PD - 94383C IRGB15B60KD IRGS15B60KD IRGSL15B60KD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. VCES = 600V IC = 15A, TC=100°C G tsc > 10µs, TJ=150°C E n-channel Benefits VCE(on) typ. = 1.8V • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB IRGB15B60KD Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. D2Pak IRGS15B60KD TO-262 IRGSL15B60KD Max. Units 600 31 15 62 62 31 15 64 ± 20 208 83 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state) Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– ––– 0.50 ––– ––– 1.44 0.6 2.1 ––– 62 40 ––– Units °C/W g 1 6/24/02 IRG/B/S/SL15B60KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.05 ––– 2.10 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 10.6 Zero Gate Voltage Collector Current ––– 5.0 ––– 500 Diode Forward Voltage Drop ––– 1.20 ––– 1.20 Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 IC = 15A, VGE = 15V 2.50 V IC = 15A, VGE = 15V TJ = 125°C 2.60 IC = 15A, VGE = 15V TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 20A, PW=80µs 150 µA VGE = 0V, VCE = 600V 1000 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 15A 1.45 V IC = 15A TJ = 150°C ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 9, 10,11 9, 10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operting Area SCSOA Short Circuit Safe Operting Area Erec trr Irr Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Ref.Fig. Max. Units Conditions 84 IC = 15A 10 nC VCC = 400V CT1 39 VGE = 15V CT4 330 µJ IC = 15A, VCC = 400V 455 VGE = 15V,RG = 22Ω, L = 200µH 785 Ls = 150nH TJ = 25°C 44 IC = 15A, VCC = 400V 22 VGE = 15V, RG = 22Ω, L = 200µH CT4 200 ns Ls = 150nH, T J = 25°C 26 CT4 470 IC = 15A, VCC = 400V 13,15 600 µJ VGE = 15V,RG = 22Ω, L = 200µH WF1WF2 1070 Ls = 150nH TJ = 150°C 14, 16 44 IC = 15A, VCC = 400V CT4 25 VGE = 15V, RG = 22Ω, L = 200µH 226 ns Ls = 150nH, T J = 150°C WF1 36 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 62A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 22Ω CT2 CT3 µs TJ = 150°C, Vp =600V,RG = 22Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 540 720 µJ TJ = 150°C 20,21 ––– 92 111 ns VCC = 400V, IF = 15A, L = 200µH CT4,WF3 ––– 29 33 A VGE = 15V,RG = 22Ω, Ls = 150nH Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 56 7.0 26 220 340 560 34 16 184 20 355 490 835 34 18 203 28 850 75 35 Note to are on page 15 2 www.irf.com IRG/B/S/SL15B60KD 35 240 30 200 25 160 Ptot (W) IC (A) 20 15 80 10 8 120 40 5 0 0 0 20 40 60 80 100 120 140 160 0 T C (°C) 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 µs 10 IC A) IC (A) 10 100 µs 1 1 1ms DC 0.1 0 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRG/B/S/SL15B60KD 100 100 90 VGE VGE VGE VGE VGE 80 70 90 VGE VGE VGE VGE VGE 80 70 ICE (A) ICE (A) 60 = 18V = 15V = 12V = 10V = 8.0V 50 40 60 50 40 30 30 20 20 10 10 0 = 18V = 15V = 12V = 10V = 8.0V 0 0 1 2 3 4 5 6 0 1 2 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 300µs 4 5 6 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 300µs 60 100 90 VGE VGE VGE VGE VGE 80 70 60 -40°C 25°C 150°C = 18V 50 = 15V = 12V = 10V = 8.0V 40 IF (A) ICE (A) 3 VCE (V) 50 30 40 20 30 20 10 10 0 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 300µs 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 5.0A 10 ICE = 15A 8 ICE = 30A VCE (V) VCE (V) IRG/B/S/SL15B60KD 12 ICE = 5.0A 10 ICE = 15A 8 ICE = 30A 6 6 4 4 2 2 0 0 4 6 8 10 12 14 16 18 20 4 6 8 VGE (V) 10 12 14 16 18 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 160 18 140 16 T J = 25°C T J = 150°C 120 12 10 ICE = 5.0A ICE = 15A 8 ICE = 30A 100 ICE (A) VCE (V) 14 80 60 6 40 T J = 150°C 4 20 2 T J = 25°C 0 0 4 6 8 10 12 14 16 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C www.irf.com 18 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRG/B/S/SL15B60KD 1800 1000 1600 Swiching Time (ns) 1400 Energy (µJ) 1200 EOFF 1000 EON 800 600 tdOFF 100 tdON 400 tF 200 tR 0 0 10 20 30 40 10 50 0 10 20 IC (A) 30 40 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 22Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 22Ω; VGE= 15V 1000 900 tdOFF 800 Swiching Time (ns) EOFF 700 EON 600 Energy (µJ) 50 500 400 300 100 tdON tR tF 200 100 10 0 0 50 100 R G (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 15A; VGE= 15V 6 150 0 50 100 150 R G (Ω) Fig. 16- Typ. Switching Time vs. RG TJ = 150°C; L=200µH; VCE= 600V ICE= 15A; VGE= 15V www.irf.com IRG/B/S/SL15B60KD 35 40 RG = 10 Ω 35 30 30 RG = 22 Ω 25 IRR (A) IRR (A) 25 RG = 47 Ω 20 RG = 68 Ω 20 15 15 RG = 100 Ω 10 10 5 5 0 0 10 20 30 40 50 0 20 40 60 IF (A) 100 120 RG (Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 15A 3000 35 30 2500 25 47Ω 68 Ω 20 15 22Ω 10Ω 40A 30A 100 Ω 2000 Q RR (µC) IRR (A) 80 15A 1500 10A 1000 10 500 5 0 0 0 500 1000 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 15A; TJ = 150°C www.irf.com 1500 0 500 1000 1500 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C 7 IRG/B/S/SL15B60KD 1000 10Ω 900 800 22 Ω Energy (µJ) 700 600 47 Ω 500 100 Ω 400 300 200 100 0 0 10 20 30 40 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 16 10000 14 300V Cies 1000 400V 10 VGE (V) Capacitance (pF) 12 8 6 100 Coes 4 Cres 2 0 10 0 0 20 40 60 80 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 20 40 60 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 15A; L = 600µH www.irf.com IRG/B/S/SL15B60KD Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 τJ 0.05 0.01 0.02 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ τ3 0.201 Ci= τi/Ri Ci i/Ri 0.01 Ri (°C/W) τi (sec) 0.231 0.000157 0.175 0.000849 0.011943 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 τJ 0.01 0.02 R1 R1 τJ τ1 R2 R2 τC τ1 τ2 τ2 τ Ri (°C/W) τi (sec) 1.164 0.000939 0.9645 0.035846 Ci= τi/Ri Ci i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRG/B/S/SL15B60KD L L VCC DUT 80 V + - 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRG/B/S/SL15B60KD 600 30 500 50 400 40 tF 500 25 400 20 300 30 15 5 % IC E 200 10 5% V CE 200 20 tes t current 100 100 5 0 0 5% V C E 0 0 Eon Los s -1 0 0 -100 -0.2 -5 0 .0 0.5 10 10% tes t current tR E o ff L o s s -0 .5 ICE (A) 300 V CE (V) 90% tes t current ICE (A) V CE (V) 9 0 % IC E 1.0 1 .5 -10 -0.1 0.0 0.1 t (µS ) t (µ S ) WF.1- Typ. Turn-off Loss @ TJ = 150°C using CT.4 100 WF.2- Typ. Turn-on Loss @ TJ = 150°C using Fig. CT.4 20 500 10 400 0 300 250 QRR 0 V CE 200 Pe a k IR R -1 0 IC E 200 100 50 -3 0 0 -2 0 100 -4 0 0 -3 0 0 -4 0 -1 0 0 -5 0 0 -0 . 0 6 0 .0 4 0 .1 4 t (µ S ) WF.3- Typ. Reverse Recovery @ TJ = 150°C using CT.4 www.irf.com 150 ICE (A) -2 0 0 VCE (V) VCE (V) 10 % Pe a k IR R ICE (A) tR R -1 0 0 0 -5 0 -1 0 0 10 20 30 t (µ S ) WF.4- Typ. Short Circuit @ TJ = 150°C using CT.3 11 IRG/B/S/SL15B60KD TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 LEAD ASSIGNMENTS 15.24 (.600) 14.84 (.584) IGBTs, CoPACK HEXFET 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1- GATE 1- GATE 2- COLLECTOR 2- DRAIN1 - GATE 3- EMITTER 2 - DRAIN 3- SOURCE 4- COLLECTOR 4- DRAIN3 - SOURCE 3 4 - DRAIN 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE AS S EMBLY LINE "C" INTERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE 12 PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com IRG/B/S/SL15B60KD D2Pak Package Outline D2Pak Part Marking Information THIS IS AN IRF530S WITH LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS SEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE www.irf.com PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L 13 IRG/B/S/SL15B60KD TO-262 Package Outline IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE 14 PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com IRG/B/S/SL15B60KD D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: This is only applied to TO-220AB package This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Energy losses include "tail" and diode reverse recovery. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 6/02 www.irf.com 15 This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.