To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR2PM LOW POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE OUTLINE DRAWING BCR2PM Dimensions in mm 10.5 MAX 2.8 17 8.5 5.0 1.2 5.2 TYPE NAME φ3.2 ± 0.2 3.6 1.3 MAX 13.5 MIN 0.8 2.54 2.54 ➀➁➂ 0.5 2.6 4.5 VOLTAGE CLASS ➁ ¡IT (RMS) ........................................................................ 2A ¡VDRM ....................................................................... 600V ¡IRGT !, IRGT # ....................................................... 10mA ➀ ➀ T1 TERMINAL ➁ T2 TERMINAL ➂ ➂ GATE TERMINAL TO-220F APPLICATION Switching mode power supply, light dimmer, electric flasher unit, control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared kotatsu · carpet, solenoid drivers, small motor control, copying machine, electric tool, other general purpose control applications MAXIMUM RATINGS Symbol Voltage class Parameter Unit 12 VDRM Repetitive peak off-state voltage ✽1 600 V VDSM Non-repetitive peak off-state voltage ✽1 720 V Symbol Parameter Conditions Ratings Unit IT (RMS) RMS on-state current Commercial frequency, sine full wave 360° conduction 2 A ITSM Surge on-state current 60Hz sinewave 1 full cycle, peak value, non-repetitive 10 A I2t I2t for fusing Value corresponding to 1 cycle of half wave 60Hz, surge on-state current PGM Peak gate power dissipation PG (AV) Average gate power dissipation VGM 0.41 A2s 1 W 0.1 W Peak gate voltage 6 V IGM Peak gate current 1 Tj Junction temperature Tstg Storage temperature — Weight Typical value A –40 ~ +125 °C –40 ~ +125 °C 2.0 g ✽1. Gate open. Mar.2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR2PM LOW POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE ELECTRICAL CHARACTERISTICS Limits Symbol Parameter Test conditions Min. Typ. Max. Unit IDRM Repetitive peak off-state current Tj=125°C, VDRM applied — — 0.5 mA VTM On-state voltage Ta=25°C, ITM=1.5A, Instantaneous measurement — — 1.6 V — — 2.0 V — — 2.0 V — — 10 mA mA VRGT ! @ Gate trigger voltage ✽2 IRGT ! Gate trigger Tj=25°C, VD=6V, RL=6Ω, RG=330Ω # VRGT # @ current ✽2 Tj=25°C, VD=6V, RL=6Ω, RG=330Ω # — — 10 VGD Gate non-trigger voltage Tj=125°C, VD=1/2VDRM 0.1 — — V Rth (j-a) Thermal resistance Junction to ambient, Natural convection — — 40 °C/ W IRGT # ✽2. Measurement using the gate trigger characteristics measurement circuit. GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω A 6V RG V TEST PROCEDURE 2 A 6V V RG TEST PROCEDURE 3 PERFORMANCE CURVES RATED SURGE ON-STATE CURRENT 10 Tj = 25°C 101 7 5 3 2 100 7 5 3 2 10–1 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V) SURGE ON-STATE CURRENT (A) ON-STATE CURRENT (A) MAXIMUM ON-STATE CHARACTERISTICS 102 7 5 3 2 9 8 7 6 5 4 3 2 1 0 100 2 3 4 5 7 101 2 3 4 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) Mar.2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR2PM LOW POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 100 (%) GATE CHARACTERISTICS VGM = 6V 100 7 5 3 2 PG(AV) = 0.1W VGT IGM = 1A IRGT I, IRGT III GATE TRIGGER VOLTAGE (Tj = t°C) GATE TRIGGER VOLTAGE (Tj = 25°C) 100 (%) 10–1 7 VGD = 0.1V 5 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C) PGM = 1W 101 7 5 3 2 103 7 5 4 3 2 TYPICAL EXAMPLE IRGT I , IRGT III 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 GATE CURRENT (mA) JUNCTION TEMPERATURE (°C) GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO AMBIENT) 103 7 5 4 3 2 TYPICAL EXAMPLE VRGT I 102 7 5 4 3 2 VRGT III 101 –60 –40 –20 0 20 40 60 80 100 120 140 TRANSIENT THERMAL IMPEDANCE (°C/W) GATE VOLTAGE (V) 3 2 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2 NATURAL CONVECTION NO FINS PRINT BOARD t = 1.6mm SOLDER LAND : φ2mm 100 7 5 3 2 10–1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 CONDUCTION TIME (CYCLES AT 60Hz) JUNCTION TEMPERATURE (°C) 1.8 AMBIENT TEMPERATURE (°C) ON-STATE POWER DISSIPATION (W) MAXIMUM ON-STATE POWER DISSIPATION 1.6 1.4 360° CONDUCTION 1.2 RESISTIVE, 1.0 INDUCTIVE LOADS 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1.0 1.2 RMS ON-STATE CURRENT (A) 1.4 ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 PRINT BOARD t = 1.6mm 120 SOLDER LAND : φ2mm 100 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE RESISTIVE, INDUCTIVE LOADS 80 60 40 20 0 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 RMS ON-STATE CURRENT (A) Mar.2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR2PM LOW POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE 104 7 5 3 2 103 7 5 3 2 100 (%) BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE DISTRIBUTION 100 (%) LACHING CURRENT VS. JUNCTION TEMPERATURE BREAKOVER VOLTAGE (Tj = t°C) BREAKOVER VOLTAGE (Tj = 25°C) T2+, G– TYPICAL EXAMPLE T2–, G– TYPICAL EXAMPLE 0 40 80 120 160 160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (°C) JUNCTION TEMPERATURE (°C) BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 160 140 102 7 5 4 3 2 JUNCTION TEMPERATURE (°C) 101 7 5 3 2 100 7 5 3 2 TYPICAL EXAMPLE JUNCTION TEMPERATURE (°C) TYPICAL EXAMPLE Tj = 125°C 120 I QUADRANT 100 80 60 III QUADRANT 40 20 0 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) 100 (%) 102 7 5 3 2 103 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 102 –60 –40 –20 0 20 40 60 80 100 120 140 10-1 –40 BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs ) 100 (%) TYPICAL EXAMPLE HOLDING CURRENT (Tj = t°C) HOLDING CURRENT (Tj = 25°C) 105 7 5 3 2 HOLDING CURRENT VS. JUNCTION TEMPERATURE GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC) LACHING CURRENT (mA) REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C) 100 (%) REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 TYPICAL EXAMPLE IRGT I 102 7 5 4 3 2 IRGT III 101 0 10 2 3 4 5 7 101 2 3 4 5 7 102 GATE CURRENT PULSE WIDTH (µs) Mar.2002