IRF IRS2184

Data Sheet No. PD60262
IRS2181/IRS21814(S)PbF
HIGH AND LOW SIDE DRIVER
Features
•
•
•
•
•
•
•
•
•
•
•
Floating channel designed for bootstrap operation
Fully operational to +600 V
Tolerant to negative transient voltage, dV/dt
immune
Gate drive supply range from 10 V to 20 V
Undervoltage lockout for both channels
3.3 V and 5 V input logic compatible
Matched propagation delay for both channels
Logic and power ground +/- 5 V offset
Lower di/dt gate driver for better noise immunity
Output source/sink current capability 1.4 A/1.8 A
RoHS compliant
Packages
8-Lead PDIP
IRS2181
14-Lead PDIP
IRS21814
8-Lead SOIC
IRS2181S
14-Lead SOIC
IRS21814S
Description
Feature Comparison
CrossThe IRS2181/IRS21814 are high
ton/toff
Deadtime
Input
conduction
Ground Pins
Part
voltage, high speed power MOSFET
(ns)
(ns)
logic
prevention
logic
and IGBT drivers with independent
2181
COM
HIN/LIN
no
none
180/220
high-side and low-side referenced
21814
VSS/COM
output channels. Proprietary HVIC
2183
Internal 400
COM
HIN/LIN
yes
180/220
21834
Program 400-5000
VSS/COM
and latch immune CMOS technolo2184
Internal 400
COM
IN/SD
yes
680/270
gies enable ruggedized monolithic
21844
Program 400-5000
VSS/COM
construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse
current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive
an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.
Typical Connection
up to 600 V
V CC
VCC
VB
HIN
HIN
HO
LIN
LIN
VS
COM
LO
TO
LOAD
up to 600 V
IRS2181
IRS21814
HO
(Refer to Lead Assignments for correct pin
configuration). These diagrams show
electrical connections only. Please refer to
our Application Notes and DesignTips for
proper circuit board layout.
www.irf.com
VCC
VCC
VB
HIN
HIN
VS
LIN
LIN
VSS
VSS
TO
LOAD
COM
LO
1
IRS2181/IRS21814(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
VB
High-side floating absolute voltage
VS
High-side floating supply offset voltage
VB - 20
VHO
High-side floating output voltage
VS - 0.3
VCC
Low-side and logic fixed supply voltage
-0.3
VLO
Low-side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage (HIN & LIN)
VSS - 0.3
VCC + 0.3
VSS
Logic ground (IRS21814 only)
VCC - 20
VCC + 0.3
—
50
dVS/dt
PD
RthJA
-0.3
Max.
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25 °C
Thermal resistance, junction to ambient
620
Units
(Note 1)
VB + 0.3
VB + 0.3
20
(Note 1)
(8-lead PDIP)
—
1.0
(8-lead SOIC)
—
0.625
(14-lead PDIP)
—
1.6
(14-lead SOIC)
—
1.0
(8-lead PDIP)
—
125
(8-lead SOIC)
—
200
(14-lead PDIP)
—
75
(14-lead SOIC)
—
120
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply.
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential.
Symbol
Min.
Max.
VB
High-side floating supply absolute voltage
Definition
VS + 10
VS + 20
VS
High-side floating supply offset voltage
Note 2
600
VHO
High-side floating output voltage
VS
VB
VCC
Low-side and logic fixed supply voltage
10
20
VLO
Low-side output voltage
0
VCC
VIN
Logic input voltage (HIN & LIN)
VSS
VCC
VSS
TA
Logic ground (IRS21814 only)
-5
5
Ambient temperature
-40
125
Units
V
°C
Note 2: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
www.irf.com
2
IRS2181/IRS21814(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C.
Symbol
Definition
Min.
Typ.
Max. Units Test Conditions
ton
Turn-on propagation delay
—
180
270
VS = 0 V
toff
Turn-off propagation delay
—
220
330
VS = 0 V or 600 V
MT
Delay matching, HS & LS turn-on/off
—
0
35
tr
Turn-on rise time
—
40
60
tf
Turn-off fall time
—
20
35
ns
VS = 0 V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are
referenced to VSS/COM and are applicable to the respective input leads HIN and LIN. The VO, IO, and Ron parameters
are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage
2.5
—
—
VIL
Logic “0” input voltage
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
—
1.4
IO = 0 A
VOL
Low level output voltage, VO
—
—
0.2
IO = 20 mA
VB = VS = 600 V
VCC = 10 V to 20 V
V
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
20
60
150
IQCC
Quiescent VCC supply current
50
120
240
IIN+
Logic “1” input bias current
—
25
60
VIN = 5 V
IIN-
Logic “0” input bias current
—
—
5.0
VIN = 0 V
8.0
8.9
9.8
7.4
8.2
9.0
Hysteresis
0.3
0.7
—
Output high short circuit pulsed current
1.4
1.9
—
VCCUV+
VCC and VBS supply undervoltage positive going
VBSUV+
threshold
VCCUV-
VCC and VBS supply undervoltage negative going
VBSUV-
threshold
VCCUVH
VBSUVH
IO+
µA
V
A
IO-
www.irf.com
Output low short circuit pulsed current
VIN = 0 V or 5 V
1.8
2.3
—
VO = 0 V,
PW ≤ 10 µs
VO = 15 V,
PW ≤ 10 µs
3
IRS2181/IRS21814(S)PbF
Functional Block Diagrams
VB
2181
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
HIN
HV
LEVEL
SHIFTER
Q
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
VSS/COM
LEVEL
SHIFT
LIN
LO
DELAY
COM
VB
21814
UV
DETECT
HO
R
HIN
VSS/COM
LEVEL
SHIFT
HV
LEVEL
SHIFTER
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
LIN
VSS/COM
LEVEL
SHIFT
LO
DELAY
COM
VSS
www.irf.com
4
IRS2181/IRS21814(S)PbF
Lead Definitions
Symbol Description
HIN
Logic input for high-side gate driver output (HO), in phase (IRS2181/IRS21814)
LIN
Logic input for low-side gate driver output (LO), in phase (IRS2181/IRS21814)
VSS
Logic ground (IRS21814 only)
VB
High-side floating supply
HO
High-side gate drive output
VS
High-side floating supply return
VCC
Low-side and logic fixed supply
LO
Low-side gate drive output
COM
Low-side return
Lead Assignments
HIN
VB
2
LIN
HO
7
3
COM
VS
6
4
LO
VCC
5
1
HIN
VB
8
2
LIN
HO
7
3
COM
VS
6
4
LO
VCC
5
1
8-Lead PDIP
8-Lead SOIC
IRS2181PbF
IRS2181SPbF
14
1
HIN
2
LIN
VB
13
3
VSS
HO
12
VS
11
4
10
6
LO
9
7
VCC
8
IRS21814PbF
HIN
2
LIN
VB
13
VSS
HO
12
VS
11
4
COM
14
1
3
5
14-Lead PDIP
www.irf.com
8
5
COM
10
6
LO
9
7
VCC
8
14-Lead SOIC
IRS21814SPbF
5
IRS2181/IRS21814(S)PbF
9]
9]
&&
^]
Figure 1. Input/Output Timing Diagram
(]
&
^]
(]
Figure 2. Switching Time Waveform Definitions
9]
9]
(]
^]
Figure 3. Delay Matching Waveform Definitions
www.irf.com
6
500
500
400
300
M ax.
200
Typ.
100
0
-50
-25
0
25
50
75
100
125
Turn-On Propagation Delay (ns)
Turn-On Propagation Delay (ns)
IRS2181/IRS21814(S)PbF
400
M ax.
300
Typ.
200
100
0
10
12
Temperature ( oC)
400
Typ.
100
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 5A. Turn-Off Propagation Delay
vs. Temperature
www.irf.com
Turn-Off Propagation Delay (ns)
Turn-Off Propagation Delay (ns)
500
200
18
20
Figure 4B. Turn-On Propagation Delay
vs. Supply Voltage
600
M ax.
16
Supply Voltage (V)
Figure 4A. Turn-On Propagation Delay
vs. Tem perature
300
14
600
500
400
M ax.
300
Typ.
200
100
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 5B. Turn-Off Propagation Delay
vs. Supply Voltage
7
120
120
100
100
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
IRS2181/IRS21814(S)PbF
80
60
40
Max
Typ.
20
Max.
80
60
Typ.
40
20
0
-50
-25
0
25
50
75
100
0
125
10
12
Temperature ( oC)
Figure 6A. Turn-On Rise Tim e vs.
Tem perature
16
18
20
Figure 6B. Turn-On Rise Tim e vs. Supply
Voltage
80
Turn-Off Fall Time (ns)
80
Turn-Off Fall Time (ns)
14
Supply Voltage (V)
60
40
Max.
Typ
20
0
-50
-25
0
25
50
75
100
125
60
Max.
40
Typ.
20
0
10
Temperature ( oC)
Figure 7A. Turn-Off Fall Tim e vs.
Tem perature
12
14
16
18
20
Supply Voltage (V)
Figure 7B. Turn-Off Fall Tim e vs. Supply
Voltage
www.irf.com
PDF created with pdfFactory trial version www.pdffactory.com
8
6
6
5
5
Input Voltage (V)
Input Voltage (V)
IRS2181/IRS21814(S)PbF
4
3
2
Min.
1
4
3
Min.
2
1
0
-50
0
-25
0
25
50
75
100
125
10
12
(o
Temperature C)
18
20
Figure 8B. Logic "1" Input oltage
vs. Supply Voltage
6
6
5
5
Logic "0" Input Voltage (V)
Logic "0" Input Voltage (V)
16
V BAIS Supply Voltage (V)
Figure 8A. Logic "1" Input Voltage
vs. Tem perature
4
3
2
M ax.
1
0
-50
14
4
3
2
M ax.
1
0
-25
0
25
50
75
100
Temperature (oC)
Figure 9A. Logic "0" Input Voltage
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 9B. Logic "0" Input Voltage
vs. Supply Voltage
9
High Level Output Voltage (V)
High Level Output Voltage (V)
IRS2181/IRS21814(S)PbF
5.0
4.0
3.0
2.0
Max.
1.0
0.0
-50
-25
0
25
50
75
100
5.0
4.0
3.0
2.0
M ax
1.0
0.0
10
125
12
18
20
Figure 10B. High Level Output Voltage
vs. Su pply Voltage (Io = 0 mA)
Figure 10A. High Level Output Voltage
vs. Te mperature (Io = 0 mA)
0.5
Low Level Output (V)
0.5
Low Level Output (V)
16
V BAIS Supply Voltage (V)
Temperature (oC)
0.4
0.3
0.2
14
Max.
0.1
0.4
0.3
0.2
Max.
0.1
0.0
0.0
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 11A. Low Level Output vs. Tem perature
www.irf.com
10
12
14
16
18
20
Supply Voltage (V)
Figure 11B. Low Level Output vs. Supply Voltage
10
500
400
300
200
100
Max.
0
-50
-25
0
25
50
75
100
125
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current ( µA)
IRS2181/IRS21814(S)PbF
500
400
300
200
100
Max.
0
100
200
Figure 12A. Offset Supply Leakage Current
vs. Tem perature
400
500
600
Figure 12B. Offset Supply Leakage
Current vs. V B Boost Voltage
250
V BS Supply Current (µA)
250
V BS Supply Current (µA)
300
V B Boost Voltage (V)
Temperature ( oC)
200
Max.
150
100
Typ.
50
Mi n.
0
-50
-25
0
25
50
75
100
o
Temperature ( C)
Figure 13A. V BS Supply Current
vs. Tem perature
www.irf.com
125
200
150
Max.
100
Typ.
50
Mi n.
0
10
12
14
16
18
20
V BS Floating Supply Voltage (V)
Figure 13B. V BS Supply Current
vs. V BS Floating Supply Voltage
11
IRS2181/IRS21814(S)PbF
500
V CC Supply Current (µA)
V CC Supply Current (µA)
500
400
300
Max.
200
Typ.
100
Mi n.
0
-50
-25
0
25
50
75
100
400
300
Max.
200
Typ.
100
Min.
0
125
10
12
Temperature ( oC)
Logic "1" Input Bias Current (µA)
Logic "1" Input Bias Current (µA)
100
80
60
Max.
Typ.
20
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 15A. Logic "1" Input Bias Current
vs. Tem perature
www.irf.com
18
20
Figure 14B. V CC Supply Current
vs. V CC Supply Voltage
120
0
-50
16
V CC Supply Voltage (V)
Figure 14A. V CC Supply Current
vs. V CC Temperature
40
14
120
100
80
60
Max.
40
Typ.
20
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 15B. Logic "1" Input Bias Current
vs. Supply Voltage
12
IRS2181/IRS21814(S)PbF
5
Logic "0" Input Bias Current (µA)
Lo gic "0" Input Bias Current (µA)
6
Max
4
3
2
1
0
-50
-25
0
25
50
75
100
6
5
Max
4
3
2
1
0
10
125
12
V CC and VB S UV T hres hold ( -) (V)
V CC and VBS UV Threshold (+) (V)
12
11
Max.
Typ.
Min.
8
7
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 17. VCC and VBS Undervoltage Threshold (+)
vs. Temperature
www.irf.com
20
vs. Voltage
vs. Temperature
6
-50
18
Figure 16B. Logic "0" Input Bias Current
Figure 16A. Logic "0" Input Bias Current
9
16
Supply Voltage (V)
Temperature (°C)
10
14
12
11
10
Max.
9
Typ.
8
Min.
7
6
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 18. VCC and VBS Undervoltage Threshold (-)
vs. Temperature
13
IRS2181/IRS21814(S)PbF
5
Output Source Current (A)
Output Source Current (A)
5
4
3
Typ.
2
1
M in.
0
-50
-25
0
25
50
75
100
125
Typ.
1
M in.
10
12
14
16
18
Supply Voltage (V)
Figure 19A. Output Source Current
vs. Temperature
Figure 19B. Output Source Current
vs. Supply Voltage
20
5
Output Sink Current (A)
Output Sink Current (A)
2
Temperature (oC)
4.0
Typ.
2.0
M in.
1.0
-50
3
0
5.0
3.0
4
4
3
2
Typ.
1
M in.
0
-25
www.irf.com
0
25
50
75
100
125
10
12
14
16
18
Temperature (oC)
Supply Voltage (V)
Figure 20A. Output Sink Current
vs. Temperature
Figure 20B. Output Sink Current
vs. Supply Voltage
20
14
140
140
120
120
100
80
140 V
70 V
0 V
60
Temprature (oC)
Temprature (oC)
IRS2181/IRS21814(S)PbF
100
140 V
80
70 V
0 V
60
40
40
20
1
10
100
20
1000
1
140
140
120
120
140 V
80
70 V
0 V
60
Temperature (oC)
Temperature (oC)
Figure 21. IRS2181 vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
100
10
100
1000
Frequency (kHz)
Figure 22. IRS2181 vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
Frequency (kHz)
140 V
70 V
0 V
100
80
60
40
40
20
20
1
10
100
1000
Frequency (kHz)
Figure 23. IRS2181 vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
www.irf.com
1
10
100
1000
Frequency (kHz)
Figure 24. IRS2181 vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
15
140
140
120
120
100
80
60
140 V
70 V
0 V
40
Temperature (oC)
Temperature (oC)
IRS2181/IRS21814(S)PbF
100
80
140 V
70 V
0 V
60
40
20
20
1
10
100
1000
1
Frequency (kHz)
100
1000
Frequency (kHz)
Figure 26. IRS21814 vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
Figure 25. IRS21814 vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
140 V
140
140
120
120
70 V
100
0 V
100
140 V
80
70 V
60
0 V
Temperature (oC)
Temperature (oC)
10
80
60
40
40
20
20
1
10
100
1000
Frequency (kHz)
Figure 27. IRS21814 vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
www.irf.com
1
10
100
1000
Frequency (kHz)
Figure 28. IRS21814 vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
16
140
140
120
120
100
80
140 V
60
70 V
0 V
40
Temperature (oC)
Temperature (oC)
IRS2181/IRS21814(S)PbF
140 V
100
70 V
0 V
80
60
40
20
1
10
100
20
1000
1
10
Frequency (kHz)
Figure 30. IRS2181S vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
140 V 70 V
140 V 70 V 0 V
140
0 V
100
80
60
Tempreture (oC)
120
120
Temperature (oC)
1000
Frequency (kHz)
Figure 29. IRS2181S vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
140
100
100
80
60
40
40
20
20
1
1
10
100
10
100
1000
1000
Frequency (kHz)
Frequency (kHz)
Figure 31. IRS2181S vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
www.irf.com
Figure 32. IRS2181S vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
17
140
140
120
120
100
80
60
140 V
70 V
0 V
40
Temperature (oC)
Temperature (oC)
IRS2181/IRS21814(S)PbF
100
80
140 V
60
70 V
0 V
40
20
1
10
100
20
1000
1
10
140
120
120
140 V
70 V
0 V
60
40
Temperature (oC)
Temperature (oC)
140
80
1000
Figure 34. IRS21814S vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
Figure 33. IRS21814S vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
100
100
Frequency (kHz)
Frequency (kHz)
140 V 70 V
0 V
100
80
60
40
20
20
1
10
100
1000
Frequency (kHz)
Figure 35. IRS21814S vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
www.irf.com
1
10
100
1000
Frequency (kHz)
Figure 36. IRS21814S vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
18
IRS2181/IRS21814(S)PbF
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
A
e
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
2. CONTROLLING DIMENSION: MILLIMETER
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
www.irf.com
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
19
IRS2181/IRS21814(S)PbF
14-Lead PDIP
14-Lead SOIC (narrow body)
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01-6019
01-3063 00 (MS-012AB)
20
IRS2181/IRS21814(S)PbF
Tape & Reel
8-lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8.1 0
0. 31 1
0 .3 18
B
3 .9 0
4.1 0
0. 15 3
0 .1 61
C
11 .7 0
1 2. 30
0 .4 6
0 .4 84
D
5 .4 5
5.5 5
0. 21 4
0 .2 18
E
6 .3 0
6.5 0
0. 24 8
0 .2 55
F
5 .1 0
5.3 0
0. 20 0
0 .2 08
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1.6 0
0. 05 9
0 .0 62
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 30 .2 5
1 2 .9 76
13 .0 0 1
B
20 .9 5
2 1. 45
0. 82 4
0 .8 44
C
12 .8 0
1 3. 20
0. 50 3
0 .5 19
D
1 .9 5
2.4 5
0. 76 7
0 .0 96
E
98 .0 0
1 02 .0 0
3. 85 8
4 .0 15
F
n /a
1 8. 40
n /a
0 .7 24
G
14 .5 0
1 7. 10
0. 57 0
0 .6 73
H
12 .4 0
1 4. 40
0. 48 8
0 .5 66
www.irf.com
21
IRS2181/IRS21814(S)PbF
Tape & Reel
14-lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8.1 0
0. 31 1
0 .3 18
B
3 .9 0
4.1 0
0. 15 3
0 .1 61
C
15 .7 0
1 6. 30
0. 61 8
0 .6 41
D
7 .4 0
7.6 0
0. 29 1
0 .2 99
E
6 .4 0
6.6 0
0. 25 2
0 .2 60
F
9 .4 0
9.6 0
0. 37 0
0 .3 78
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1.6 0
0. 05 9
0 .0 62
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 1 4 SO IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 30 .2 5
1 2 .9 76
13 .0 0 1
B
20 .9 5
2 1. 45
0. 82 4
0 .8 44
C
12 .8 0
1 3. 20
0. 50 3
0 .5 19
D
1 .9 5
2.4 5
0. 76 7
0 .0 96
E
98 .0 0
1 02 .0 0
3. 85 8
4 .0 15
F
n /a
2 2. 40
n /a
0 .8 81
G
18 .5 0
2 1. 10
0. 72 8
0 .8 30
H
16 .4 0
1 8. 40
0. 64 5
0 .7 24
www.irf.com
22
IRS2181/IRS21814(S)PbF
LEADFREE PART MARKING INFORMATION
S
IRxxxxxx
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2181PbF
8-Lead SOIC IRS2181SPbF
8-Lead SOIC Tape & Reel IRS2181STRPbF
14-Lead PDIP IRS21814PbF
14-Lead SOIC IRS21814SPbF
14-Lead SOIC Tape & Reel IRS21814STRPbF
The SOIC-8 is MSL2 qualified.
The SOIC-14 is MSL3 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com
.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 11/27/2006
www.irf.com
23