ETC BC546/D

Amplifier Transistors
BC546, B
BC547, A, B, C
BC548, A, B, C
NPN Silicon
MAXIMUM RATINGS
Rating
Symbol
BC546
BC547
BC548
Unit
Collector–Emitter Voltage
VCEO
65
45
30
Vdc
Collector–Base Voltage
VCBO
80
50
30
Vdc
Emitter–Base Voltage
VEBO
6.0
Vdc
Collector Current — Continuous
IC
100
mAdc
Total Device Dissipation @ TA = 25°C
Derate above 25°C
PD
625
5.0
mW
mW/°C
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
1.5
12
Watt
mW/°C
TJ, Tstg
–55 to +150
°C
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient
RJA
200
°C/W
Thermal Resistance, Junction to Case
RJC
83.3
°C/W
Operating and Storage Junction
Temperature Range
1
2
3
CASE 29–04, STYLE 17
TO–92 (TO–226AA)
THERMAL CHARACTERISTICS
Characteristic
COLLECTOR
1
2
BASE
3
EMITTER
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage
(IC = 1.0 mA, IB = 0)
BC546
BC547
BC548
V(BR)CEO
65
45
30
—
—
—
—
—
—
V
Collector–Base Breakdown Voltage
(IC = 100 µAdc)
BC546
BC547
BC548
V(BR)CBO
80
50
30
—
—
—
—
—
—
V
Emitter–Base Breakdown Voltage
(IE = 10 A, IC = 0)
BC546
BC547
BC548
V(BR)EBO
6.0
6.0
6.0
—
—
—
—
—
—
V
—
—
—
—
0.2
0.2
0.2
—
15
15
15
4.0
nA
Collector Cutoff Current
(VCE = 70 V, VBE = 0)
(VCE = 50 V, VBE = 0)
(VCE = 35 V, VBE = 0)
(VCE = 30 V, TA = 125°C)
 Semiconductor Components Industries, LLC, 2001
February, 2001 – Rev. 2
ICES
BC546
BC547
BC548
BC546/547/548
1
µA
Publication Order Number:
BC546/D
BC546, B BC547, A, B, C BC548, A, B, C
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Typ
Max
BC547A/548A
BC546B/547B/548B
BC548C
—
—
—
90
150
270
—
—
—
(IC = 2.0 mA, VCE = 5.0 V)
BC546
BC547
BC548
BC547A/548A
BC546B/547B/548B
BC547C/BC548C
110
110
110
110
200
420
—
—
—
180
290
520
450
800
800
220
450
800
(IC = 100 mA, VCE = 5.0 V)
BC547A/548A
BC546B/547B/548B
BC548C
—
—
—
120
180
300
—
—
—
—
—
—
0.09
0.2
0.3
0.25
0.6
0.6
—
0.7
—
0.55
—
—
—
0.7
0.77
150
150
150
300
300
300
—
—
—
Unit
ON CHARACTERISTICS
DC Current Gain
(IC = 10 µA, VCE = 5.0 V)
hFE
Collector–Emitter Saturation Voltage
(IC = 10 mA, IB = 0.5 mA)
(IC = 100 mA, IB = 5.0 mA)
(IC = 10 mA, IB = See Note 1)
VCE(sat)
Base–Emitter Saturation Voltage
(IC = 10 mA, IB = 0.5 mA)
VBE(sat)
Base–Emitter On Voltage
(IC = 2.0 mA, VCE = 5.0 V)
(IC = 10 mA, VCE = 5.0 V)
VBE(on)
—
V
V
V
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product
(IC = 10 mA, VCE = 5.0 V, f = 100 MHz)
fT
BC546
BC547
BC548
MHz
Output Capacitance
(VCB = 10 V, IC = 0, f = 1.0 MHz)
Cobo
—
1.7
4.5
pF
Input Capacitance
(VEB = 0.5 V, IC = 0, f = 1.0 MHz)
Cibo
—
10
—
pF
125
125
125
240
450
—
—
220
330
600
500
900
260
500
900
—
—
—
2.0
2.0
2.0
10
10
10
Small–Signal Current Gain
(IC = 2.0 mA, VCE = 5.0 V, f = 1.0 kHz)
Noise Figure
(IC = 0.2 mA, VCE = 5.0 V, RS = 2 k,
f = 1.0 kHz, ∆f = 200 Hz)
hfe
BC546
BC547/548
BC547A/548A
BC546B/547B/548B
BC547C/548C
—
NF
BC546
BC547
BC548
Note 1: IB is value for which IC = 11 mA at VCE = 1.0 V.
http://onsemi.com
2
dB
BC546, B BC547, A, B, C BC548, A, B, C
1.0
VCE = 10 V
TA = 25°C
1.5
TA = 25°C
0.9
0.8
1.0
V, VOLTAGE (VOLTS)
hFE , NORMALIZED DC CURRENT GAIN
2.0
0.8
0.6
0.4
VBE(sat) @ IC/IB = 10
0.7
VBE(on) @ VCE = 10 V
0.6
0.5
0.4
0.3
0.2
0.3
VCE(sat) @ IC/IB = 10
0.1
0.2
0.2
0.5
50
1.0
20
2.0
5.0 10
IC, COLLECTOR CURRENT (mAdc)
100
0
0.1
200
0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30
IC, COLLECTOR CURRENT (mAdc)
Figure 2. “Saturation” and “On” Voltages
2.0
θVB, TEMPERATURE COEFFICIENT (mV/ °C)
VCE , COLLECTOR-EMITTER VOLTAGE (V)
Figure 1. Normalized DC Current Gain
TA = 25°C
1.6
IC = 200 mA
1.2
IC =
IC =
10 mA 20 mA
0.8
IC = 50 mA
IC = 100 mA
0.4
0
0.02
10
0.1
1.0
IB, BASE CURRENT (mA)
50 70 100
1.0
-55°C to +125°C
1.2
1.6
2.0
2.4
2.8
20
10
1.0
IC, COLLECTOR CURRENT (mA)
0.2
Figure 3. Collector Saturation Region
100
Figure 4. Base–Emitter Temperature Coefficient
10
C, CAPACITANCE (pF)
7.0
TA = 25°C
5.0
Cib
3.0
Cob
2.0
1.0
0.4 0.6 0.8 1.0
2.0
4.0 6.0 8.0 10
VR, REVERSE VOLTAGE (VOLTS)
20
40
f,
T CURRENT-GAIN - BANDWIDTH PRODUCT (MHz)
BC547/BC548
Figure 5. Capacitances
400
300
200
VCE = 10 V
TA = 25°C
100
80
60
40
30
20
0.5 0.7
1.0
2.0 3.0
5.0 7.0 10
20
IC, COLLECTOR CURRENT (mAdc)
30
Figure 6. Current–Gain – Bandwidth Product
http://onsemi.com
3
50
BC546, B BC547, A, B, C BC548, A, B, C
BC547/BC548
TA = 25°C
VCE = 5 V
TA = 25°C
0.8
VBE(sat) @ IC/IB = 10
V, VOLTAGE (VOLTS)
hFE , DC CURRENT GAIN (NORMALIZED)
1.0
2.0
1.0
0.5
0.6
VBE @ VCE = 5.0 V
0.4
0.2
0.2
VCE(sat) @ IC/IB = 10
0
10
100
1.0
IC, COLLECTOR CURRENT (mA)
0.1 0.2
0.2
0.5
1.0
2.0
TA = 25°C
1.6
20 mA
50 mA
100 mA
200 mA
1.2
IC =
10 mA
0.8
0.4
0
0.02
0.05
0.1
0.2
0.5
1.0 2.0
IB, BASE CURRENT (mA)
50
100
200
50
100
200
Figure 8. “On” Voltage
θVB, TEMPERATURE COEFFICIENT (mV/ °C)
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 7. DC Current Gain
10 20
2.0
5.0
IC, COLLECTOR CURRENT (mA)
5.0
10
20
-1.0
-1.4
-1.8
θVB for VBE
-55°C to 125°C
-2.2
-2.6
-3.0
Figure 9. Collector Saturation Region
0.2
0.5
10 20
5.0
1.0 2.0
IC, COLLECTOR CURRENT (mA)
Figure 10. Base–Emitter Temperature Coefficient
BC546
f,
T CURRENT-GAIN - BANDWIDTH PRODUCT
40
C, CAPACITANCE (pF)
TA = 25°C
20
Cib
10
6.0
Cob
4.0
2.0
0.1
0.2
0.5
5.0
1.0 2.0
10 20
VR, REVERSE VOLTAGE (VOLTS)
50
500
VCE = 5 V
TA = 25°C
200
100
50
20
1.0
5.0 10
50 100
IC, COLLECTOR CURRENT (mA)
100
Figure 11. Capacitance
Figure 12. Current–Gain – Bandwidth Product
http://onsemi.com
4
BC546, B BC547, A, B, C BC548, A, B, C
PACKAGE DIMENSIONS
CASE 029–04
(TO–226AA)
ISSUE AD
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L.
DIMENSION D AND J APPLY BETWEEN L AND K
MINIMUM. LEAD DIMENSION IS UNCONTROLLED
IN P AND BEYOND DIMENSION K MINIMUM.
B
R
P
L
F
SEATING
PLANE
K
D
J
X X
G
H
V
C
1
SECTION X–X
N
N
DIM
A
B
C
D
F
G
H
J
K
L
N
P
R
V
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.022
0.016
0.019
0.045
0.055
0.095
0.105
0.015
0.020
0.500
--0.250
--0.080
0.105
--0.100
0.115
--0.135
---
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.41
0.55
0.41
0.48
1.15
1.39
2.42
2.66
0.39
0.50
12.70
--6.35
--2.04
2.66
--2.54
2.93
--3.43
---
STYLE 17:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
http://onsemi.com
5
BC546, B BC547, A, B, C BC548, A, B, C
Notes
http://onsemi.com
6
BC546, B BC547, A, B, C BC548, A, B, C
Notes
http://onsemi.com
7
BC546, B BC547, A, B, C BC548, A, B, C
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: [email protected]
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
BC546/D