IRF IRFH4253DPBF

IRFH4253DPbF
HEXFET® Power MOSFET
Q1
Q2
VDSS
25
25
V
RDS(on) max
(@VGS = 4.5V)
4.60
1.45
m
Qg (typical)
10
31
nC
ID
(@TC = 25°C)
45
45
A
Applications

Control and Synchronous MOSFETs for synchronous buck
converters
DUAL PQFN 5X6 mm
Features
Control and synchronous MOSFETs in one package
Low charge control MOSFET (10nC typical)
Low RDSON synchronous MOSFET (<1.45m)
Intrinsic Schottky Diode with Low Forward Voltage on Q2
RoHS Compliant, Halogen-Free
MSL2, Industrial Qualification
Base part number
Package Type
IRFH4253DPbF
Dual PQFN 5mm x 6mm
Benefits
Increased power density
Lower switching losses
results in Lower conduction losses
Lower Switching Losses

Environmentally friendlier
Increased reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
Orderable Part Number
IRFH4253DTRPbF
Absolute Maximum Ratings
VGS
ID @ TC = 25°C
ID @ TC = 70°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
PD @TC = 70°C
TJ
TSTG
Parameter
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 4.5V
Continuous Drain Current, VGS @ 4.5V
Continuous Drain Current, VGS @ 4.5V
(Source Bonding Technology Limited)
Pulsed Drain Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Parameter
RJC (Bottom)
RJC (Top)
RJA
RJA (<10s)
Q1 Max.
Q2 Max.
± 20 64
145
51
116
Junction-to-Case 
Junction-to-Case 
Junction-to-Ambient 
Junction-to-Ambient 
45
45
120
31
20
0.25
580
50
32
0.40
Units
V
A
W
W/°C
°C
-55 to + 150
Thermal Resistance
Q1 Max.
4.0
20
34
24
Q2 Max.
2.5
13
38
24
Units
°C/W
Notes  through  are on page 12
1
www.irf.com
© 2013 International Rectifier
June 10, 2013
IRFH4253DPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
Drain-to-Source Breakdown Voltage
BVDSS/TJ
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
VGS(th)/TJ
Gate Threshold Voltage Coefficient
IDSS
Drain-to-Source Leakage Current
IGSS
gfs
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Qg
Total Gate Charge
Qgs1
Pre-Vth Gate-to-Source Charge
Qgs2
Post-Vth Gate-to-Source Charge
Qgd
Gate-to-Drain Charge
Qgodr
Gate Charge Overdrive
Qsw
Switch Charge (Qgs2 + Qgd)
Qoss
Output Charge
RG
Gate Resistance
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
tf
Fall Time
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
2
www.irf.com
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1/Q2
Q1/Q2
Q1/Q2
Q1/Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
© 2013 International Rectifier
Min. Typ.
25
–––
25
–––
–––
22
–––
22
––– 2.50
––– 0.90
––– 3.70
––– 1.15
1.1
1.6
1.1
1.6
––– -5.7
––– -8.9
––– –––
––– –––
––– –––
––– –––
131 –––
164 –––
–––
10
–––
31
–––
2.5
–––
4.9
–––
1.6
–––
5.4
–––
3.8
–––
12
–––
2.1
–––
8.7
–––
5.4
––– 17.4
–––
10
–––
31
–––
2.4
–––
1.1
–––
10
–––
16
–––
61
–––
98
–––
13
–––
26
–––
15
–––
65
––– 1314
––– 3756
––– 365
––– 1205
–––
92
––– 286
Max. Units
Conditions
–––
V VGS = 0V, ID = 250µA
–––
VGS = 0V, ID = 1.0mA
––– mV/°C Reference to 25°C, ID = 1.0mA
–––
Reference to 25°C, ID = 10mA
3.20
VGS = 10V, ID = 30A 
1.10 m VGS = 10V, ID = 30A 
4.60
VGS = 4.5V, ID = 30A 
1.45
VGS = 4.5V, ID = 30A 
2.1
V Q1: VDS = VGS, ID = 35µA
2.1
Q2: VDS = VGS, ID = 100µA
––– mV/°C Q1: VDS = VGS, ID = 35µA
–––
Q2: VDS = VGS, ID = 100µA
1.0
µA VDS = 20V, VGS = 0V
250
VDS = 20V, VGS = 0V
100
nA VGS = 20V
-100
VGS = -20V
–––
S VDS = 10V, ID = 30A
–––
VDS = 10V, ID = 30A
15
47
Q1
–––
VDS = 13V
–––
V
–––
GS = 4.5V, ID = 30A
nC
–––
Q2
–––
VDS = 13V
–––
V
–––
GS = 4.5V, ID = 30A
–––
–––
–––
–––
nC VDS = 16V, VGS = 0V
–––
–––

–––
–––
Q1
VDS = 13V VGS = 4.5V
–––
–––
ID = 30A, Rg = 1.8
ns
–––
Q2
–––
VDS = 13V VGS = 4.5V
–––
–––
ID = 30A, Rg = 1.8
–––
–––
VGS = 0V
–––
pF VDS = 13V
–––
ƒ = 1.0MHz
–––
–––
–––
June 10, 2013
IRFH4253DPbF
Avalanche Characteristics
EAS
IAR
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
(Body Diode)
VSD
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
3
Typ.
–––
–––
Parameter
Single Pulse Avalanche Energy 
Avalanche Current 
www.irf.com
© 2013 International Rectifier
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Q1 Max.
61
30
Typ.
–––
–––
–––
–––
–––
–––
16
29
13
41
Q2 Max.
568
60
Units
mJ
A
Max. Units
Conditions
45
A MOSFET symbol
45
showing the
120
A integral reverse
p-n junction diode.
580
1.0
V TJ = 25°C, IS = 30A, VGS = 0V
0.75
TJ = 25°C, IS = 30A, VGS = 0V
–––
ns Q1 TJ = 25°C, IF = 30A
–––
VDD = 13V, di/dt = 235A/µs 
––– nC Q2 TJ = 25°C, IF = 30A
VDD = 13V, di/dt = 250A/µs 
–––
June 10, 2013
IRFH4253DPbF
Q2 - Synchronous FET
Q1 - Control FET
1000
1000
100
BOTTOM
VGS
10V
5.0V
4.5V
3.5V
3.1V
2.9V
2.7V
2.5V
10
1
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
BOTTOM
10
1
2.3V
60µs PULSE WIDTH
60µs PULSE WIDTH
2.5V
Tj = 25°C
Tj = 25°C
0.1
0.1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
100
1000
100
BOTTOM
VGS
10V
5.0V
4.5V
3.5V
3.1V
2.9V
2.7V
2.5V
10
2.5V
TOP
ID, Drain-to-Source Current (A)
TOP
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
1000
BOTTOM
1
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
2.3V
10
60µs PULSE WIDTH
Tj = 150°C
1
1
0.1
100
60µs PULSE WIDTH
Tj = 150°C
10
0.1
100
1
10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
Fig 4. Typical Output Characteristics
1000
ID, Drain-to-Source Current (A)
1000
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
T J = 150°C
10
T J = 25°C
1
VDS = 15V
60µs PULSE WIDTH
1.5
2.0
2.5
3.0
3.5
4.0
VGS, Gate-to-Source Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
100
T J = 150°C
10
T J = 25°C
1
VDS = 15V
60µs PULSE WIDTH
0.1
0.1
4
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
© 2013 International Rectifier
1.0
2.0
3.0
4.0
5.0
VGS, Gate-to-Source Voltage (V)
Fig 6. Typical Transfer Characteristics
June 10, 2013
IRFH4253DPbF
Q2 - Synchronous FET
Q1 - Control FET
100000
100000
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
Crss = C gd
Coss = Cds + Cgd
C oss = C ds + C gd
C, Capacitance (pF)
C, Capacitance (pF)
10000
Ciss
Coss
1000
Crss
100
10000
Ciss
Coss
1000
Crss
10
100
1
10
100
1
10
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs. Drain-to-Source Voltage
14.0
14.0
ID= 30A
12.0
VDS= 20V
VDS= 13V
10.0
12.0
VGS, Gate-to-Source Voltage (V)
VGS, Gate-to-Source Voltage (V)
ID= 30A
8.0
6.0
4.0
2.0
VDS= 20V
VDS= 13V
10.0
8.0
6.0
4.0
2.0
0.0
0.0
0
5
10
15
20
25
0
30
10
Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage
100
100µsec
Limited by package
1msec
10msec
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
DC
50
60
70
80
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100µsec
100
10
Limited by package
1msec
1
10msec
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
DC
0.01
0.01
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 11. Maximum Safe Operating Area
5
40
10000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1
30
Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
1000
20
QG, Total Gate Charge (nC)
QG, Total Gate Charge (nC)
10
100
www.irf.com
© 2013 International Rectifier
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
June 10, 2013
IRFH4253DPbF
Q2 - Synchronous FET
Q1 - Control FET
1.8
ID = 30A
VGS = 4.5V
1.4
RDS(on) , Drain-to-Source On Resistance
(Normalized)
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1.6
1.2
1.0
0.8
ID = 30A
VGS = 4.5V
1.6
1.4
1.2
1.0
0.8
0.6
0.6
-60 -40 -20 0
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
T J , Junction Temperature (°C)
Fig 13. Normalized On-Resistance vs. Temperature
Fig 14. Normalized On-Resistance vs. Temperature
1000
ISD, Reverse Drain Current (A)
1000
ISD, Reverse Drain Current (A)
20 40 60 80 100 120 140 160
100
T J = 150°C
10
T J = 25°C
100
T J = 150°C
T J = 25°C
10
VGS = 0V
VGS = 0V
1.0
1.0
0.4
0.5
0.6
0.7
0.8
0.9
0.2
1.0
0.4
10
ID = 30A
8
6
T J = 125°C
2
T J = 25°C
0
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 17. Typical On-Resistance vs. Gate Voltage
6
www.irf.com
1.0
Fig 16. Typical Source-Drain Diode Forward Voltage
RDS(on), Drain-to -Source On Resistance (m )
RDS(on), Drain-to -Source On Resistance (m )
Fig 15. Typical Source-Drain Diode Forward Voltage
2
0.8
VSD, Source-to-Drain Voltage (V)
VSD, Source-to-Drain Voltage (V)
4
0.6
© 2013 International Rectifier
5.0
ID = 30A
4.0
3.0
2.0
T J = 125°C
1.0
T J = 25°C
0.0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 18. Typical On-Resistance vs. Gate Voltage
June 10, 2013
IRFH4253DPbF
Q2 - Synchronous FET
Q1 - Control FET
160
70
Limited By Package
120
50
ID, Drain Current (A)
ID, Drain Current (A)
140
Limited By Package
60
40
30
20
100
80
60
40
10
20
0
0
25
50
75
100
125
25
150
Fig 19. Maximum Drain Current vs. Case Temperature
125
150
2.0
VGS(th) , Gate threshold Voltage (V)
2.0
1.8
ID = 35µA
1.6
1.4
1.2
1.6
1.2
ID = 100µA
0.8
0.4
0.0
1.0
-75 -50 -25
0
25
50
-75 -50 -25
75 100 125 150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T J , Temperature ( °C )
Fig 21. Threshold Voltage vs. Temperature
Fig 22. Threshold Voltage vs. Temperature
2500
250
ID
TOP
7.7A
12A
BOTTOM 30A
200
EAS , Single Pulse Avalanche Energy (mJ)
EAS , Single Pulse Avalanche Energy (mJ)
100
Fig 20. Maximum Drain Current vs. Case Temperature
2.2
150
100
50
ID
7.6A
17A
BOTTOM 60A
TOP
2000
1500
1000
500
0
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 23. Maximum Avalanche Energy vs. Drain Current
7
75
T C , Case Temperature (°C)
T C , Case Temperature (°C)
VGS(th) , Gate threshold Voltage (V)
50
www.irf.com
© 2013 International Rectifier
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 24. Maximum Avalanche Energy vs. Drain Current
June 10, 2013
IRFH4253DPbF
100
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 125°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 25. Typical Avalanche Current vs. Pulse Width (Q1)
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 125°C.
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
tav (sec)
Fig 26. Typical Avalanche Current vs. Pulse Width (Q2)
Thermal Response ( Z thJC ) °C/W
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 27. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Q1)
8
www.irf.com
© 2013 International Rectifier
June 10, 2013
IRFH4253DPbF
Thermal Response ( Z thJC ) °C/W
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
0.0001
1E-006
1E-005
0.0001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 28. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Q2)
9
www.irf.com
© 2013 International Rectifier
June 10, 2013
IRFH4253DPbF
Fig 29. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
IAS
20V
tp
+
V
- DD
A
I AS
0.01
Fig 30a. Unclamped Inductive Test Circuit
Fig 30b. Unclamped Inductive Waveforms
Fig 31a. Switching Time Test Circuit
Fig 31b. Switching Time Waveforms
Id
Vds
Vgs
VDD Vgs(th)
Qgs1 Qgs2
Fig 32a. Gate Charge Test Circuit
10
www.irf.com
© 2013 International Rectifier
Qgd
Qgodr
Fig 32b. Gate Charge Waveform
June 10, 2013
IRFH4253DPbF
Dual PQFN 5x6 Outline “H” Package Details
C
SEATING
PLANE
D
4
A
INDEX AREA
(D/2xE/2)
B
D2
PIN#1 ID
L1
A1
R0.30
E1
E2
e
E
7x L2
8x b
8x K
D1
1.15
0.48
1.21
TOP VIEW
SIDE VIEW
1.08
0.94
BOTTOM VIEW
D im e n s io n T a b le
Th
Sy
ic k
mb
ol
A
A1
b
D
E
e
D1
E1
D2
E2
K
L1
L2
ne
V : V e r y T h in
ss
M IN IM U M
0 .8 0
0 .0 0
0 .3 0
2 .4 2
4 .4 1
0 .7 8
4 .0 1
0 .2 0
1 .6 7
0 .4 0
NOTE
N O M IN A L M A X IM U M
1 .0 0
0 .9 0
0 .0 5
0 .0 2
0 .4 0
0 .5 0
6 .0 0 B S C
5 .0 0 B S C
1 .2 7 B S C
2 .5 7
2 .6 7
4 .5 6
4 .6 6
0 .9 3
1 .0 3
4 .1 6
4 .2 6
----1 .7 7
0 .5 0
6
1 .8 7
0 .6 0
For more information on board mounting, including footprint and stencil recommendation, please refer to
application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:
http://www.irf.com/technical-info/appnotes/an-1154.pdf
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
11
www.irf.com
© 2013 International Rectifier
June 10, 2013
IRFH4253DPbF
Dual PQFN 5x6 Outline Tape and Reel
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Qualification Information† Industrial
(per JEDEC JESD47F †† guidelines )
Qualification level
Moisture Sensitivity Level
DUAL PQFN 5mm x 6mm
Yes
RoHS Compliant
†
††
MSL2
(per JEDEC J-STD-020D††)
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
 Starting TJ = 25°C,
Q1: L = 0.14mH, RG = 50, IAS = 30A;
Q2: L = 0.32mH, RG = 50, IAS = 60A.
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
 R is measured at TJ approximately 90°C.
 When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details:
http://www.irf.com/technical-info/appnotes/an-994.pdf
 Calculated continuous current based on maximum allowable junction temperature.
 Current is limited to Q1 = 45A & Q2 = 45A by source bonding technology.
 Pulsed drain current is limited by source bonding technology.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
12
www.irf.com
© 2013 International Rectifier
June 10, 2013