µA
Min.
Typ.
1
ID = 30 A
ID = 30 A
V
0.0075
0.009
0.009
0.017
Ω
Ω
Typ.
Max.
Unit
DYNAMIC
Symbol
Test Conditions
gfs (*)
Forward Transconductance
VDS = 10 V
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer
Capacitance
VDS = 10V f = 1 MHz VGS = 0
Gate Input Resistance
f = 1 MHz Gate DC Bias = 0
Test Signal Level = 20 mV
Open Drain
RG
2/11
Parameter
ID = 18 A
Min.
25
S
2200
380
49
pF
pF
pF
1.5
Ω
STB70NH03L
ELECTRICAL CHARACTERISTICS (continued)
SWITCHING ON (*)
Symbol
td(on)
tr
Qg
Qgs
Qgd
Qgls(4)
Parameter
Test Conditions
Turn-on Time
Rise Time
ID = 30 A
VDD = 15 V
VGS = 5 V
RG = 4.7 Ω
(Resistive Load, Figure 3)
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
VDD=15V ID=60A VGS=5V
Third-quadrant Gate Charge
VDS < 0 V
Min.
Typ.
Max.
21
95
15.7
8.3
3.4
VGS= 10 V
Unit
ns
ns
21
15
nC
nC
nC
nC
SWITCHING OFF(*)
Symbol
td(off)
tf
Parameter
Test Conditions
VDD = 15 V
RG = 4.7Ω,
Turn-off Delay Time
Fall Time
Min.
ID = 30 A
VGS = 5 V
Typ.
Max.
19
15
Unit
ns
ns
SOURCE DRAIN DIODE(*)
Symbol
Parameter
ISD
ISDM
Source-drain Current
Source-drain Current (pulsed)
VSD (*)
trr
Qrr
IRRM
Test Conditions
Forward On Voltage
ISD = 30 A
Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current
di/dt = 100A/µs
ISD = 60 A
Tj = 150°C
VDD = 20 V
(see test circuit, Figure 5)
(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
(2) Pulse width limited by safe operating area
(4) Gate charge for synchronous operation . See
Safe Operating Area
Appendix A
Min.
Typ.
VGS = 0
Max.
Unit
60
240
A
A
1.3
V
32
51
3.2
ns
nC
A
(1) Value limited by wire bonding
(3) Starting Tj = 25 oC, ID = 30A, VDD = 20V
Thermal Impedance
3/11
STB70NH03L
Output Characteristics
Transfer Characteristics
Transconductance
Static Drain-source On Resistance
Gate Charge vs Gate-source Voltage
Capacitance Variations
4/11
STB70NH03L
Normalized Gate Threshold Voltage vs Temperature
Normalized on Resistance vs Temperature
Source-drain Diode Forward Characteristics
Normalized Breakdown Voltage vs Temperature
.
.
5/11
STB70NH03L
Fig. 1: Unclamped Inductive Load Test Circuit
Fig. 2: Unclamped Inductive Waveform
Fig. 3: Switching Times Test Circuits For Resistive
Load
Fig. 4: Gate Charge test Circuit
Fig. 5: Test Circuit For Inductive Load Switching
And Diode Recovery Times
6/11
STB70NH03L
D2PAK MECHANICAL DATA
DIM.
mm.
MIN.
TYP.
inch.
MAX.
MIN.
TYP.
TYP.
A
4.4
4.6
0.173
0.181
A1
2.49
2.69
0.098
0.106
A2
0.03
0.23
0.001
0.009
B
0.7
0.93
0.028
0.037
B2
1.14
1.7
0.045
0.067
C
0.45
0.6
0.018
0.024
C2
1.21
1.36
0.048
0.054
D
8.95
9.35
0.352
0.368
10.4
0.394
D1
E
8
10
E1
G
0.315
8.5
0.409
0.334
4.88
5.28
0.192
0.208
L
15
15.85
0.591
0.624
L2
1.27
1.4
0.050
0.055
L3
1.4
1.75
0.055
0.069
M
2.4
3.2
0.094
0.126
8°
0°
R
V2
0.4
0°
0.015
8°
7/11
STB70NH03L
D2PAK FOOTPRINT
TUBE SHIPMENT (no suffix)*
TAPE AND REEL SHIPMENT (suffix ”T4”)*
REEL MECHANICAL DATA
DIM.
mm
MIN.
A
DIM.
mm
MAX.
MIN.
MAX.
A0
10.5
10.7
0.413
0.421
B0
15.7
15.9
0.618
0.626
D
1.5
1.6
0.059
0.063
D1
1.59
1.61
0.062
0.063
E
1.65
1.85
0.065
0.073
F
11.4
11.6
0.449
0.456
K0
4.8
5.0
0.189
0.197
P0
3.9
4.1
0.153
0.161
P1
11.9
12.1
0.468
0.476
P2
1.9
2.1
0075
0.082
R
50
1.574
T
0.25
0.35
.0.0098
0.0137
W
23.7
24.3
0.933
0.956
* on sales type
8/11
inch
MIN.
MIN.
330
B
1.5
C
12.8
D
20.2
G
24.4
N
100
T
TAPE MECHANICAL DATA
inch
MAX.
MAX.
12.992
0.059
13.2
0.504
0.520
0.795
26.4
0.960
1.039
3.937
30.4
1.197
BASE QTY
BULK QTY
1000
1000
STB70NH03L
APPENDIX A
Buck Converter: Power Losses Estimation
SW1
SW2
The power losses associated with the FETs in a Synchronous Buck converter can be
estimated using the equations shown in the table below. The formulas give a good
approximation, for the sake of performance comparison, of how different pairs of devices
affect the converter efficiency. However a very important parameter, the working
temperature, is not considered. The real device behavior is really dependent on how the
heat generated inside the devices is er moved to allow for a safer working junction
temperature.
The low side (SW2) device requires:
•
•
•
•
•
Very low RDS(on) to reduce conduction losses
Small Qgls to reduce the gate charge losses
Small Coss to reduce losses due to output capacitance
Small Qrr to reduce losses on SW1 during its turn-on
The Cgd/Cgs ratio lower than Vth/Vgg ratio especially with low drain to source
voltage to avoid the cross conduction phenomenon;
The high side (SW1) device requires:
•
Small Rg and Ls to allow higher gate current peak and to limit the voltage
feedback on the gate
•
Small Qg to have a faster commutation and to reduce gate charge losses
•
Low RDS(on) to reduce the conduction losses.
9/11
STB70NH03L
Pconduction
Pswitching
R DS(on)SW1 * I 2L * d
R DS(on)SW2 * I 2L * (1 − d )
Vin * (Q gsth(SW1) + Q gd(SW1) ) * f *
IL
Ig
Zero Voltage Switching
Not Applicable
Conduction
Not Applicable
Vf(SW2) * I L * t deadtime * f
Pgate(Q G )
Q g(SW1) * Vgg * f
Q gls(SW2) * Vgg * f
PQoss
Vin * Q oss(SW1) * f
Vin * Q oss(SW2) * f
2
2
Parameter
d
Qgsth
Qgls
Pconduction
Pswitching
Pdiode
Pgate
PQoss
10/11
Low Side Switch (SW2)
Recovery
Pdiode
1
High Side Switch (SW1)
1
Meaning
Duty-cycle
Post threshold gate charge
Third quadrant gate charge
On state losses
On-off transition losses
Conduction and reverse recovery diode losses
Gate drive losses
Output capacitance losses
Dissipated by SW1 during turn-on
Vin * Q rr(SW2) * f
STB70NH03L
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
 2003 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
www.st.com
11/11