PHILIPS PHP8N20E

Philips Semiconductors
Product specification
PowerMOS transistor
GENERAL DESCRIPTION
N-channel enhancement mode
field-effect power transistor in a
plastic envelope featuring high
avalanche energy capability, stable
blocking voltage, fast switching and
high thermal cycling performance
with low thermal resistance. Intended
for use in Switched Mode Power
Supplies (SMPS), motor control
circuits and general purpose
switching applications.
PINNING - TO220AB
PIN
QUICK REFERENCE DATA
SYMBOL
PARAMETER
VDS
ID
Ptot
RDS(ON)
Drain-source voltage
Drain current (DC)
Total power dissipation
Drain-source on-state resistance
PIN CONFIGURATION
DESCRIPTION
1
gate
2
drain
3
source
tab
PHP8N20E
MAX.
UNIT
200
9.2
90
0.4
V
A
W
Ω
SYMBOL
d
tab
g
drain
s
1 23
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
CONDITIONS
ID
Continuous drain current
IDM
PD
∆PD/∆Tmb
VGS
EAS
Pulsed drain current
Total dissipation
Linear derating factor
Gate-source voltage
Single pulse avalanche
energy
Peak avalanche current
Tmb = 25 ˚C; VGS = 10 V
Tmb = 100 ˚C; VGS = 10 V
Tmb = 25 ˚C
Tmb = 25 ˚C
Tmb > 25 ˚C
IAS
Tj, Tstg
Operating junction and
storage temperature range
VDD ≤ 50 V; starting Tj = 25˚C; RGS = 50 Ω;
VGS = 10 V
VDD ≤ 50 V; starting Tj = 25˚C; RGS = 50 Ω;
VGS = 10 V
MIN.
MAX.
UNIT
-
9.2
6.5
37
90
0.6
± 30
250
A
A
A
W
W/K
V
mJ
-
9.2
A
- 55
175
˚C
THERMAL RESISTANCES
SYMBOL
PARAMETER
Rth j-mb
Thermal resistance junction to
mounting base
Thermal resistance junction to
ambient
Rth j-a
February 1997
CONDITIONS
1
MIN.
TYP.
MAX.
UNIT
-
-
1.67
K/W
-
60
-
K/W
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
PHP8N20E
ELECTRICAL CHARACTERISTICS
Tj = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
V(BR)DSS
VGS = 0 V; ID = 0.25 mA
200
-
-
V
∆V(BR)DSS /
∆Tj
RDS(ON)
VGS(TO)
gfs
IDSS
Drain-source breakdown
voltage
Drain-source breakdown
voltage temperature coefficient
Drain-source on resistance
Gate threshold voltage
Forward transconductance
Drain-source leakage current
VDS = VGS; ID = 0.25 mA
-
0.25
-
V/K
IGSS
Gate-source leakage current
VGS = 10 V; ID = 6.4 A
VDS = VGS; ID = 0.25 mA
VDS = 50 V; ID = 5.4 A
VDS = 200 V; VGS = 0 V
VDS = 160 V; VGS = 0 V; Tj = 125 ˚C
VGS = ±30 V; VDS = 0 V
2.0
3.8
-
0.35
3.0
4.7
1
30
10
0.4
4.0
25
250
100
Ω
V
S
µA
µA
nA
Qg(tot)
Qgs
Qgd
Total gate charge
Gate-source charge
Gate-drain (Miller) charge
ID = 5.9 A; VDD = 160 V; VGS = 10 V
-
30
4.5
15
40
6
20
nC
nC
nC
td(on)
tr
td(off)
tf
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
VDD = 100 V; ID = 5.9 A;
RG = 12 Ω; RD = 16 Ω
-
12
45
80
40
-
ns
ns
ns
ns
Ld
Internal drain inductance
-
3.5
-
nH
Ld
Internal drain inductance
-
4.5
-
nH
Ls
Internal source inductance
Measured from contact screw on
tab to centre of die
Measured from drain lead 6 mm
from package to centre of die
Measured from source lead 6 mm
from package to source bond pad
-
7.5
-
nH
Ciss
Coss
Crss
Input capacitance
Output capacitance
Feedback capacitance
VGS = 0 V; VDS = 25 V; f = 1 MHz
-
700
100
50
-
pF
pF
pF
MIN.
TYP.
MAX.
UNIT
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Tj = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
IS
Tmb = 25˚C
-
-
9.2
A
Tmb = 25˚C
-
-
37
A
VSD
Continuous source current
(body diode)
Pulsed source current (body
diode)
Diode forward voltage
IS = 9 A; VGS = 0 V
-
-
1.5
V
trr
Reverse recovery time
IS = 5.9 A; VGS = 0 V;
dI/dt = 100 A/µs
-
180
-
ns
Qrr
Reverse recovery charge
-
1.2
-
µC
ISM
February 1997
2
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
120
PHP8N20E
Normalised Power Derating
PD%
10
Zth / (K/W)
BUKx54-lv
110
100
D=
90
80
1
0.5
70
60
0.2
50
0.1
40
0.1
0.05
30
tp
PD
0.02
D=
20
10
0
0
0
20
40
60
80 100
Tmb / C
120
140
160
0.01
1E-07
180
Fig.1. Normalised power dissipation.
PD% = 100⋅PD/PD 25 ˚C = f(Tmb)
120
1E-03
t/s
1E-01
1E+01
Fig.4. Transient thermal impedance.
Zth j-mb = f(t); parameter D = tp/T
Normalised Current Derating
ID%
t
T
1E-05
tp
T
20
ID / A
110
BUK444-200A
8
10
20
VGS / V =
100
90
15
7
80
70
60
10
50
6
40
30
5
5
20
10
0
0
0
20
40
60
80 100
Tmb / C
120
140
160
180
Fig.2. Normalised continuous drain current.
ID% = 100⋅ID/ID 25 ˚C = f(Tmb); conditions: VGS ≥ 10 V
100
ID / A
ID
S/
VD
N
1.5
(O
6
8
10 12
VDS / V
14
16
18
4
20
BUK454-200A
5.5
4.5 5
6
6.5
7
VGS / V =
7.5
tp = 10 us
S
RD
10
4
RDS(ON) / Ohm
A
B
2
Fig.5. Typical output characteristics.
ID = f(VDS); parameter VGS
BUK454-200A,B
)=
0
8
1.0
100 us
1 ms
DC
1
10
0.5
10 ms
100 ms
0
0.1
1
10
100
VDS / V
1000
Fig.3. Safe operating area. Tmb = 25 ˚C
ID & IDM = f(VDS); IDM single pulse; parameter tp
February 1997
20
0
2
4
6
8
10 12
ID / A
14
16
18
20
Fig.6. Typical on-state resistance.
RDS(ON) = f(ID); parameter VGS
3
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
20
PHP8N20E
ID / A
VGS(TO) / V
BUK454-200A
max.
4
Tj / C =
150
25
15
typ.
3
min.
10
2
5
0
1
0
0
2
4
6
8
10
-60
-20
20
VGS / V
gfs / S
100
140
180
Fig.10. Gate threshold voltage.
VGS(TO) = f(Tj); conditions: ID = 0.25 mA; VDS = VGS
Fig.7. Typical transfer characteristics.
ID = f(VGS); parameter Tj
6
60
Tj / C
BUK454-200A
5
SUB-THRESHOLD CONDUCTION
ID / A
1E-01
1E-02
4
2%
1E-03
typ
98 %
3
1E-04
2
1E-05
1
1E-06
0
0
2
4
6
8
10 12
ID / A
14
16
18
0
20
Fig.8. Typical transconductance.
gfs = f(ID); parameter Tj
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
2
VGS / V
3
4
Fig.11. Sub-threshold drain current.
ID = f(VGS); conditions: Tj = 25 ˚C; VDS = VGS
Normalised RDS(ON) = f(Tj)
a
1
10000
BUK4y4-200
C / pF
1000
Ciss
100
Coss
Crss
-60
-20
20
60
Tj / C
100
140
10
180
0
40
VDS / V
Fig.9. Normalised drain-source on-state resistance.
a = RDS(ON)/RDS(ON)25 ˚C = f(Tj); ID = 5.9 A; VGS = 10 V
February 1997
20
Fig.12. Typical capacitances, Ciss, Coss, Crss.
C = f(VDS); conditions: VGS = 0 V; f = 1 MHz
4
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
PHP8N20E
BUK454-200
VGS / V
12
120
110
100
90
80
70
VDS / V =40
10
160
8
6
60
50
40
30
20
10
0
4
2
0
0
4
8
12
16
QG / nC
20
24
28
20
Fig.13. Typical turn-on gate-charge characteristics.
VGS = f(QG); parameter VDS
1.15
EAS, Normalised unclamped inductive energy (%)
40
60
80
100
120
Starting Tj ( C)
160
180
Fig.16. Normalised unclamped inductive energy.
EAS% = f(Tj)
Normalised Drain-source breakdown voltage
V(BR)DSS @ Tj
+
V(BR)DSS @ 25 C
1.1
VDD
L
VDS
1.05
-
VGS
1
-ID/100
T.U.T.
0
0.95
0.9
RGS
0.85
-100
-50
0
50
Tj, Junction temperature (C)
100
IF / A
R 01
shunt
150
Fig.17. Unclamped inductive test circuit.
EAS = 0.5 ⋅ LID2 ⋅ V(BR)DSS /(V(BR)DSS − VDD )
Fig.14. Normalised drain-source breakdown voltage.
V(BR)DSS/V(BR)DSS 25 ˚C = f(Tj)
20
140
BUK454-200A
15
10
Tj / C = 150
5
25
0
0
1
VSDS / V
2
Fig.15. Source-Drain diode characteristic.
IF = f(VSDS); parameter Tj
February 1997
5
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
PHP8N20E
MECHANICAL DATA
Dimensions in mm
4,5
max
Net Mass: 2 g
10,3
max
1,3
3,7
2,8
5,9
min
15,8
max
3,0 max
not tinned
3,0
13,5
min
1,3
max 1 2 3
(2x)
0,9 max (3x)
2,54 2,54
0,6
2,4
Fig.18. SOT78 (TO220AB); pin 2 connected to mounting base.
Notes
1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent
damage to MOS gate oxide.
2. Refer to mounting instructions for SOT78 (TO220) envelopes.
3. Epoxy meets UL94 V0 at 1/8".
February 1997
6
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
PHP8N20E
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
 Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
February 1997
7
Rev 1.000