ETC 2SJ384L

2SJ384 L , 2SJ384 S
Silicon P-Channel MOS FET
Application
LDPAK
High speed power switching
4
Features
1
•
•
•
•
Low on–resistance
High speed switching
Low drive current
2.5 V gate drive device can be driven from
3 V source
• Suitable for Switching regulator, DC – DC
converter
• Avalanche Ratings
2
4
3
1
2, 4
2
3
1
1. Gate
2. Drain
3. Source
4. Drain
3
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
–60
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
–15
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
–60
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
–15
A
———————————————————————————————————————————
Avalanche current
IAP***
–15
A
———————————————————————————————————————————
Avalanche energy
EAR***
19
mJ
———————————————————————————————————————————
Channel dissipation
Pch**
50
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** Value at Tc = 25 °C
*** Value at Tch = 25 °C, Rg ≥ 50 Ω
2SJ384 L , 2SJ384 S
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————–
Drain to source breakdown
voltage
V(BR)DSS
–60
—
—
V
ID = –10 mA, VGS = 0
———————————————————————————————————————————–
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————–
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————–
Zero gate voltage drain current
IDSS
—
—
–250
µA
VDS = –50 V, VGS = 0
———————————————————————————————————————————–
Gate to source cutoff voltage
VGS(off)
–0.5
—
–1.5
V
ID = –1 mA, VDS = –10 V
———————————————————————————————————————————–
Static drain to source on state
resistance
RDS(on)
—
0.07
0.01
Ω
ID = –8 A
VGS = –10 V *
————————————————————————–
—
0.12
0.19
Ω
ID = –3 A
VGS = –2.5 V *
———————————————————————————————————————————–
Forward transfer admittance
|yfs|
8
14
—
S
ID = –8 A
VDS = –10 V *
———————————————————————————————————————————–
Input capacitance
Ciss
—
2170
—
pF
VDS = –10 V
————————————————————————————————
Output capacitance
Coss
—
830
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
130
—
pF
f = 1 MHz
———————————————————————————————————————————–
Turn–on delay time
td(on)
—
16
—
ns
ID = –8 A
————————————————————————————————
Rise time
tr
—
75
—
ns
————————————————————————————————
Turn–off delay time
td(off)
—
360
—
ns
VGS = –10 V
RL = 3.75 Ω
————————————————————————————————
Fall time
tf
—
180
—
ns
———————————————————————————————————————————–
Body–drain diode forward
voltage
VDF
—
–1.0
—
V
IF = –15 A, VGS = 0
———————————————————————————————————————————–
Body–drain diode reverse
recovery time
trr
—
130
—
ns
IF = –15 A, VGS = 0,
diF / dt = 50 A / µs
———————————————————————————————————————————–
* Pulse Test
2SJ384 L , 2SJ384 S
Power vs. Temperature Derating
–200
I D (A)
60
40
20
50
100
Case Temperature
10
–20
–10
DC
–5
PW
Op
0µ
s
=1
era
1m
s
0m
s(
1s
tio
Operation in
n(
ho
Tc
t)
–2 this area is
=2
5°
limited by R DS(on)
C)
–1
150
200
–0.2
–1
Tc (°C)
Typical Output Characteristics
Pulse Test
V DS = –10 V
Pulse Test
(A)
–2.5 V
–12
–8
–2 V
–4
–16
–12
–8
–4
VGS = –1.5 V
0
–2
–4
–6
Drain to Source Voltage
–8
–10
V DS (V)
–2
–5 –10 –20
–50 –100
Drain to Source Voltage V DS (V)
Typical Transfer Characteristics
ID
–16
–10 V
–4 V
–3 V
Ta = 25 °C
–20
Drain Current
–20
I D (A)
10 µs
–50
–0.5
0
Drain Current
Maximum Safe Operation Area
–100
Drain Current
Channel Dissipation
Pch (W)
80
Tc = –25 °C
25 °C
75 °C
0
–2
–4
–6
Gate to Source Voltage
–8
–10
V GS (V)
2SJ384 L , 2SJ384 S
Pulse Test
I D = –10 A
–0.8
–0.6
–5 A
–0.4
–0.2
Static Drain to Source on State Resistance
R DS(on) ( Ω)
0
–2 A
–2
–4
–6
Gate to Source Voltage
VGS = –2.5 V
–4 V
0.1
0.3
I D = –10 A
–2 A
–5 A
VGS = –2.5 V
0.1
–2, –5, –10 A
–10 V
0
40
80
120
160
Case Temperature Tc (°C)
–10 V
0.01
–0.5
–10
V GS (V)
0.4
0
–40
0.2
0.02
–8
Static Drain to Source on State Resistance
vs. Temperature
0.5
Pulse Test
0.2
Static Drain to Source on State Resistance
vs. Drain Current
1
Pulse Test
0.5
0.05
–1
–2
–5 –10 –20
Drain Current I D (A)
–50
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |y fs | (S)
V DS(on) (V)
–1.0
Drain to Source On State Resistance
R DS(on) ( Ω )
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
20
Tc = –25 °C
25 °C
10
5
75 °C
2
1
0.5
–0.1 –0.3
V DS = –10 V
Pulse Test
–1
–3
–10 –30
Drain Current I D (A)
–100
2SJ384 L , 2SJ384 S
Typical Capacitance vs.
Drain to Source Voltage
Body–Drain Diode Reverse
Recovery Time
10000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
500
200
100
50
20
10
V DD = –50 V
–25 V
–10 V
–80
–100
0
–8
V GS (V)
–12
–16
I D = –15 A
80
20
40
60
Gate Charge Qg (nc)
VGS = 0
f = 1 MHz
–10
1000
–20
100
500
Switching Time t (ns)
–60
–4
V GS
Crss
100
–20
–30
–40
–50
Switching Characteristics
0
V DS
300
Drain to Source Voltage V DS (V)
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
–40
Coss
0
Dynamic Input Characteristics
–20
1000
10
5
–0.1 –0.3
–1
–3
–10 –30 –100
Reverse Drain Current I DR (A)
V DD = –10 V
–25 V
–50 V
Ciss
30
di / dt = 50 A / µs
VGS = 0, Ta = 25 °C
0
3000
V GS = –10 V, V DD = –30 V
PW = 5 µs, duty < 1 %
t d(off)
200
tf
100
50
tr
t d(on)
20
10
–0.05 –0.1
–0.3
–1
–3
Drain Current
–10
I D (A)
–30 –50
2SJ384 L , 2SJ384 S
Reverse Drain Current vs.
Source to Drain Voltage
Maximun Avalanche Energy vs.
Channel Temperature Derating
Repetive Avalanche Energy E AR (mJ)
–20
Reverse Drain Current I DR (A)
Pulse Test
–16
–12
–10 V
V GS = 0, 5 V
–5 V
–8
–4
0
–0.4
–0.8
–1.2
Source to Drain Voltage
–1.6
–2.0
20
I AP = –15 A
V DD = –25 V
duty < 0.1 %
Rg > 50 Ω
16
12
8
4
0
25
V SD (V)
50
75
100
125
150
Channel Temperature Tch (°C)
Avalanche Test Circuit and Waveform
V DS
Monitor
EAR =
L
1
2
• L • I AP •
2
I AP
Monitor
VDSS
VDSS – V DD
V (BR)DSS
I AP
Rg
D. U. T
V DS
VDD
ID
Vin
–15 V
50Ω
0
VDD
2SJ384 L , 2SJ384 S
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance
γ s (t)
3
Tc = 25°C
1
D=1
0.5
0.3
0.2
0.1
θ ch – c(t) = γ s (t) • θ ch – c
θ ch – c = 2.5 °C/W, Tc = 25 °C
0.1
0.05
0.03
PDM
0.02
1
lse
0.0 t pu
o
h
1s
0.01
10 µ
D=
PW
T
PW
T
100 µ
1m
10 m
Pulse Width
100 m
10
PW (S)
Switching Time Test Circuit
Waveforms
Vout
Monitor
Vin Monitor
1
Vin
10%
D.U.T.
RL
90%
Vin
–10 V 50Ω
V DD
= 30 V
90%
90%
Vout
td(on)
10%
10%
tr
td(off)
tf