Data Sheet No. PD60262 IRS2181/IRS21814(S)PbF HIGH AND LOW SIDE DRIVER Features • • • • • • • • • • • Floating channel designed for bootstrap operation Fully operational to +600 V Tolerant to negative transient voltage, dV/dt immune Gate drive supply range from 10 V to 20 V Undervoltage lockout for both channels 3.3 V and 5 V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5 V offset Lower di/dt gate driver for better noise immunity Output source/sink current capability 1.4 A/1.8 A RoHS compliant Packages 8-Lead PDIP IRS2181 14-Lead PDIP IRS21814 8-Lead SOIC IRS2181S 14-Lead SOIC IRS21814S Description Feature Comparison CrossThe IRS2181/IRS21814 are high ton/toff Deadtime Input conduction Ground Pins Part voltage, high speed power MOSFET (ns) (ns) logic prevention logic and IGBT drivers with independent 2181 COM HIN/LIN no none 180/220 high-side and low-side referenced 21814 VSS/COM output channels. Proprietary HVIC 2183 Internal 400 COM HIN/LIN yes 180/220 21834 Program 400-5000 VSS/COM and latch immune CMOS technolo2184 Internal 400 COM IN/SD yes 680/270 gies enable ruggedized monolithic 21844 Program 400-5000 VSS/COM construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V. Typical Connection up to 600 V V CC VCC VB HIN HIN HO LIN LIN VS COM LO TO LOAD up to 600 V IRS2181 IRS21814 HO (Refer to Lead Assignments for correct pin configuration). These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com VCC VCC VB HIN HIN VS LIN LIN VSS VSS TO LOAD COM LO 1 IRS2181/IRS21814(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. VB High-side floating absolute voltage VS High-side floating supply offset voltage VB - 20 VHO High-side floating output voltage VS - 0.3 VCC Low-side and logic fixed supply voltage -0.3 VLO Low-side output voltage -0.3 VCC + 0.3 VIN Logic input voltage (HIN & LIN) VSS - 0.3 VCC + 0.3 VSS Logic ground (IRS21814 only) VCC - 20 VCC + 0.3 — 50 dVS/dt PD RthJA -0.3 Max. Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient 620 Units (Note 1) VB + 0.3 VB + 0.3 20 (Note 1) (8-lead PDIP) — 1.0 (8-lead SOIC) — 0.625 (14-lead PDIP) — 1.6 (14-lead SOIC) — 1.0 (8-lead PDIP) — 125 (8-lead SOIC) — 200 (14-lead PDIP) — 75 (14-lead SOIC) — 120 TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply. Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential. Symbol Min. Max. VB High-side floating supply absolute voltage Definition VS + 10 VS + 20 VS High-side floating supply offset voltage Note 2 600 VHO High-side floating output voltage VS VB VCC Low-side and logic fixed supply voltage 10 20 VLO Low-side output voltage 0 VCC VIN Logic input voltage (HIN & LIN) VSS VCC VSS TA Logic ground (IRS21814 only) -5 5 Ambient temperature -40 125 Units V °C Note 2: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). www.irf.com 2 IRS2181/IRS21814(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 180 270 VS = 0 V toff Turn-off propagation delay — 220 330 VS = 0 V or 600 V MT Delay matching, HS & LS turn-on/off — 0 35 tr Turn-on rise time — 40 60 tf Turn-off fall time — 20 35 ns VS = 0 V Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads HIN and LIN. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage 2.5 — — VIL Logic “0” input voltage — — 0.8 VOH High level output voltage, VBIAS - VO — — 1.4 IO = 0 A VOL Low level output voltage, VO — — 0.2 IO = 20 mA VB = VS = 600 V VCC = 10 V to 20 V V ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current 20 60 150 IQCC Quiescent VCC supply current 50 120 240 IIN+ Logic “1” input bias current — 25 60 VIN = 5 V IIN- Logic “0” input bias current — — 5.0 VIN = 0 V 8.0 8.9 9.8 7.4 8.2 9.0 Hysteresis 0.3 0.7 — Output high short circuit pulsed current 1.4 1.9 — VCCUV+ VCC and VBS supply undervoltage positive going VBSUV+ threshold VCCUV- VCC and VBS supply undervoltage negative going VBSUV- threshold VCCUVH VBSUVH IO+ µA V A IO- www.irf.com Output low short circuit pulsed current VIN = 0 V or 5 V 1.8 2.3 — VO = 0 V, PW ≤ 10 µs VO = 15 V, PW ≤ 10 µs 3 IRS2181/IRS21814(S)PbF Functional Block Diagrams VB 2181 UV DETECT HO R VSS/COM LEVEL SHIFT HIN HV LEVEL SHIFTER Q R PULSE FILTER S VS PULSE GENERATOR VCC UV DETECT VSS/COM LEVEL SHIFT LIN LO DELAY COM VB 21814 UV DETECT HO R HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER R PULSE FILTER Q S VS PULSE GENERATOR VCC UV DETECT LIN VSS/COM LEVEL SHIFT LO DELAY COM VSS www.irf.com 4 IRS2181/IRS21814(S)PbF Lead Definitions Symbol Description HIN Logic input for high-side gate driver output (HO), in phase (IRS2181/IRS21814) LIN Logic input for low-side gate driver output (LO), in phase (IRS2181/IRS21814) VSS Logic ground (IRS21814 only) VB High-side floating supply HO High-side gate drive output VS High-side floating supply return VCC Low-side and logic fixed supply LO Low-side gate drive output COM Low-side return Lead Assignments HIN VB 2 LIN HO 7 3 COM VS 6 4 LO VCC 5 1 HIN VB 8 2 LIN HO 7 3 COM VS 6 4 LO VCC 5 1 8-Lead PDIP 8-Lead SOIC IRS2181PbF IRS2181SPbF 14 1 HIN 2 LIN VB 13 3 VSS HO 12 VS 11 4 10 6 LO 9 7 VCC 8 IRS21814PbF HIN 2 LIN VB 13 VSS HO 12 VS 11 4 COM 14 1 3 5 14-Lead PDIP www.irf.com 8 5 COM 10 6 LO 9 7 VCC 8 14-Lead SOIC IRS21814SPbF 5 IRS2181/IRS21814(S)PbF 9] 9] && ^] Figure 1. Input/Output Timing Diagram (] & ^] (] Figure 2. Switching Time Waveform Definitions 9] 9] (] ^] Figure 3. Delay Matching Waveform Definitions www.irf.com 6 500 500 400 300 M ax. 200 Typ. 100 0 -50 -25 0 25 50 75 100 125 Turn-On Propagation Delay (ns) Turn-On Propagation Delay (ns) IRS2181/IRS21814(S)PbF 400 M ax. 300 Typ. 200 100 0 10 12 Temperature ( oC) 400 Typ. 100 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 5A. Turn-Off Propagation Delay vs. Temperature www.irf.com Turn-Off Propagation Delay (ns) Turn-Off Propagation Delay (ns) 500 200 18 20 Figure 4B. Turn-On Propagation Delay vs. Supply Voltage 600 M ax. 16 Supply Voltage (V) Figure 4A. Turn-On Propagation Delay vs. Tem perature 300 14 600 500 400 M ax. 300 Typ. 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage 7 120 120 100 100 Turn-On Rise Time (ns) Turn-On Rise Time (ns) IRS2181/IRS21814(S)PbF 80 60 40 Max Typ. 20 Max. 80 60 Typ. 40 20 0 -50 -25 0 25 50 75 100 0 125 10 12 Temperature ( oC) Figure 6A. Turn-On Rise Tim e vs. Tem perature 16 18 20 Figure 6B. Turn-On Rise Tim e vs. Supply Voltage 80 Turn-Off Fall Time (ns) 80 Turn-Off Fall Time (ns) 14 Supply Voltage (V) 60 40 Max. Typ 20 0 -50 -25 0 25 50 75 100 125 60 Max. 40 Typ. 20 0 10 Temperature ( oC) Figure 7A. Turn-Off Fall Tim e vs. Tem perature 12 14 16 18 20 Supply Voltage (V) Figure 7B. Turn-Off Fall Tim e vs. Supply Voltage www.irf.com PDF created with pdfFactory trial version www.pdffactory.com 8 6 6 5 5 Input Voltage (V) Input Voltage (V) IRS2181/IRS21814(S)PbF 4 3 2 Min. 1 4 3 Min. 2 1 0 -50 0 -25 0 25 50 75 100 125 10 12 (o Temperature C) 18 20 Figure 8B. Logic "1" Input oltage vs. Supply Voltage 6 6 5 5 Logic "0" Input Voltage (V) Logic "0" Input Voltage (V) 16 V BAIS Supply Voltage (V) Figure 8A. Logic "1" Input Voltage vs. Tem perature 4 3 2 M ax. 1 0 -50 14 4 3 2 M ax. 1 0 -25 0 25 50 75 100 Temperature (oC) Figure 9A. Logic "0" Input Voltage vs. Temperature www.irf.com 125 10 12 14 16 18 20 Supply Voltage (V) Figure 9B. Logic "0" Input Voltage vs. Supply Voltage 9 High Level Output Voltage (V) High Level Output Voltage (V) IRS2181/IRS21814(S)PbF 5.0 4.0 3.0 2.0 Max. 1.0 0.0 -50 -25 0 25 50 75 100 5.0 4.0 3.0 2.0 M ax 1.0 0.0 10 125 12 18 20 Figure 10B. High Level Output Voltage vs. Su pply Voltage (Io = 0 mA) Figure 10A. High Level Output Voltage vs. Te mperature (Io = 0 mA) 0.5 Low Level Output (V) 0.5 Low Level Output (V) 16 V BAIS Supply Voltage (V) Temperature (oC) 0.4 0.3 0.2 14 Max. 0.1 0.4 0.3 0.2 Max. 0.1 0.0 0.0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 11A. Low Level Output vs. Tem perature www.irf.com 10 12 14 16 18 20 Supply Voltage (V) Figure 11B. Low Level Output vs. Supply Voltage 10 500 400 300 200 100 Max. 0 -50 -25 0 25 50 75 100 125 Offset Supply Leakage Current (µA) Offset Supply Leakage Current ( µA) IRS2181/IRS21814(S)PbF 500 400 300 200 100 Max. 0 100 200 Figure 12A. Offset Supply Leakage Current vs. Tem perature 400 500 600 Figure 12B. Offset Supply Leakage Current vs. V B Boost Voltage 250 V BS Supply Current (µA) 250 V BS Supply Current (µA) 300 V B Boost Voltage (V) Temperature ( oC) 200 Max. 150 100 Typ. 50 Mi n. 0 -50 -25 0 25 50 75 100 o Temperature ( C) Figure 13A. V BS Supply Current vs. Tem perature www.irf.com 125 200 150 Max. 100 Typ. 50 Mi n. 0 10 12 14 16 18 20 V BS Floating Supply Voltage (V) Figure 13B. V BS Supply Current vs. V BS Floating Supply Voltage 11 IRS2181/IRS21814(S)PbF 500 V CC Supply Current (µA) V CC Supply Current (µA) 500 400 300 Max. 200 Typ. 100 Mi n. 0 -50 -25 0 25 50 75 100 400 300 Max. 200 Typ. 100 Min. 0 125 10 12 Temperature ( oC) Logic "1" Input Bias Current (µA) Logic "1" Input Bias Current (µA) 100 80 60 Max. Typ. 20 -25 0 25 50 75 100 125 Temperature ( oC) Figure 15A. Logic "1" Input Bias Current vs. Tem perature www.irf.com 18 20 Figure 14B. V CC Supply Current vs. V CC Supply Voltage 120 0 -50 16 V CC Supply Voltage (V) Figure 14A. V CC Supply Current vs. V CC Temperature 40 14 120 100 80 60 Max. 40 Typ. 20 0 10 12 14 16 18 20 Supply Voltage (V) Figure 15B. Logic "1" Input Bias Current vs. Supply Voltage 12 IRS2181/IRS21814(S)PbF 5 Logic "0" Input Bias Current (µA) Lo gic "0" Input Bias Current (µA) 6 Max 4 3 2 1 0 -50 -25 0 25 50 75 100 6 5 Max 4 3 2 1 0 10 125 12 V CC and VB S UV T hres hold ( -) (V) V CC and VBS UV Threshold (+) (V) 12 11 Max. Typ. Min. 8 7 -25 0 25 50 75 100 125 o Temperature ( C) Figure 17. VCC and VBS Undervoltage Threshold (+) vs. Temperature www.irf.com 20 vs. Voltage vs. Temperature 6 -50 18 Figure 16B. Logic "0" Input Bias Current Figure 16A. Logic "0" Input Bias Current 9 16 Supply Voltage (V) Temperature (°C) 10 14 12 11 10 Max. 9 Typ. 8 Min. 7 6 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 18. VCC and VBS Undervoltage Threshold (-) vs. Temperature 13 IRS2181/IRS21814(S)PbF 5 Output Source Current (A) Output Source Current (A) 5 4 3 Typ. 2 1 M in. 0 -50 -25 0 25 50 75 100 125 Typ. 1 M in. 10 12 14 16 18 Supply Voltage (V) Figure 19A. Output Source Current vs. Temperature Figure 19B. Output Source Current vs. Supply Voltage 20 5 Output Sink Current (A) Output Sink Current (A) 2 Temperature (oC) 4.0 Typ. 2.0 M in. 1.0 -50 3 0 5.0 3.0 4 4 3 2 Typ. 1 M in. 0 -25 www.irf.com 0 25 50 75 100 125 10 12 14 16 18 Temperature (oC) Supply Voltage (V) Figure 20A. Output Sink Current vs. Temperature Figure 20B. Output Sink Current vs. Supply Voltage 20 14 140 140 120 120 100 80 140 V 70 V 0 V 60 Temprature (oC) Temprature (oC) IRS2181/IRS21814(S)PbF 100 140 V 80 70 V 0 V 60 40 40 20 1 10 100 20 1000 1 140 140 120 120 140 V 80 70 V 0 V 60 Temperature (oC) Temperature (oC) Figure 21. IRS2181 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 100 10 100 1000 Frequency (kHz) Figure 22. IRS2181 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V Frequency (kHz) 140 V 70 V 0 V 100 80 60 40 40 20 20 1 10 100 1000 Frequency (kHz) Figure 23. IRS2181 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 24. IRS2181 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V 15 140 140 120 120 100 80 60 140 V 70 V 0 V 40 Temperature (oC) Temperature (oC) IRS2181/IRS21814(S)PbF 100 80 140 V 70 V 0 V 60 40 20 20 1 10 100 1000 1 Frequency (kHz) 100 1000 Frequency (kHz) Figure 26. IRS21814 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V Figure 25. IRS21814 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 140 V 140 140 120 120 70 V 100 0 V 100 140 V 80 70 V 60 0 V Temperature (oC) Temperature (oC) 10 80 60 40 40 20 20 1 10 100 1000 Frequency (kHz) Figure 27. IRS21814 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 28. IRS21814 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V 16 140 140 120 120 100 80 140 V 60 70 V 0 V 40 Temperature (oC) Temperature (oC) IRS2181/IRS21814(S)PbF 140 V 100 70 V 0 V 80 60 40 20 1 10 100 20 1000 1 10 Frequency (kHz) Figure 30. IRS2181S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 140 V 70 V 140 V 70 V 0 V 140 0 V 100 80 60 Tempreture (oC) 120 120 Temperature (oC) 1000 Frequency (kHz) Figure 29. IRS2181S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 140 100 100 80 60 40 40 20 20 1 1 10 100 10 100 1000 1000 Frequency (kHz) Frequency (kHz) Figure 31. IRS2181S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V www.irf.com Figure 32. IRS2181S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V 17 140 140 120 120 100 80 60 140 V 70 V 0 V 40 Temperature (oC) Temperature (oC) IRS2181/IRS21814(S)PbF 100 80 140 V 60 70 V 0 V 40 20 1 10 100 20 1000 1 10 140 120 120 140 V 70 V 0 V 60 40 Temperature (oC) Temperature (oC) 140 80 1000 Figure 34. IRS21814S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V Figure 33. IRS21814S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 100 100 Frequency (kHz) Frequency (kHz) 140 V 70 V 0 V 100 80 60 40 20 20 1 10 100 1000 Frequency (kHz) Figure 35. IRS21814S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 36. IRS21814S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V 18 IRS2181/IRS21814(S)PbF Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 A e 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 2. CONTROLLING DIMENSION: MILLIMETER 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC www.irf.com MIN .0532 K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 19 IRS2181/IRS21814(S)PbF 14-Lead PDIP 14-Lead SOIC (narrow body) www.irf.com 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) 20 IRS2181/IRS21814(S)PbF Tape & Reel 8-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66 www.irf.com 21 IRS2181/IRS21814(S)PbF Tape & Reel 14-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 15 .7 0 1 6. 30 0. 61 8 0 .6 41 D 7 .4 0 7.6 0 0. 29 1 0 .2 99 E 6 .4 0 6.6 0 0. 25 2 0 .2 60 F 9 .4 0 9.6 0 0. 37 0 0 .3 78 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 1 4 SO IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 2 2. 40 n /a 0 .8 81 G 18 .5 0 2 1. 10 0. 72 8 0 .8 30 H 16 .4 0 1 8. 40 0. 64 5 0 .7 24 www.irf.com 22 IRS2181/IRS21814(S)PbF LEADFREE PART MARKING INFORMATION S IRxxxxxx Part number YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2181PbF 8-Lead SOIC IRS2181SPbF 8-Lead SOIC Tape & Reel IRS2181STRPbF 14-Lead PDIP IRS21814PbF 14-Lead SOIC IRS21814SPbF 14-Lead SOIC Tape & Reel IRS21814STRPbF The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com . IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 11/27/2006 www.irf.com 23