IRF IRGSL15B60KD

PD - 94383C
IRGB15B60KD
IRGS15B60KD
IRGSL15B60KD
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
VCES = 600V
IC = 15A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
Benefits
VCE(on) typ. = 1.8V
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
IRGB15B60KD
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 25°C
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
D2Pak
IRGS15B60KD
TO-262
IRGSL15B60KD
Max.
Units
600
31
15
62
62
31
15
64
± 20
208
83
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount 
Junction-to-Ambient (PCB Mount, steady state)‚
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
–––
0.50
–––
–––
1.44
0.6
2.1
–––
62
40
–––
Units
°C/W
g
1
6/24/02
IRG/B/S/SL15B60KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage 600 –––
Temperature Coeff. of Breakdown Voltage ––– 0.3
Collector-to-Emitter Saturation Voltage
1.5 1.80
––– 2.05
––– 2.10
Gate Threshold Voltage
3.5 4.5
Temperature Coeff. of Threshold Voltage ––– -10
Forward Transconductance
––– 10.6
Zero Gate Voltage Collector Current
––– 5.0
––– 500
Diode Forward Voltage Drop
––– 1.20
––– 1.20
Gate-to-Emitter Leakage Current
––– –––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 500µA
––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C)
2.20
IC = 15A, VGE = 15V
2.50
V
IC = 15A, VGE = 15V
TJ = 125°C
2.60
IC = 15A, VGE = 15V
TJ = 150°C
5.5
V
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C)
–––
S
VCE = 50V, IC = 20A, PW=80µs
150
µA
VGE = 0V, VCE = 600V
1000
VGE = 0V, VCE = 600V, TJ = 150°C
1.45
IC = 15A
1.45
V
IC = 15A
TJ = 150°C
±100 nA
VGE = ±20V
Ref.Fig.
5, 6,7
9, 10,11
9, 10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
RBSOA
Reverse Bias Safe Operting Area
SCSOA
Short Circuit Safe Operting Area
Erec
trr
Irr
Reverse Recovery energy of the diode
Diode Reverse Recovery time
Diode Peak Reverse Recovery Current
Ref.Fig.
Max. Units
Conditions
84
IC = 15A
10
nC
VCC = 400V
CT1
39
VGE = 15V
CT4
330
µJ
IC = 15A, VCC = 400V
455
VGE = 15V,RG = 22Ω, L = 200µH
785
Ls = 150nH
TJ = 25°C ƒ
44
IC = 15A, VCC = 400V
22
VGE = 15V, RG = 22Ω, L = 200µH
CT4
200
ns
Ls = 150nH, T J = 25°C
26
CT4
470
IC = 15A, VCC = 400V
13,15
600
µJ
VGE = 15V,RG = 22Ω, L = 200µH
WF1WF2
1070
Ls = 150nH
TJ = 150°C ƒ
14, 16
44
IC = 15A, VCC = 400V
CT4
25
VGE = 15V, RG = 22Ω, L = 200µH
226
ns
Ls = 150nH, T J = 150°C
WF1
36
WF2
–––
VGE = 0V
–––
pF
VCC = 30V
–––
f = 1.0MHz
4
TJ = 150°C, IC = 62A, Vp =600V
FULL SQUARE
VCC = 500V, VGE = +15V to 0V,RG = 22Ω CT2
CT3
µs
TJ = 150°C, Vp =600V,RG = 22Ω
10 ––– –––
WF4
VCC = 360V, VGE = +15V to 0V
17,18,19
––– 540 720
µJ
TJ = 150°C
20,21
––– 92 111
ns
VCC = 400V, IF = 15A, L = 200µH
CT4,WF3
––– 29
33
A
VGE = 15V,RG = 22Ω, Ls = 150nH
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
56
7.0
26
220
340
560
34
16
184
20
355
490
835
34
18
203
28
850
75
35
Note  to ƒ are on page 15
2
www.irf.com
IRG/B/S/SL15B60KD
35
240
30
200
25
160
Ptot (W)
IC (A)
20
15
80
10
8
120
40
5
0
0
0
20
40
60
80
100 120 140 160
0
T C (°C)
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10 µs
10
IC A)
IC (A)
10
100 µs
1
1
1ms
DC
0.1
0
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRG/B/S/SL15B60KD
100
100
90
VGE
VGE
VGE
VGE
VGE
80
70
90
VGE
VGE
VGE
VGE
VGE
80
70
ICE (A)
ICE (A)
60
= 18V
= 15V
= 12V
= 10V
= 8.0V
50
40
60
50
40
30
30
20
20
10
10
0
= 18V
= 15V
= 12V
= 10V
= 8.0V
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 300µs
4
5
6
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 300µs
60
100
90
VGE
VGE
VGE
VGE
VGE
80
70
60
-40°C
25°C
150°C
= 18V
50
= 15V
= 12V
= 10V
= 8.0V
40
IF (A)
ICE (A)
3
VCE (V)
50
30
40
20
30
20
10
10
0
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 300µs
4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
ICE = 5.0A
10
ICE = 15A
8
ICE = 30A
VCE (V)
VCE (V)
IRG/B/S/SL15B60KD
12
ICE = 5.0A
10
ICE = 15A
8
ICE = 30A
6
6
4
4
2
2
0
0
4
6
8
10
12
14
16
18
20
4
6
8
VGE (V)
10
12
14
16
18
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
160
18
140
16
T J = 25°C
T J = 150°C
120
12
10
ICE = 5.0A
ICE = 15A
8
ICE = 30A
100
ICE (A)
VCE (V)
14
80
60
6
40
T J = 150°C
4
20
2
T J = 25°C
0
0
4
6
8
10
12
14
16
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
18
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRG/B/S/SL15B60KD
1800
1000
1600
Swiching Time (ns)
1400
Energy (µJ)
1200
EOFF
1000
EON
800
600
tdOFF
100
tdON
400
tF
200
tR
0
0
10
20
30
40
10
50
0
10
20
IC (A)
30
40
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 22Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 22Ω; VGE= 15V
1000
900
tdOFF
800
Swiching Time (ns)
EOFF
700
EON
600
Energy (µJ)
50
500
400
300
100
tdON
tR
tF
200
100
10
0
0
50
100
R G (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=200µH; VCE= 400V
ICE= 15A; VGE= 15V
6
150
0
50
100
150
R G (Ω)
Fig. 16- Typ. Switching Time vs. RG
TJ = 150°C; L=200µH; VCE= 600V
ICE= 15A; VGE= 15V
www.irf.com
IRG/B/S/SL15B60KD
35
40
RG = 10 Ω
35
30
30
RG = 22 Ω
25
IRR (A)
IRR (A)
25
RG = 47 Ω
20
RG = 68 Ω
20
15
15
RG = 100 Ω
10
10
5
5
0
0
10
20
30
40
50
0
20
40
60
IF (A)
100
120
RG (Ω)
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 15A
3000
35
30
2500
25
47Ω
68 Ω
20
15
22Ω
10Ω
40A
30A
100 Ω
2000
Q RR (µC)
IRR (A)
80
15A
1500
10A
1000
10
500
5
0
0
0
500
1000
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 15A; TJ = 150°C
www.irf.com
1500
0
500
1000
1500
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRG/B/S/SL15B60KD
1000
10Ω
900
800
22 Ω
Energy (µJ)
700
600
47 Ω
500
100 Ω
400
300
200
100
0
0
10
20
30
40
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
16
10000
14
300V
Cies
1000
400V
10
VGE (V)
Capacitance (pF)
12
8
6
100
Coes
4
Cres
2
0
10
0
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
20
40
60
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 15A; L = 600µH
www.irf.com
IRG/B/S/SL15B60KD
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.1
0.10
τJ
0.05
0.01
0.02
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
τ3
0.201
Ci= τi/Ri
Ci i/Ri
0.01
Ri (°C/W) τi (sec)
0.231
0.000157
0.175
0.000849
0.011943
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
τJ
0.01
0.02
R1
R1
τJ
τ1
R2
R2
τC
τ1
τ2
τ2
τ
Ri (°C/W) τi (sec)
1.164
0.000939
0.9645
0.035846
Ci= τi/Ri
Ci i/Ri
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRG/B/S/SL15B60KD
L
L
VCC
DUT
80 V
+
-
0
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRG/B/S/SL15B60KD
600
30
500
50
400
40
tF
500
25
400
20
300
30
15
5 % IC E
200
10
5% V CE
200
20
tes t current
100
100
5
0
0
5% V C E
0
0
Eon Los s
-1 0 0
-100
-0.2
-5
0 .0
0.5
10
10% tes t current
tR
E o ff L o s s
-0 .5
ICE (A)
300
V CE (V)
90% tes t current
ICE (A)
V CE (V)
9 0 % IC E
1.0
1 .5
-10
-0.1
0.0
0.1
t (µS )
t (µ S )
WF.1- Typ. Turn-off Loss
@ TJ = 150°C using CT.4
100
WF.2- Typ. Turn-on Loss
@ TJ = 150°C using Fig. CT.4
20
500
10
400
0
300
250
QRR
0
V CE
200
Pe a k
IR R
-1 0
IC E
200
100
50
-3 0 0
-2 0
100
-4 0 0
-3 0
0
-4 0
-1 0 0
-5 0 0
-0 . 0 6
0 .0 4
0 .1 4
t (µ S )
WF.3- Typ. Reverse Recovery
@ TJ = 150°C using CT.4
www.irf.com
150
ICE (A)
-2 0 0
VCE (V)
VCE (V)
10 %
Pe a k
IR R
ICE (A)
tR R
-1 0 0
0
-5 0
-1 0
0
10
20
30
t (µ S )
WF.4- Typ. Short Circuit
@ TJ = 150°C using CT.3
11
IRG/B/S/SL15B60KD
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
LEAD ASSIGNMENTS
15.24 (.600)
14.84 (.584)
IGBTs, CoPACK
HEXFET
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
1- GATE
1- GATE
2- COLLECTOR
2- DRAIN1 - GATE
3- EMITTER
2 - DRAIN
3- SOURCE
4- COLLECTOR
4- DRAIN3 - SOURCE
3
4 - DRAIN
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
ASS EMBLED ON WW 19, 1997
IN THE AS S EMBLY LINE "C"
INTERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
12
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
www.irf.com
IRG/B/S/SL15B60KD
D2Pak Package Outline
D2Pak Part Marking Information
THIS IS AN IRF530S WITH
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN T HE AS SEMBLY LINE "L"
INTERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
www.irf.com
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
13
IRG/B/S/SL15B60KD
TO-262 Package Outline
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
4- COLLECTOR
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
ASS EMBLED ON WW 19, 1997
IN THE ASS EMBLY LINE "C"
INT ERNATIONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
14
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
www.irf.com
IRG/B/S/SL15B60KD
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 This is only applied to TO-220AB package
‚ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
ƒ Energy losses include "tail" and diode reverse recovery.
TO-220 package is not recommended for Surface Mount Application
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 6/02
www.irf.com
15
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.