ETC BCR2PM-8

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR2PM
LOW POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
OUTLINE DRAWING
BCR2PM
Dimensions
in mm
10.5 MAX
2.8
17
8.5
5.0
1.2
5.2
TYPE
NAME
φ3.2 ± 0.2
3.6
1.3 MAX
13.5 MIN
0.8
2.54
2.54
➀➁➂
0.5
2.6
4.5
VOLTAGE
CLASS
➁
¡IT (RMS) ........................................................................ 2A
¡VDRM ....................................................................... 600V
¡IRGT !, IRGT # ....................................................... 10mA
➀
➀ T1 TERMINAL
➁ T2 TERMINAL
➂ ➂ GATE TERMINAL
TO-220F
APPLICATION
Switching mode power supply, light dimmer, electric flasher unit,
control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared
kotatsu · carpet, solenoid drivers, small motor control,
copying machine, electric tool,
other general purpose control applications
MAXIMUM RATINGS
Symbol
Voltage class
Parameter
Unit
12
VDRM
Repetitive peak off-state voltage ✽1
600
V
VDSM
Non-repetitive peak off-state voltage ✽1
720
V
Symbol
Parameter
Conditions
Ratings
Unit
IT (RMS)
RMS on-state current
Commercial frequency, sine full wave 360° conduction
2
A
ITSM
Surge on-state current
60Hz sinewave 1 full cycle, peak value, non-repetitive
10
A
I2t
I2t for fusing
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
PGM
Peak gate power dissipation
PG (AV)
Average gate power dissipation
VGM
0.41
A2s
1
W
0.1
W
Peak gate voltage
6
V
IGM
Peak gate current
1
Tj
Junction temperature
Tstg
Storage temperature
—
Weight
Typical value
A
–40 ~ +125
°C
–40 ~ +125
°C
2.0
g
✽1. Gate open.
Mar.2002
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR2PM
LOW POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Limits
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
IDRM
Repetitive peak off-state current
Tj=125°C, VDRM applied
—
—
0.5
mA
VTM
On-state voltage
Ta=25°C, ITM=1.5A, Instantaneous measurement
—
—
1.6
V
—
—
2.0
V
—
—
2.0
V
—
—
10
mA
mA
VRGT !
@
Gate trigger voltage ✽2
IRGT !
Gate trigger
Tj=25°C, VD=6V, RL=6Ω, RG=330Ω
#
VRGT #
@
current ✽2
Tj=25°C, VD=6V, RL=6Ω, RG=330Ω
#
—
—
10
VGD
Gate non-trigger voltage
Tj=125°C, VD=1/2VDRM
0.1
—
—
V
Rth (j-a)
Thermal resistance
Junction to ambient, Natural convection
—
—
40
°C/ W
IRGT #
✽2. Measurement using the gate trigger characteristics measurement circuit.
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS
6Ω
6Ω
A
6V
RG
V
TEST PROCEDURE 2
A
6V
V
RG
TEST PROCEDURE 3
PERFORMANCE CURVES
RATED SURGE ON-STATE CURRENT
10
Tj = 25°C
101
7
5
3
2
100
7
5
3
2
10–1
0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ON-STATE VOLTAGE (V)
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
MAXIMUM ON-STATE CHARACTERISTICS
102
7
5
3
2
9
8
7
6
5
4
3
2
1
0
100
2 3 4 5 7 101
2 3 4 5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
Mar.2002
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR2PM
LOW POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
100 (%)
GATE CHARACTERISTICS
VGM = 6V
100
7
5
3
2
PG(AV)
= 0.1W
VGT
IGM = 1A
IRGT I, IRGT III
GATE TRIGGER VOLTAGE (Tj = t°C)
GATE TRIGGER VOLTAGE (Tj = 25°C)
100 (%)
10–1
7
VGD = 0.1V
5
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103
GATE TRIGGER CURRENT (Tj = t°C)
GATE TRIGGER CURRENT (Tj = 25°C)
PGM = 1W
101
7
5
3
2
103
7
5
4
3
2
TYPICAL EXAMPLE
IRGT I , IRGT III
102
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
GATE CURRENT (mA)
JUNCTION TEMPERATURE (°C)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO AMBIENT)
103
7
5
4
3
2
TYPICAL EXAMPLE
VRGT I
102
7
5
4
3
2
VRGT III
101
–60 –40 –20 0 20 40 60 80 100 120 140
TRANSIENT THERMAL IMPEDANCE (°C/W)
GATE VOLTAGE (V)
3
2
103
7
5
3
2
102
7
5
3
2
101
7
5
3
2
NATURAL CONVECTION
NO FINS
PRINT BOARD
 t = 1.6mm

 SOLDER LAND : φ2mm
100
7
5
3
2
10–1
101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105
CONDUCTION TIME
(CYCLES AT 60Hz)
JUNCTION TEMPERATURE (°C)
1.8
AMBIENT TEMPERATURE (°C)
ON-STATE POWER DISSIPATION (W)
MAXIMUM ON-STATE POWER
DISSIPATION
1.6
1.4 360°
CONDUCTION
1.2 RESISTIVE,
1.0 INDUCTIVE
LOADS
0.8
0.6
0.4
0.2
0
0
0.2
0.4
0.6
0.8
1.0
1.2
RMS ON-STATE CURRENT (A)
1.4
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
160
NATURAL CONVECTION
NO FINS
140
PRINT BOARD
 t = 1.6mm

120
 SOLDER LAND : φ2mm
100
CURVES APPLY
REGARDLESS OF
CONDUCTION ANGLE
RESISTIVE,
INDUCTIVE LOADS
80
60
40
20
0
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
RMS ON-STATE CURRENT (A)
Mar.2002
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR2PM
LOW POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
104
7
5
3
2
103
7
5
3
2
100 (%)
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
DISTRIBUTION
100 (%)
LACHING CURRENT VS.
JUNCTION TEMPERATURE
BREAKOVER VOLTAGE (Tj = t°C)
BREAKOVER VOLTAGE (Tj = 25°C)
T2+, G–
TYPICAL
EXAMPLE
T2–, G–
TYPICAL
EXAMPLE
0
40
80
120
160
160
TYPICAL EXAMPLE
140
120
100
80
60
40
20
0
–60 –40 –20 0 20 40 60 80 100120 140
JUNCTION TEMPERATURE (°C)
JUNCTION TEMPERATURE (°C)
BREAKOVER VOLTAGE VS.
RATE OF RISE OF
OFF-STATE VOLTAGE
GATE TRIGGER CURRENT VS.
GATE CURRENT PULSE WIDTH
160
140
102
7
5
4
3
2
JUNCTION TEMPERATURE (°C)
101
7
5
3
2
100
7
5
3
2
TYPICAL EXAMPLE
JUNCTION TEMPERATURE (°C)
TYPICAL EXAMPLE
Tj = 125°C
120
I QUADRANT
100
80
60
III QUADRANT
40
20
0
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
100 (%)
102
7
5
3
2
103
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
102
–60 –40 –20 0 20 40 60 80 100 120 140
10-1
–40
BREAKOVER VOLTAGE (dv/dt = xV/µs )
BREAKOVER VOLTAGE (dv/dt = 1V/µs )
100 (%)
TYPICAL EXAMPLE
HOLDING CURRENT (Tj = t°C)
HOLDING CURRENT (Tj = 25°C)
105
7
5
3
2
HOLDING CURRENT VS.
JUNCTION TEMPERATURE
GATE TRIGGER CURRENT (tw)
GATE TRIGGER CURRENT (DC)
LACHING CURRENT (mA)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
100 (%)
REPETITIVE PEAK OFF-STATE
CURRENT VS. JUNCTION
TEMPERATURE
103
7
5
4
3
2
TYPICAL EXAMPLE
IRGT I
102
7
5
4
3
2
IRGT III
101 0
10
2 3 4 5 7 101
2 3 4 5 7 102
GATE CURRENT PULSE WIDTH (µs)
Mar.2002