ETC HAT2006F

HAT2006F
Silicon N Channel Power MOS FET
Application
SOP–8
Power switching
8
5
7 6
Features
•
•
•
•
3
1 2
5 6 7 8
D D D D
Low on–resistance
Capable of 4V gate drive
Low drive current
High density mounting
4
G
Ordering Information
1, 2, 3
Source
4
Gate
5, 6, 7, 8 Drain
S S S
1 2 3
————————————————————
Hitachi Cord
4
FP–8D
————————————————————
EIAJ Cord
SC–527–8A
————————————————————
JEDEC Cord
—
————————————————————
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
60
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
4
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
16
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
4
A
———————————————————————————————————————————
Channel dissipation
Pch**
1
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** When using the glass epoxy board (40 x 40 x 1.6 mm)
HAT2006F
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
60
—
—
V
ID = 10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
10
µA
VDS = 60 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
1.0
—
2.25
V
VDS = 10 V, ID = 1 mA
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.045
0.06
Ω
ID = 2 A
VGS = 10V *
————————————————————————
—
0.065
0.075
Ω
ID = 2 A
VGS = 4 V *
———————————————————————————————————————————
Forward transfer admittance
|yfs|
4
6.5
—
S
ID = 2 A
VDS = 10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
860
—
pF
VDS = 10 V
————————————————————————————————
Output capacitance
Coss
—
440
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
135
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
tr
—
td(off)
—
tf
—
VDF
—
30
—
ns
VGS = 4 V, ID = 2 A
————————————————————————————————
Rise time
155
—
ns
VDD = 10 V
————————————————————————————————
Turn–off delay time
80
—
ns
————————————————————————————————
Fall time
80
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
0.8
—
V
IF = 4 A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
90
—
ns
IF = 4 A, VGS = 0
diF / dt = 20A / µs
———————————————————————————————————————————
* Pulse Test
HAT2006F
Power vs. Temperature Derating
Test Condition :
When using the glass epoxy board
(40 x 40 x 1.6 mm)
1.5
10 µs 100 µs
30
I D (A)
Pch (W)
Maximum Safe Operation Area
100
2.0
10
PW
Drain Current
Channel Dissipation
3
1.0
0.5
1
DC
50
100
150
Ambient Temperature
s
10
m
s
Op
Operation in
er
0.3 this area is
at
ion
**
limited by R DS(on)
0.1
200
Ta (°C)
Ta = 25 °C
0.01 1 shot Pulse
0.1 0.3
1
3
10
30
100
Drain to Source Voltage V DS (V)
**
Typical Output Characteristics
20
10 V
8V
6V
5V
4V
ID
3.5 V
12
8
3V
4
VGS = 2.5 V
0
(A)
V DS = 10 V
Pulse Test
2
4
6
Drain to Source Voltage
8
10
V DS (V)
Drain Current
16
When using the glass epoxy board
(40 x 40 x 1.6 mm)
Typical Transfer Characteristics
20
I D (A)
m
0.03
0
Drain Current
1
=
16
12
8
25°C
Tc = 75°C
4
0
1
2
3
Gate to Source Voltage
–25°C
5
4
V GS (V)
HAT2006F
Drain to Source On State Resistance
R DS(on) ( Ω )
0.3
Pulse Test
0.4
0.2
ID=2A
0.1
2
4
6
Gate to Source Voltage
8
Static Drain to Source on State Resistance
R DS(on) ( Ω)
0.1
VGS = 4 V
I C = 0.5 A, 1 A, 2 A
0.12
V GS = 4 V
0.5 A, 1 A, 2 A
0.04
2.5 V
V GS (V)
0.16
10 V
0
–40
0.2
0.01
0.2
10
Static Drain to Source on State Resistance
vs. Temperature
0.20
Pulse Test
0.08
Pulse Test
0.5
0.02
1A
0.5 A
0
Static Drain to Source on State Resistance
vs. Drain Current
1
0.05
0
40
80
120
160
Case Temperature Tc (°C)
Forward Transfer Admittance |yfs| (S)
V DS(on) (V)
0.5
Drain to Source Voltage
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
0.5
1
2
Drain Current
5
10
I D (A)
20
Forward Transfer Admittance vs.
Drain Current
20
Tc = –25 °C
10
25 °C
5
75 °C
2
1
0.5
0.2
V DS = 10 V
Pulse Test
0.5
1
2
5
Drain Current I D (A)
10
20
HAT2006F
Typical Capacitance vs.
Drain to Source Voltage
Body–Drain Diode Reverse
Recovery Time
10000
di/dt = 20 A/µs
V GS = 0, Ta = 25°C
500
Capacitance C (pF)
Reverse Recovery Time trr (ns)
1000
200
100
50
3000
10
0
0.5
1
2
5
10 20
Reverse Drain Current I DR (A)
20
0
12
V GS
V DD = 50 V
25 V
10 V
8
16
24
32
Gate Charge Qg (nc)
8
4
0
40
20
30
40
50
V GS (V)
Switching Characteristics
V GS = 4 V, V DD = 10 V
500 PW = 3 µs, duty < 1 %
Switching Time t (ns)
40
V DS
V DD = 10 V
25 V
50 V
1000
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
60
16
10
Drain to Source Voltage V DS (V)
Dynamic Input Characteristics
80
Crss
100
10
0.2
I D= 4 A
Coss
300
30
20
Ciss
1000
20
100
VGS = 0
f = 1 MHz
200
tr
100
50
20
10
0.2
tf
t d(off)
t d(on)
0.5
1
2
Drain Current
5
10
I D (A)
20
HAT2006F
Reverse Drain Current vs.
Source to Drain Voltage
Reverse Drain Current I DR (A)
20
Pulse Test
16
12
8
V GS = 0, –5 V
5V
4
0
0.4
0.8
1.2
Source to Drain Voltage
1.6
2.0
V SD (V)
Package Dimensions
Unit : mm
• SOP–8
0.75 Max
6.8 Max
+ 0.05
4
0.20 – 0.02
1
2.03 Max
5
2.00 Max
8
4.55 Max
5.25 Max
0 – 10 °
0.40
+ 0.10
– 0.05
0.25
0.60 +– 0.18
0.10 ± 0.10
1.27
0.1
0.12 M
FP–8D
Hitachi Code
SC–527–8A
EIAJ
—
JEDEC