SONY CXB1577Q

CXB1577Q
Post-Amplifier for Optical Fiber Communication Receiver
Description
The CXB1577Q achieves the 2R optical-fiber
communication receiver functions (Reshaping and
Regenerating) on a single chip. This IC is equipped
with the signal detection function, which is used to
enable TTL/ECL outputs. Also, the output disable
function performs the output shutdown. 3.3V/5.0V
can be used for the supply voltage.
40 pin QFP (Plastic)
Features
• Output disable function (TTL input)
• Signal detection function (TTL/ECL output)
• Supply voltage supports both 3.3V/5.0V
Applications
• SONET/SDH:
• Fibre Channel:
:
• Gigabit-Ethernet:
622.08Mbps
531.25Mbps
1.062Gbps
1.25Gbps
Recommended Operating Conditions
• Supply voltage
• Termination voltage (for data)
• Termination voltage (for alarm 1,alarm 2)
• Termination resistance (for data)
• Termination resistance (for alarm 1)
• Termination resistance (for alarm 2)
• Operating temperature
VCC – VEE
VCC – VTD
VTA
RTD
RTA1
RTA2
Ta
—
VCC – VEE
Tstg
Vdif
Vi
IOQ/SD-ECL
IOH SD-TTL
IOL SD-TTL
—
Absolute maximum Ratings
• Supply voltage
• Storage temperature
• Input voltage difference
VD – VD
• SW input voltage
• ECL output current
• TTL output current (High level)
• TTL output current (Low level)
–0.3 to +7
–65 to +150
0 to +2
VEE to VCC
–30 to 0
–20 to 0
0 to 20
V
°C
V
V
mA
mA
mA
3.3 ± 0.2/5 ± 0.25
1.8 to 2.2
VEE
46 to 56
240 to 300
460 to 560
–40 to +85
V
V
V
Ω
Ω
Ω
°C
Structure
Bipolar silicon monolithic IC
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E96Z24-PS
CXB1577Q
N.C.
VEE4
VC3
CAP3
CAP2
VEE2
VEEI
DN
UP
N.C.
Block Diagram and Pin Configuration
30
29
28
27
26
25
24
23
22
21
VCC4 31
20 VCC2
VC1 32
19
∆V
VEE1
18 D
SD-TTL 33
peak hold
peak hold
17
DB
SD-ECL 35
16
CAP1
SDB-ECL 36
15
CAP1B
Q 37
14
N.C.
QB 38
13
VC0
VCC3 39
12
VCC1
SDB-TTL 34
N.C. 40
VCC2
7
8
9
10
VEE1
SW
6
VEE2
ODIS
5
N.C.
4
N.C.
3
N.C.
2
VC2
1
VEE3
11 TM
–2–
CXB1577Q
Pin Description
Pin
No.
Symbol
Typical pin
voltage
DC
1
VEE3
Equivalent circuit
Description
AC
–3.3V
/ –5V
Negative power supply for ECL
output buffer.
VCC2
10k
0V
(Open)
2
ODIS
or
VREF
2
300
10k
–3.3V
/ –5V
Controls the output shutdown
function. High voltage when
open; the Q output is fixed to
Low. Low voltage when
connected to VEE; the D input
results in the Q output with ECL
level. TTL level is also available.
VEE2
VCC2
0V
Switches the identification
maximum voltage amplitude.
High voltage when open; the
identification maximum voltage
amplitude becomes 40mVp-p.
Low voltage when connected
to VEE; the amplitude becomes
20mVp-p.
60k
(Open)
3
SW
or
3
40k
–3.3V
/ –5V
VEE2
4
VCC2
Positive power supply for digital block.
0V
VCC2
6k
5
VC2
Switches 3.3V/5V. Short this pin
to Vcc for 3.3V between Vcc and
VEE. Leave this pin open for 5V
between Vcc and VEE.
5
0V
/–1.7V
2k
(Open)
VEE2
6
7
N.C.
No connected.
8
9
VEE2
–3.3V
/ –5V
Negative power supply for digital
block.
10
VEE1
–3.3V
/ –5V
Negative power supply for analog
block.
11
TM
–1.8V
/ –3.5V
10
11
Chip temperature monitor.
VEE1
–3–
CXB1577Q
Pin
No.
Symbol
Typical pin
voltage
DC
12
VCC1
Equivalent circuit
Description
AC
Positive power supply for analog block.
0V
VCC3
6k
13
VC0
Switches 3.3V/5V. Short this pin
to Vcc for 3.3V between Vcc and
VEE. Leave this pin open for 5V
between Vcc and VEE.
13
0V
/–1.7V
(Open)
2k
VEE3
14
N.C.
15
CAP1B
No connected.
VCC1
16
17
CAP1
DB
–0.9V
to
–1.3V
–1.7V
7.5k
18
200
16
100p
17
15
1k
7.5k
200
1k
Pins 15 and 16 connect a
capacitor which determines the
cut-off frequency for DC
feedback block.
Pins 17 and 18 are input pins
for limiting amplifier block. Input
the signal with AC coupled.
18
D
–0.9V
to
–1.3V
–1.7V
19
VEE1
–3.3V
/–5V
Negative power supply for analog
block.
20
VCC2
0V
Positive power supply for digital block.
21
N.C.
22
UP
23
DN
VEE1
No connected.
VCC2
986
140.9
140.9
Connects a resistor for alarm
level setting.
Default voltage can be generated
without an external resistor by
shorting the VEEI pin to VEE.
22
100
23
100
SW
VCS
24
VEEI
SW
–3.3V
/–5V
VEE2
24
25
VEE2
Generates the default voltage
between UP and DOWN.
The voltage (8.0mV for input
conversion) can be generated
between UP and DOWN (Pins
22 and 23) as alarm setting level
by connecting this pin to VEE.
Negative power supply for digital
block.
–3.3V
/–5V
–4–
CXB1577Q
Pin
No.
Symbol
Typical pin
voltage
DC
Equivalent circuit
Description
AC
26
VCC2
80
10p
26
CAP2
–1.8V
200
5µA
VEE2
27
VCC2
80
10p
27
CAP3
–1.8V
Connects a peak hold circuit
capacitor for alarm block.
470pF should be connected
to Vcc each.
CAP2 pin connects a peak
hold capacitor for alarm
level setting block.
CAP3 pin connects a peak
hold capacitor for limiting
amplifier signal.
200
5µA
VEE2
VCC3
6k
0V
28
VC3
Switches 3.3V/5V. Short this pin
to Vcc for 3.3V between Vcc and
VEE. Leave this pin open for 5V
between Vcc and VEE.
28
/–1.7V
2k
(Open)
VEE3
29
VEE4
30
N.C.
31
VCC4
Negative power supply for TTL
output buffer.
–3.3V
/–5V
No connected.
Positive power supply for TTL
output buffer.
0V
VCC3
6k
0V
32
VC1
–1.7V
Switches 3.3V/5V. Short this pin
to Vcc for 3.3V between Vcc and
VEE. Leave this pin open for 5V
between Vcc and VEE.
32
2k
(Open)
VEE3
–5–
CXB1577Q
Pin
No.
Symbol
Typical pin
voltage
DC
Equivalent circuit
Description
AC
VCC4
33
SD-TTL
VEE
or
VEE +
3V
Alarm signal TTL level output.
33
40k
VEE4
VCC4
34
SDB-TTL
VEE
or
VEE +
3V
Alarm signal TTL level output.
34
40k
VEE4
35
SD-ECL
–0.9V
or
–1.7V
VCC3
35
36
36
SDB-ECL
–0.9V
or
–1.7V
VEE3
–6–
Alarm signal ECL level output.
Terminate this pin in 510Ω to VEE
at VEE = 5V; in 270Ω to VEE at VEE
= 3.3V.
CXB1577Q
Pin
No.
Symbol
Typical pin
voltage
DC
37
Equivalent circuit
AC
–0.9V
or
–1.7V
Q
Description
VCC3
37
Data signal output. Terminates
this pin in 50Ω to VTT =
Vcc–2V.
38
38
–0.9V
or
–1.7V
QB
39
VCC3
40
N.C.
VEE3
Positive power supply for ECL
output buffer.
0V
No connected.
–7–
CXB1577Q
Electrical Characteristics
DC Characteristics
VCC = GND, VEE = –5V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = open,
or VCC = GND, VEE = –3.3V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = GND
Item
Symbol
Supply current
IEE
Q/QB High output voltage
VOH
Q/QB Low output voltage
VOL
SD-ECL/SDB-ECL High output voltage VOH-E
SD-ECL/SDB-ECL Low output voltage VOL-E
Conditions
Min.
Typ.
Max.
Unit
–74
–51
–34
mA
50Ω to VTT
Ta = 0 to +85°C
–1100
–860
–1860
–1620
When Vcc – VEE = 5.0V,
510Ω to VEE;
when Vcc – VEE = 3.3V,
270Ω to VEE
Ta = 0 to +85°C
–1100
–860
–1890
–1650
IOH = –0.4mA,
SD-TTL/SDB-TTL High output voltage 1 VOH-T1 VCC – VEE = 3.3V,
Ta = 0 to +85°C
VEE + 2.2
IOH = –0.4mA,
SD-TTL/SDB-TTL High output voltage 2 VOH-T2 VCC – VEE = 5V,
Ta = 0 to +85°C
VEE + 2.4
V
SD-TTL/SDB-TTL Low output voltage
VOL-T
IOL = 2mA
Ta = 0 to +85°C
SW High input voltage
VIHSW
at SW pin Open: High VCC – 0.5
SW Low input voltage
VILSW
SW High input current
IIHSW
SW Low input current
IILSW
ODIS High input voltage
VIHOD
ODIS Low input voltage
VILOD
ODIS High input current
IIHOD
ODIS Low input current
IILOD
–400
D/DB input resistance
Rin
765
VEE + 0.5
VCC
VEE
VEE + 0.5
10
–100
at ODIS pin Open: High VEE + 2.0
VCC + 0.5
VEE
VEE + 0.8
20
–8–
mV
1020
1275
µA
V
µA
Ω
CXB1577Q
AC Characteristics
VCC = GND, VEE = –5V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = open,
or VCC = GND, VEE = –3.3V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = GND
Item
Maximum input voltage amplitude
Symbol
Vmax
Conditions
single-ended input
Amplifier gain (excluding the output buffer) GL
Identification maximum voltage
amplitude of alarm level
VmaxA1
SW pad: Low,
single-ended input
Min.
Typ.
Max.
1600
mVp-p
52
dB
20
mVp-p
SW pad: Open High,
VmaxA2
single-ended input
40
∆P1
SW pin: Low,
at default alarm level
3
∆P2
SW pin: Open High,
at default alarm level
3
6
7
Alarm setting level for default
Vdef
UP/DOWN pin: open,
VEEI = VEE,
Differential voltage input
7.0
8.4
9.7
Q/QB rise time
TrQ
230
350
Q/QB fall time
TfQ
230
350
SD-TTL/SDB-TTL rise time
TrSDT
SD-TTL/SDB-TTL fall time
TfSDT
SD-ECL/SDB-ECL rise time
TrSDE
SD-ECL/SDB-ECL fall time
TfSDE
Propagation delay time
TPD
SD response assert time
Tas
SD response deassert time
SD/SDB hysteresis width
Unit
6
7
dB
20% to 80%
50Ω to VTT
mV
ps
10
VEE + 0.8V to VEE + 2.0V
CL = 10pF
10
20% to 80%
When Vcc – VEE = 5.0V,
510Ω to VEE,
when Vcc – VEE = 3.3V,
270Ω to VEE
1.6
ns
1.6
0.4
1.9
∗1
0
100
Tdas
∗2
2.3
100
SD response assert time for alarm
level default
Tasd
∗3
0
100
SD response deassert time for alarm
level default
Tdasd
∗4
2.3
100
µs
∗1 VUP – VDOWN = 100mV, Vin = 100mVp-p (single ended), SW pin: High, peak hold capacitance (CAP2,
CAP3 pins) of 470pF, connect VEEI to VEE.
∗2 VUP – VDOWN = 100mV, Vin = 1Vp-p (single ended), SW pin: High, peak hold capacitance (CAP2, CAP3
pins) of 470pF, connect VEEI to VEE.
∗3 Vin = 50mVp-p (single ended), SW pin: Low, peak hold capacitance of 470pF, connect VEEI to VEE.
∗4 Vin = 1Vp-p (single ended), SW pin: Low, peak hold capacitance of 470pF, connect VEEI to VEE.
–9–
CXB1577Q
DC Electrical Characteristics Measurement Circuit
30
28
29
26
25
24
UP
DN
VEEI
VEE2
CAP2
27
N.C.
C3
CAP3
VC3
VEE4
N.C.
C3
23
22
21
VCC2
VCC4
31
20
VEE1
VC1
32
19
∆V
C1 VD
D
SD-TTL
18
33
peak hold
SDB-TTL
C1
DB
peak hold
34
17
SD-ECL
CAP1
35
16
36
15
37
14
38
13
39
12
N.C. 40
11
510
CAP1B
SDB-ECL
270
510
C2
Q
270
N.C.
51
VC0
QB
51
VCC3
VCC1
9
10
VEE1
8
VEE2
7
N.C.
SW
VSW
6
N.C.
ODIS
VODIS
5
4
3
VC2
2
VCC2
1
N.C.
TM
VEE3
VTT
–2V
VEE
–5.0V/–3.3V
∗ When VEE = –5.0V: VC0 to VC3 = open
When VEE = –3.3V: VC0 to VC3 = Vcc
– 10 –
CXB1577Q
AC Electrical Characteristics Measurement Circuit
30
29
470p
28
27
25
24
UP
DN
VEEI
VEE2
26
N.C.
REX1
CAP2
CAP3
VC3
VEE4
N.C.
470p
23
22
21
VCC4
VCC2
31
20
VEE1
VC1
32
19
∆V
SD-TTL
D
0.047µF
DB
0.047µF
18
33
peak hold
Oscilloscope
Hi-Z input
SDB-TTL
peak hold
34
17
SD-ECL
CAP1
35
16
36
15
37
14 N.C.
38
13
39
12
N.C. 40
11
Z0 = 50
SDB-ECL
Z0 = 50
Oscilloscope
50Ω input
CAP1B
Q
Z0 = 50
VC0
QB
Z0 = 50
VCC3
VCC1
VCC
+2V
VEE
–3V/ –1.3V
∗ When VEE = –3.0V: VC0 to VC3 = open
When VEE = –1.3V: VC0 to VC3 = Vcc
– 11 –
8
N.C.
9
10
VEE1
7
VEE2
6
N.C.
VCC2
SW
5
4
3
VC2
2
ODIS
VEE3
1
N.C.
TM
1µF
CXB1577Q
Application Circuit
VEE
30
29
27
28
26
25
UP
DN
24
N.C.
REX1
VEEI
VEE2
470p
CAP2
CAP3
VC3
VEE4
N.C.
470p
23
22
21
VCC4 31
20 VCC2
VC1 32
19
∆V
SD-TTL
DB
0.047µF
Signal Generator
51Ω
VIN
peak hold
SDB-TTL
peak hold
34
17
SD-ECL
ECL Output
0.047µF
51Ω
18
33
TTL Output
VEE1
VTT
D
51Ω
35
16
36
15
37
14
N.C.
38
13
VC0
VCC3 39
12
VCC1
SDB-ECL
51Ω
VTT
CAP1
51Ω
VTT
CAP1B
1µF
Q
ECL Output
51Ω
VTT
–2.0V
QB
N.C. 40
TTL
Input
6
7
8
9
10
N.C.
VEE2
VEE1
5
N.C.
4
N.C.
SW
3
VC2
2
ODIS
VEE3
1
VCC2
11 TM
VEE
∗ When VEE = –3.3V: VC0 to VC3 = Vcc
When VEE = –5.0V: VC0 to VC3 = open
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 12 –
CXB1577Q
Notes on Operation
1. Limiting amplifier block
The limiting amplifier block is equipped with the auto-offset canceler circuit. When external capacitors C1 and
C2 are connected as shown in Fig. 1, the DC bias is set automatically in this block. External capacitor C1 and
IC internal resistor R1 determine the low input cut-off frequency f2 as shown in Fig. 2. Similarly, external
capacitor C2 and IC internal resistor R2 determine the high cut-off frequency f1 for DC bias feedback. Since
peaking characteristics may occur in the low frequency area of the amplifier gain characteristics depending on
the f1/f2 combination, set the C1 and C2 values so as to avoid the occurrence of peaking characteristics. The
target values of R1 and R2 and the typical values of C1 and C2 are as indicated below. When a single-ended
input is used, provide AC grounding by connecting Pin 17 to a capacitor which has the same capacitance as
capacitor C1.
R1 (internal): 1kΩ
R2 (internal): 7.5kΩ
f2: 3.4kHz
f1: 21Hz
C1 (external): 0.047µF
C2 (external): 1µF
18
D
C1
To IC interior
17
C1
R1
R1
R2
16
C2
R2
15
Fig. 1
Gain
Feedback frequency
response
f1
f2
Frequency
Fig. 2
– 13 –
Amplifier frequency
response
CXB1577Q
2. Alarm block
In order to operate the alarm block, give the voltage difference between Pins 22 and 23 to set an alarm level
and connect the peak hold capacitor C3 shown in Fig. 3.
This IC has two setting methods of alarm level; one is to connect Pin 24 to VEE and leave Pins 22 and 23 open
to set an alarm level default value (8mV for input conversion). The other is to connect Pin 24 to VEE and set a
desired alarm level using the external resistors REX1, REX2 and REX3 shown in Fig. 3. Connect REX1 between
Pins 22 and 23 or connect REX3 between Pin 23 and Vcc when less alarm level is desired to be set than its
default value; connect REX2 between Pin 22 and Vcc when more alarm level is desired to be set than its default
value. However, the Pin 22 voltage must be higher than that of Pin 23.
This IC also features two-level setting of identification maximum voltage amplitude. The amplitude is set to
40mVp-p when Pin 3 is left open (High level) and it is set to 20mVp-p when Pin 3 is Low level. Therefore, the
noise margin can be increased by setting Pin 3 to Low level when the small signal is input. The relation of input
voltage and peak hold output voltage is shown in Fig. 5.
In the relation between the alarm setting level and hysteresis width, the hysteresis width is designed to
maintain a constant gain (design target value: 6dB) as shown in Fig. 4.
This IC is designed to externally have the capacitor C3, and the C3 value should be set so as to obtain desired
assert time and deassert time settings for the alarm signal.
The electrical characteristics for the SD response assert and deassert times are guaranteed only when
the waveforms are input as shown in the timing chart of Fig. 6.
REX1: 100Ω (when the alarm level is set to 4mV for input conversion.)
REX2: 8kΩ (when the alarm level is set to 10mV for input conversion.)
REX3: 4kΩ (when the alarm level is set to 4mV for input conversion.)
C3: 470pF
The table below shows the alarm logic.
The table below shows the output disable function logic.
SD
SD
Optical signal input
state
Q
Q
Signal input
High level
Low level
ODIS: Open High
Fixed Low
Fixed High
Signal interruption
Low level
High level
ODIS: Low
Data
Data
Optical signal input
state
Ra1, Ra2A and Ra2B values are
typical values.
From limiting amplifier
Peak Hold
SD-TTL
SDB-TTL
VCCA
Ra1
986
Ra2A
141
SD-ECL
SDB-ECL
Peak Hold
Ra2B
141
VCCA
VCS
VCCA
10p
10p
∆V
3
23
22
24
26
27
IC interior
24
REX2
VEEI
23
DN
UP
22
IC exterior
VEE
Fig. 3
– 14 –
REX1
VCC
C3
C3
REX3
VCC
VCC
VCC
CXB1577Q
VDAS → Deassert level
VAS → Assert level
Peak hold output voltage
SD output
High
level
Low
level
VDAS
VAS
Small
Large
3dB
3dB
Alarm setting
input level
Hysteresis
SW → Low
SW → Open High
0
Input electrical
signal amplitude
Fig. 4
20
40
Input voltage [mVp-p]
Fig. 5
Data input
(D)
Hysteresis width
Alarm setting level
Data output
(Q)
Alarm output
(SD)
Assert time
Deassert time
Fig. 6
– 15 –
CXB1577Q
Example of Representative Characteristics
1. Q/QB output waveform
VCC = GND
VEE = –3.3V
VTT = –2V
Ta = 27°C
D = 622Mbps
Vin = 5mVp-p
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
Fig. 7
VCC = GND
VEE = –3.3V
VTT = –2V
Ta = 27°C
D = 622Mbps
Vin = 10mVp-p
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
Fig. 8
VCC = GND
VEE = –3.3V
VTT = –2V
Ta = 27°C
D = 1.25Gbps
Vin = 5mVp-p
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
Fig. 9
– 16 –
CXB1577Q
VCC = GND
VEE = –3.3V
VTT = –2V
Ta = 27°C
D = 1.25Gbps
Vin = 10mVp-p
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
Fig. 10
2. Bit error rate
Bit error rate vs. Data input level
10 –3
10
622Mbps
1.0Gbps
1.25Gbps
–4
Bit error rate
10 –5
VCC = GND
VEE = –3.3V
VTT = –2V
Ta = 27°C
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
10 –6
10 –7
10 –8
10 –9
10 –10
1.5
2
2.5
3
3.5
Data input level [mVp-p]
Alarm level vs. REX1
Alarm level temperature
6.0
9
SW = H
SW = L
5.0
Alarm level [mV]
Alarm level [mV]
SW = H
SW = L
5.5
7
6
5
4
4.5
4.0
3.5
3.0
fin = 100Mbps
VCC – VEE = 3.3V
Ta = 27°C
Differential input
3
2
102
4.5
Fig. 11
3. Alarm level
8
4
fin = 100Mbps
VCC – VEE = 3.3V
Up-Down = 200Ω (REX1)
2.5
2.0
103
UP-DOWN (REX1) [Ω]
104
Fig. 12
–40
–20
0
40
20
Ta [°C]
Fig. 13
– 17 –
60
80
CXB1577Q
Alarm level supply voltage
Alarm level vs. REX2
6.0
16
SW = H
SW = L
5.5
14
Alarm level [mV]
5.0
Alarm level [mV]
fin = 100Mbps
VCC – VEE = 3.3V
Ta = 27°C
Differential input
15
4.5
4.0
3.5
13
12
11
10
3.0
fin = 100Mbps
Ta = 27°C
Up-Down = 200Ω (REX1)
2.5
2.0
3.0
3.1
3.2
3.4
3.3
VCC – VEE [V]
3.5
SW = H
SW = L
9
8
103
3.6
104
VCC-UP (REX2) [Ω]
Fig. 14
Fig. 15
Alarm level temperature
Alarm level supply voltage
15.0
15.0
SW = H
SW = L
14.5
SW = H
SW = L
14.5
14.0
Alarm level [mV]
14.0
Alarm level [mV]
105
13.5
13.0
12.5
12.0
13.5
12.0
12.5
12.0
fin = 100Mbps
VCC – VEE = 3.3V
VCC-UP = 5kΩ (REX2)
11.5
11.0
–40
–20
0
40
20
Ta [°C]
60
fin = 100Mbps
Ta = 27°C
VCC-UP = 5kΩ (REX2)
11.5
11.0
3.0
80
3.1
3.2
3.4
3.3
VCC – VEE [V]
Fig. 16
3.5
3.6
Fig. 17
Alarm level vs. REX3
Alarm level temperature
6.0
9
SW = H
SW = L
8
fin = 100Mbps
VCC – VEE = 3.3V
VCC-Down = 3kΩ (REX3)
SW = H
SW = L
5.5
Alarm level [mV]
Alarm level [mV]
5.0
7
6
5
3
103
4.0
3.5
fin = 100Mbps
VCC – VEE = 3.3V
Ta = 27°C
Differential input
4
4.5
3.0
2.5
104
VCC-DOWN (REX3) [Ω]
–40
105
Fig. 18
–20
0
20
Ta [°C]
Fig. 19
– 18 –
40
60
80
CXB1577Q
Alarm level supply voltage
Hysteresis width vs. Alarm level
6.0
8.0
5.0
6.0
4.5
5.0
4.0
4.0
3.5
3.0
3.0
2.0
2.5
1.0
2.0
3.0
3.3
3.2
3.4
VCC – VEE [V]
3.1
3.5
SW = H
SW = L
7.0
HYS [dB]
Alarm level [mV]
fin = 100Mbps
Ta = 27°C
VCC-Down = 3kΩ (REX3)
SW = H
SW = L
5.5
fin = 100Mbps
VCC – VEE = 3.3V
Ta = 27°C
0.0
2.0
3.6
4.0
6.0
10.0
8.0
Alarm level [mV]
Fig. 20
14.0
Fig. 21
Hysteresis width temperature
Hyteresis width supply voltage
8.0
8.0
SW = H
SW = L
7.0
SW = H
SW = L
7.0
6.0
6.0
5.0
5.0
HYS [dB]
HYS [dB]
12.0
4.0
4.0
3.0
3.0
2.0
2.0
fin = 100Mbps
VCC – VEE = 3.3V
Up, Down = Open
VEEI = VEE
1.0
1.0
0.0
–40
–20
0
20
40
Ta [°C]
60
fin = 100Mbps
Ta = 27°C
Up, Down = Open
VEEI = VEE
0.0
3.0
80
3.1
3.3
3.2
3.4
VCC – VEE [V]
Fig. 22
3.5
3.6
Fig. 23
Alarm level vs. Data rate
Hysteresis width vs. Data rate
16
12
SW = H
SW = L
14
SW = H
SW = L
10
8
HYS [dB]
Alarm level [mV]
12
10
8
6
4
6
VCC – VEE = 3.3V
Ta = 27°C
Up, Down = Open
VEEI = VEE
4
VCC – VEE = 3.3V
Ta = 27°C
Up, Down = Open
VEEI = VEE
2
2
0
0
200
400
600 800
fin [Mbps]
1000 1200 1400
0
Fig. 24
200
400
600 800
fin [Mbps]
Fig. 25
– 19 –
1000 1200 1400
CXB1577Q
4. DC voltage
SD-ECL "H" level supply voltage
SD-ECL "H" level temperature
–860
–860
Ta = 27°C
SD-ECL
SDB-ECL
–900
–900
–940
–940
"H" level [mV]
"H" level [mV]
SD-ECL
SDB-ECL
–980
–1020
–1060
–1060
3.0
3.1
3.3
3.2
3.4
VCC – VEE [V]
3.5
–1100
–50
3.6
0
50
Fig. 27
SD-ECL "L" level supply voltage
SD-ECL "L" level temperature
Ta = 27°C
–1680
SD-ECL
SDB-ECL
VCC – VEE = 3.3V
–1720
"L" level [mV]
–1720
–1760
–1800
–1840
–1760
–1800
–1840
–1880
–50
–1880
3.0
3.1
3.3
3.2
3.4
VCC – VEE [V]
3.5
3.6
0
50
Fig. 29
SD-TTL "H" level supply voltage
SD-TTL "H" level temperature
3.4
3.4
Ta = 27°C
VCC – VEE = 3.3V
3.2
3.0
3.0
"H" level [V]
3.2
2.8
2.8
2.6
2.6
2.4
2.4
2.2
3.0
100
Ta [°C]
Fig. 28
"H" level [V]
100
Ta [°C]
Fig. 26
SD-ECL
SDB-ECL
–1680
"L" level [mV]
–980
–1020
–1100
VCC – VEE = 3.3V
3.1
3.2
3.4
3.3
VCC – VEE [V]
3.5
2.2
–50
3.6
0
50
Ta [°C]
Fig. 30
Fig. 31
– 20 –
100
CXB1577Q
SD-TTL "L" level supply voltage
SD-TTL "L" level temperature
400
400
Ta = 27°C
VCC – VEE = 3.3V
350
"L" level [mV]
"L" level [mV]
350
300
250
300
250
200
3.0
3.1
3.3
3.2
3.4
VCC – VEE [V]
3.5
200
–50
3.6
0
Fig. 32
Q "H" level supply voltage
Q "H" level temperature
–860
Ta = 27°C
Q-H
QB-H
Q-H
QB-H
–900
–900
–940
–940
"H" level [mV]
"H" level [mV]
100
Fig. 33
–860
–980
–1020
–1060
–1060
3.0
3.1
3.3
3.2
3.4
VCC – VEE [V]
3.5
–1100
–50
3.6
VCC – VEE = 3.3V
–980
–1020
–1100
0
50
100
Ta [°C]
Fig. 34
Fig. 35
Q "L" level supply voltage
Q "L" level temperature
–1620
–1620
Ta = 27°C
Q-L
QB-L
Q-L
QB-L
–1660
–1660
–1700
–1700
"L" level [mV]
"L" level [mV]
50
Ta [°C]
–1740
–1740
–1780
–1780
–1820
–1820
–1860
3.0
3.1
3.3
3.2
3.4
VCC – VEE [V]
3.5
–1860
–50
3.6
VCC – VEE = 3.3V
0
50
Ta [°C]
Fig. 36
Fig. 37
– 21 –
100
CXB1577Q
Package Outline
Unit: mm
40PIN QFP (PLASTIC)
+ 0.35
1.5 – 0.15
+ 0.1
0.127 – 0.05
9.0 ± 0.4
+ 0.4
7.0 – 0.1
0.1
21
30
20
31
A
11
40
1
+ 0.15
0.3 – 0.1
0.65
10
± 0.12 M
0.5 ± 0.2
(8.0)
+ 0.15
0.1 – 0.1
DETAIL A
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
QFP-40P-L01
LEAD TREATMENT
SOLDER / PALLADIUM
PLATING
EIAJ CODE
QFP040-P-0707
LEAD MATERIAL
42/COPPER ALLOY
PACKAGE MASS
0.2g
JEDEC CODE
NOTE : PALLADIUM PLATING
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
– 22 –