HAT2006F Silicon N Channel Power MOS FET Application SOP–8 Power switching 8 5 7 6 Features • • • • 3 1 2 5 6 7 8 D D D D Low on–resistance Capable of 4V gate drive Low drive current High density mounting 4 G Ordering Information 1, 2, 3 Source 4 Gate 5, 6, 7, 8 Drain S S S 1 2 3 ———————————————————— Hitachi Cord 4 FP–8D ———————————————————— EIAJ Cord SC–527–8A ———————————————————— JEDEC Cord — ———————————————————— Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Drain to source voltage VDSS 60 V ——————————————————————————————————————————— Gate to source voltage VGSS ±20 V ——————————————————————————————————————————— Drain current ID 4 A ——————————————————————————————————————————— Drain peak current ID(pulse)* 16 A ——————————————————————————————————————————— Body–drain diode reverse drain current IDR 4 A ——————————————————————————————————————————— Channel dissipation Pch** 1 W ——————————————————————————————————————————— Channel temperature Tch 150 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +150 °C ——————————————————————————————————————————— * PW ≤ 10 µs, duty cycle ≤ 1 % ** When using the glass epoxy board (40 x 40 x 1.6 mm) HAT2006F Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Drain to source breakdown voltage V(BR)DSS 60 — — V ID = 10 mA, VGS = 0 ——————————————————————————————————————————— Gate to source breakdown voltage V(BR)GSS ±20 — — V IG = ±100 µA, VDS = 0 ——————————————————————————————————————————— Gate to source leak current IGSS — — ±10 µA VGS = ±16 V, VDS = 0 ——————————————————————————————————————————— Zero gate voltage drain current IDSS — — 10 µA VDS = 60 V, VGS = 0 ——————————————————————————————————————————— Gate to source cutoff voltage VGS(off) 1.0 — 2.25 V VDS = 10 V, ID = 1 mA ——————————————————————————————————————————— Static drain to source on state resistance RDS(on) — 0.045 0.06 Ω ID = 2 A VGS = 10V * ———————————————————————— — 0.065 0.075 Ω ID = 2 A VGS = 4 V * ——————————————————————————————————————————— Forward transfer admittance |yfs| 4 6.5 — S ID = 2 A VDS = 10 V * ——————————————————————————————————————————— Input capacitance Ciss — 860 — pF VDS = 10 V ———————————————————————————————— Output capacitance Coss — 440 — pF VGS = 0 ———————————————————————————————— Reverse transfer capacitance Crss — 135 — pF f = 1 MHz ——————————————————————————————————————————— Turn–on delay time td(on) — tr — td(off) — tf — VDF — 30 — ns VGS = 4 V, ID = 2 A ———————————————————————————————— Rise time 155 — ns VDD = 10 V ———————————————————————————————— Turn–off delay time 80 — ns ———————————————————————————————— Fall time 80 — ns ——————————————————————————————————————————— Body–drain diode forward voltage 0.8 — V IF = 4 A, VGS = 0 ——————————————————————————————————————————— Body–drain diode reverse recovery time trr — 90 — ns IF = 4 A, VGS = 0 diF / dt = 20A / µs ——————————————————————————————————————————— * Pulse Test HAT2006F Power vs. Temperature Derating Test Condition : When using the glass epoxy board (40 x 40 x 1.6 mm) 1.5 10 µs 100 µs 30 I D (A) Pch (W) Maximum Safe Operation Area 100 2.0 10 PW Drain Current Channel Dissipation 3 1.0 0.5 1 DC 50 100 150 Ambient Temperature s 10 m s Op Operation in er 0.3 this area is at ion ** limited by R DS(on) 0.1 200 Ta (°C) Ta = 25 °C 0.01 1 shot Pulse 0.1 0.3 1 3 10 30 100 Drain to Source Voltage V DS (V) ** Typical Output Characteristics 20 10 V 8V 6V 5V 4V ID 3.5 V 12 8 3V 4 VGS = 2.5 V 0 (A) V DS = 10 V Pulse Test 2 4 6 Drain to Source Voltage 8 10 V DS (V) Drain Current 16 When using the glass epoxy board (40 x 40 x 1.6 mm) Typical Transfer Characteristics 20 I D (A) m 0.03 0 Drain Current 1 = 16 12 8 25°C Tc = 75°C 4 0 1 2 3 Gate to Source Voltage –25°C 5 4 V GS (V) HAT2006F Drain to Source On State Resistance R DS(on) ( Ω ) 0.3 Pulse Test 0.4 0.2 ID=2A 0.1 2 4 6 Gate to Source Voltage 8 Static Drain to Source on State Resistance R DS(on) ( Ω) 0.1 VGS = 4 V I C = 0.5 A, 1 A, 2 A 0.12 V GS = 4 V 0.5 A, 1 A, 2 A 0.04 2.5 V V GS (V) 0.16 10 V 0 –40 0.2 0.01 0.2 10 Static Drain to Source on State Resistance vs. Temperature 0.20 Pulse Test 0.08 Pulse Test 0.5 0.02 1A 0.5 A 0 Static Drain to Source on State Resistance vs. Drain Current 1 0.05 0 40 80 120 160 Case Temperature Tc (°C) Forward Transfer Admittance |yfs| (S) V DS(on) (V) 0.5 Drain to Source Voltage Drain to Source Saturation Voltage vs. Gate to Source Voltage 50 0.5 1 2 Drain Current 5 10 I D (A) 20 Forward Transfer Admittance vs. Drain Current 20 Tc = –25 °C 10 25 °C 5 75 °C 2 1 0.5 0.2 V DS = 10 V Pulse Test 0.5 1 2 5 Drain Current I D (A) 10 20 HAT2006F Typical Capacitance vs. Drain to Source Voltage Body–Drain Diode Reverse Recovery Time 10000 di/dt = 20 A/µs V GS = 0, Ta = 25°C 500 Capacitance C (pF) Reverse Recovery Time trr (ns) 1000 200 100 50 3000 10 0 0.5 1 2 5 10 20 Reverse Drain Current I DR (A) 20 0 12 V GS V DD = 50 V 25 V 10 V 8 16 24 32 Gate Charge Qg (nc) 8 4 0 40 20 30 40 50 V GS (V) Switching Characteristics V GS = 4 V, V DD = 10 V 500 PW = 3 µs, duty < 1 % Switching Time t (ns) 40 V DS V DD = 10 V 25 V 50 V 1000 Gate to Source Voltage V DS (V) Drain to Source Voltage 60 16 10 Drain to Source Voltage V DS (V) Dynamic Input Characteristics 80 Crss 100 10 0.2 I D= 4 A Coss 300 30 20 Ciss 1000 20 100 VGS = 0 f = 1 MHz 200 tr 100 50 20 10 0.2 tf t d(off) t d(on) 0.5 1 2 Drain Current 5 10 I D (A) 20 HAT2006F Reverse Drain Current vs. Source to Drain Voltage Reverse Drain Current I DR (A) 20 Pulse Test 16 12 8 V GS = 0, –5 V 5V 4 0 0.4 0.8 1.2 Source to Drain Voltage 1.6 2.0 V SD (V) Package Dimensions Unit : mm • SOP–8 0.75 Max 6.8 Max + 0.05 4 0.20 – 0.02 1 2.03 Max 5 2.00 Max 8 4.55 Max 5.25 Max 0 – 10 ° 0.40 + 0.10 – 0.05 0.25 0.60 +– 0.18 0.10 ± 0.10 1.27 0.1 0.12 M FP–8D Hitachi Code SC–527–8A EIAJ — JEDEC