To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER DESCRIPTION APPLICATION The M37702M2LXXXGP is a single-chip 16-bit microcomputer designed with high-performance CMOS silicon gate technology. This is housed in a small 80-pin plastic molded QFP. This singlechip microcomputer has a large 16 M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for communication, office, business and industrial equipment controller that require high-speed processing of large data. The strong points of the M37702M2LXXXGP, M37702S1LGP, M37702M2LXXXHP and M37702S1LHP are the low supply voltage and small package. The differences between M37702M2LXXXGP, M37702S1LGP, M37702M2LXXXHP and M37702S1LHP are the ROM size and the package as shown below. Therefore, the following descriptions will be for the M37702M2LXXXGP unless otherwise noted. Control devices for communication equipment such as cellular radio telephones, cordless telephones, and radio communications Control devices for office equipment such as copiers, printers, typewriters, facsimiles, word processors, and personal computers Control devices for industrial equipments such as ME, NC, and measuring instruments Type name ROM size Package M37702M2LXXXGP 16 K bytes 80-pin plastic molded QFP (80P6S-A) M37702S1LGP External 80-pin plastic molded QFP (80P6S-A) M37702M2LXXXHP 16 K bytes 80-pin plastic molded fine-pitch QFP (80P6D-A) M37702S1LHP External 80-pin plastic molded fine-pitch QFP (80P6D-A) FEATURES • Number of basic instructions ..................................................103 • Memory size ROM ................................................ 16 K bytes RAM ................................................. 512 bytes • Instruction execution time The fastest instruction at 8 MHz frequency ....................... 500 ns • Single low supply voltage ........................................... 2.7 – 5.5 V • Low power dissipation (At 3 V supply voltage, 8 MHz frequency) .............. 12 mW (Typ.) (At 5 V supply voltage, 8 MHz frequency) .............. 30 mW (Typ.) • Wide operating temperature range ............................. –40 – 80°C • Interrupts ............................................................ 19 types 7 levels • Multiple function 16-bit timer ................................................ 5 + 3 • UART (may also be synchronous) .............................................. 2 • 8-bit A-D converter ............................................. 8-channel inputs • 12-bit watchdog timer • Programmable input/output (ports P0, P1, P2, P3, P4, P5, P6, P7, P8) .............................. 68 • Small package M37702M2LXXXGP, M37702S1LGP .................................................. 80-pin QFP (0.65 mm lead pitch) M37702M2LXXXHP, M37702S1LHP .................................... 80-pin fine-pitch QFP (0.5 mm lead pitch) NOTE Refer to “Chapter 5 PRECAUTIONS” when using this microcomputer. MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 41 43 42 44 45 46 47 49 48 50 51 53 52 55 54 56 58 57 60 30 P22/A18/D2 P23/A19/D3 P24/A20/D4 P25/A21/D5 P26/A22/D6 P27/A23/D7 P30/R/W P31/BHE P32/ALE P33/HLDA Vss 29 E 28 27 XOUT XIN 75 26 RESET 76 25 77 24 78 23 79 22 80 21 CNVSS BYTE P40/HOLD P41/RDY P42/φ1 61 40 62 39 63 38 64 37 65 36 35 66 67 34 32 20 19 18 17 31 16 15 14 13 5 3 4 33 P66/TB1IN P65/TB0IN P64/INT2 P63/INT1 P62/INT0 P61/TA4IN P60/TA4OUT P57/TA3IN P56/TA3OUT P55/TA2IN P54/TA2OUT P53/TA1IN P52/TA1OUT P51/TA0IN P50/TA0OUT P47/DBC✽ P46/VPA✽ P45/VDA✽ P44/QCL✽ P43/MX✽ 1 74 12 73 11 72 10 71 8 70 9 69 7 68 6 M37702M2LXXXGP or M37702S1LGP or M37702M2LXXXHP or M37702S1LHP 2 P85/CLK1 P84/CTS1/RTS1 P83/TXD0 P82/RXD0 P81/CLK0 P80/CTS0/RTS0 VCC AVCC VREF AVSS VSS P77/AN7/ADTRG P76/AN6 P75/AN5 P74/AN4 P73/AN3 P72/AN2 P71/AN1 P70/AN0 P67/TB2IN 59 P86/RXD1 P87/TXD1 P00/A0 P01/A1 P02/A2 P03/A3 P04/A4 P05/A5 P06/A6 P07/A7 P10/A8/D8 P11/A9/D9 P12/A10/D10 P13/A11/D11 P14/A12/D12 P15/A13/D13 P16/A14/D14 P17/A15/D15 P20/A16/D0 P21/A17/D1 PIN CONFIGURATION (TOP VIEW) Outline M37702M2LXXXGP, M37702S1LGP••••••80P6S-A M37702M2LXXXHP, M37702S1LHP••••••80P6D-A ✽ : Used in the evaluation chip mode only 2 Clock Generating Circuit 28 29 E Enable output Index Register Y(16) Index Register X(16) Accumulator B(16) Stack Pointer S(16) 80 1 2 3 4 5 6 7 Input/Output port P6 72 73 74 75 76 77 78 79 Input/Output port P7 59 60 61 62 63 64 65 66 Input/Output port P8 70 (0V) AVSS Program Bank Register PG(8) Input/Output port P3 Input/Output port P4 69 Reference voltage input VREF Incrementer(24) Input/Output port P1 43 44 45 46 47 48 49 50 P1(8) Input/Output port P0 24 Bus width selection input BYTE 51 52 53 54 55 56 57 58 P0(8) Instruction Register(8) Instruction Queue Buffer Q2(8) Input/Output port P2 35 36 37 38 39 40 41 42 31 32 33 34 16 17 18 19 20 21 22 23 Data Bank Register DT(8) P2(8) Program Address Register PA(24) P3(4) Data Address Register DA(24) P4(8) 68 (5V) AVCC Instruction Queue Buffer Q0(8) Input/Output port P5 Program Counter PC(16) A-D Converter(8) Incrementer/Decrementer(24) UART0(9) 25 (0V) CNVss Data Buffer DBH(8) 8 9 10 11 12 13 14 15 Input Buffer Register IB(16) UART1(9) 30 71 (0V) VSS Address Bus P5(8) 67 (5V) VCC Data Buffer DBL(8) P6(8) P7(8) Timer TB0(16) Timer TA0(16) P8(8) Timer TB2(16) Timer TB1(16) Timer TA1(16) 512 Bytes Arithmetic Logic Unit(16) 16K Bytes Accumulator A(16) RAM Timer TA2(16) Watchdog Timer Direct Page Register DPR(16) Timer TA3(16) Timer TA4(16) 26 RESET Reset input Processor Status Register PS(11) ROM 27 Clock input Clock output XOUT XIN M37702M2LXXXGP BLOCK DIAGRAM MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Data Bus(Even) Data Bus(Odd) Instruction Queue Buffer Q1(8) 3 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER FUNCTIONS OF M37702M2LXXXGP Parameter Number of basic instructions Instruction execution time Memory size Input/Output ports Multi-function timers ROM RAM P0 – P2, P4 – P8 16 K bytes 512 bytes 8-bit ✕ 8 P3 TA0, TA1, TA2, TA3, TA4 TB0, TB1, TB2 4-bit ✕ 1 16-bit ✕ 5 16-bit ✕ 3 (UART or clock synchronous serial I/O) ✕ 2 Serial I/O A-D converter Watchdog timer 8-bit ✕ 1 (8 channels) 12-bit ✕ 1 3 external types, 16 internal types (Each interrupt can be set the priority levels to 0 – 7.) Built-in (externally connected to a ceramic resonator or quartz crystal resonator) 2.7 – 5.5 V 12 mW (at 3 V supply voltage, external clock 8 MHz frequency) Interrupts Clock generating circuit Supply voltage Power dissipation Input/Output characteristic 30 mW (at 5 V supply voltage, external clock 8 MHz frequency) Input/Output voltage Output current Memory expansion Operating temperature range 4 5V 5 mA Maximum 16 M bytes –40 – 85°C CMOS high-performance silicon gate process Device structure Package Functions 103 500 ns (the fastest instruction at external clock 8 MHz frequency) M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP 80-pin plastic molded QFP (80P6S-A: 0.65 mm lead pitch) 80-pin plastic molded fine-pitch QFP (80P6D-A: 0.5 mm lead pitch) MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER PIN DESCRIPTION Pin Name Input/Output Functions VCC, VSS Power supply Supply 2.7 – 5.5 V to VCC and 0 V to VSS. CNVSS CNVSS input Input This pin controls the processor mode. Connect to VSS for single-chip mode, and to VCC for external ROM types. RESET Reset input Input To enter the reset state, this pin must be kept at a “L” condition which should be maintained for the required time. XIN Clock input Input XOUT Clock output Output These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz crystal resonator between XIN and XOUT. When an external clock is used, the clock source should be connected to the XIN pin and the XOUT pin should be left open. E Enable output Output Data or instruction read and data write are performed when output from this pin is “L”. BYTE Bus width selection input Input In memory expansion mode or microprocessor mode, this pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when “L” signal inputs and 8 bits when “H” signal inputs. AVCC, AVSS Analog supply input VREF Reference voltage input P00 – P07 I/O port P0 I/O In single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in input mode when reset. Address (A7 – A0) is output in memory expansion mode or microprocessor mode. P10 – P17 I/O port P1 I/O In single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to “L” in memory expansion mode or microprocessor mode and external _ data bus is 16-bit width, high-order data (D15 – D 8 ) is _ input or output when E output is “L” and an address (A15 – A8) is output when E output is “H”. If the BYTE pin is “H” that is an external data bus is 8-bit width, only address (A15 – A8) is output. P20 – P27 I/O port P2 I/O In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode low-order data (D7 – D0) is _input or _ output when E output is “L” and an address (A23 – A16) is output when E output is “H”. P30 – P33 I/O port P3 I/O In single-chip mode, these pins have the same__functions as port P0. In memory ____ _____ expansion mode or microprocessor mode, R/W, BHE, ALE and HLDA signals are output. P40 – P47 I/O port P4 I/O In single-chip mode, these pins have the same functions as port_____ P0. In memory ____ expansion mode or microprocessor mode, P40 and P41 become HOLD and RDY input pin respectively. Functions of other pins are the same as in single-chip mode. In single-chip mode or memory expansion mode, port P4 2 can be programmed for φ 1 output pin divided the clock to XIN pin by 2. In microprocessor mode. P42 always has the function as φ1 output pin. P50 – P57 I/O port P5 I/O In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for timer A0, timer A1, timer A2 and timer A3. P60 – P67 I/O port P6 I/O ______ _ Power supply for the A-D converter. Connect AVCC to V CC and AV SS to V SS externally. Input This is reference voltage input pin for the A-D converter. In addition to having the same functions as port P0 in single-chip mode, these ____ ____ pins also function as I/O pins for timer A4, external interrupt input INT0, INT1 and INT2 pins, and input pins for timer B0, timer B1 and timer B2. ____ P70 – P77 I/O port P7 I/O In addition to having the same functions as port P0 in single-chip mode, these pins also function as analog input AN0 – AN7 input pins. P7 7 also has an A-D conversion trigger input function. P80 – P87 I/O port P8 I/O In addition to having the same functions as____ port P0 in single-chip mode, these ____ pins also function as RXD, TXD, CLK, CTS/RTS pins for UART 0 and UART 1. 5 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER BASIC FUNCTION BLOCKS The M37702M2LXXXGP has the same functions as the M37702M2BXXXFP except for the reset circuit. Refer to the section on the M37702M2BXXXFP. RESET CIRCUIT Figure 1 shows the status of the internal registers when a reset occurs. Figure 2 shows an example of a reset circuit. The reset input voltage must be held 0.55 V or lower when the power voltage reaches 2.7 V. ______ Reset occurs when the RESET pin is returned to “H” level after holding it at “L” level when the power voltage is at 2.7 – 5.5 V. Program execution starts at the address formed by setting the address pins A23 – A16 to 0016, A15 – A8 to the contents of address FFFF16, and A7 – A0 to the contents of address FFFE16. Address Address (0416)••• 0016 (29) Processor mode register (2) Port P1 data direction register (0516)••• 0016 (30) Watchdog timer (3) Port P2 data direction register (0816)••• 0016 (31) Watchdog timer frequency selection (6116)••• flag (32) A-D conversion interrupt control register (7016)••• 0 0 0 0 (4) Port P3 data direction register (0916)••• (5) Port P4 data direction register (0C16)••• 0016 (6) Port P5 data direction register (0D16)••• 0016 (7) Port P6 data direction register (1016)••• 0016 (8) Port P7 data direction register (1116)••• (9) Port P8 data direction register (1416)••• (10) A-D control register (11) A-D sweep pin selection register (1F16)••• (12) UART 0 transmit/receive mode register (13) UART 1 transmit/receive mode register (14) UART 0 transmit/receive control register 0 (15) UART 1 transmit/receive control register 0 (16) UART 0 transmit/receive control register 1 (17) UART 1 transmit/receive control register 1 (18) Count start flag (3016)••• 0016 (3816)••• 0016 (6016)••• 0016 FFF16 0 0 0 0 0 (33) UART 0 transmission interrupt control (7116)••• register (34) UART 0 receive interrupt control register (7216)••• 0 0 0 0 (35) UART 1 transmission interrupt control (7316)••• register (36) UART 1 receive interrupt control register (7416)••• 0 0 0 0 0016 0016 (37) Timer A0 interrupt control register (7516)••• 0 0 0 0 (1E16)••• 0 0 0 0 0 ? ? ? (38) Timer A1 interrupt control register (7616)••• 0 0 0 0 1 1 (39) Timer A2 interrupt control register (7716)••• 0 0 0 0 (40) Timer A3 interrupt control register (7816)••• 0 0 0 0 (41) Timer A4 interrupt control register (7916)••• 0 0 0 0 0 0 0 0 0 0 0 0 (3416)••• 1 0 0 0 (42) Timer B0 interrupt control register (7A16)••• 0 0 0 0 (3C16)••• 1 0 0 0 (43) Timer B1 interrupt control register (7B16)••• 0 0 0 0 (3516)••• 0 0 0 0 0 0 1 0 (44) Timer B2 interrupt control register (7C16)••• 0 0 0 0 (3D16)••• 0 0 0 0 0 0 1 0 (45) INT0 interrupt control register (7D16)••• 0 0 0 0 0 0 (4016)••• 0016 (46) INT1 interrupt control register (7E16)••• 0 0 0 0 0 0 (19) One- shot start flag (4216)••• 0 0 0 0 0 (47) INT2 interrupt control register (7F16)••• 0 0 0 0 0 0 (20) Up-down flag (4416)••• 0016 (48) Processor status register PS (21) Timer A0 mode register (5616)••• 0016 (49) Program bank register PG (22) Timer A1 mode register (5716)••• 0016 (50) Program counter PC H Content of FFFF 16 (23) Timer A2 mode register (5816)••• 0016 (51) Program counter PC L Content of FFFE 16 (24) Timer A3 mode register (5916)••• 0016 (52) Direct page register DPR (25) Timer A4 mode register (5A16)••• 0016 (53) Data bank register DT (26) Timer B0 mode register (5B16)••• 0 0 1 0 0 0 0 (27) Timer B1 mode register (5C16)••• 0 0 1 0 0 0 0 (28) Timer B2 mode register (5D16)••• 0 0 1 0 0 0 0 Fig. 1 Microcomputer internal status during reset 6 (5E16)••• (1) Port P0 data direction register 0 0 0 ? ? 0 0 0 1 ? ? 0016 000016 0016 Contents of other registers and RAM are not initialized and should be initialized by software. MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ADDRESSING MODES The M37702M2LXXXGP has 28 powerful addressing modes. Refer to the 7700 Family addressing mode description for the details of each addressing mode. Power on M37702M2LXXXGP VCC VCC RESET 26 2.7V MACHINE INSTRUCTION LIST 0V The M37702M2LXXXGP has 103 machine instructions. Refer to the 7700 Family machine instruction list for details. 67 RESET 0V 0.55V DATA REQUIRED FOR MASK ORDERING Fig. 2 Example of a reset circuit (perform careful evaluation at the system design level before using) MEMORY The memory map is shown in Figure 3. 00000016 Please send the following data for mask orders. M37702M2LXXXGP; (1) M37702M2LXXXGP mask ROM order confirmation form (2) 80P6S mark specification form (3) ROM data (EPROM 3 sets) M37702M2LXXXHP; (1) M37702M2LXXXHP mask ROM order confirmation form (2) 80P6D mark specification form (3) ROM data (EPROM 3 sets) 00000016 00007F 16 00008016 00000016 Peripheral devices control registers Bank 0 16 Internal RAM 512 bytes 00FFFF16 01000016 00007F 16 00027F 16 Bank 1 16 Interrupt vector table 00FFD6 16 A-D conversion UART1 transmission 01FFFF16 UART1 receive • • • • • • • • • • UART0 transmission UART0 receive Timer B2 Timer B1 Timer B0 Timer A4 Timer A3 Timer A2 FE000016 00C00016 Timer A1 Timer A0 Bank FE 16 INT2 Internal ROM 16K bytes INT1 INT0 FEFFFF 16 FF000016 Watchdog timer DBC 00FFD616 Bank FF 16 BRK instruction Zero divide FFFFFF 16 00FFFF 16 00FFFE16 RESET Fig. 3 Memory map 7 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ABSOLUTE MAXIMUM RATINGS Symbol Parameter Conditions Ratings Unit VCC Supply voltage –0.3 to 7 V AVCC Analog supply voltage –0.3 to 7 V –0.3 to 12 V ______ VI Input voltage RESET, CNVSS, BYTE VI Input voltage P00–P07, P10–P17, P20–P27, P30–P33, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87, VREF, XIN –0.3 to VCC+0.3 Output voltage P00–P07, P10–P17, P20–P27, P30–P33, P40–P47, P50–P5 _ 7 , P60 –P67 , P70–P7 7, P80–P87, XOUT, E –0.3 to VCC+0.3 VO V V Pd Power dissipation 300 (Note 1) mW Topr Operating temperature Ta = 25 °C –40 to 85 °C Tstg Storage temperature –65 to 150 °C Note 1. In the case of M37702M2LXXXHP and M37702S1LHP, the rating of power dissipation is 200 mW. RECOMMENDED OPERATING CONDITIONS Symbol (VCC = 2.7 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted) Limits Parameter VCC Supply voltage AVCC Analog supply voltage VSS Min. Typ. 2.7 Max. 5.5 Unit V VCC V Supply voltage 0 V AVSS Analog supply voltage 0 VIH High-level input voltage 7, P00–P07, P30–P33, P40–P47, P50–P5 ______ P60–P67, P70–P77, P80–P87, XIN, RESET, CNVSS, BYTE 0.8VCC V VCC V VIH High-level input voltage P10–P17, P20–P27 (in single-chip mode) 0.8VCC VCC VIH High-level input voltage P10–P17, P20–P27 (in memory expansion mode and microprocessor mode) 0.5VCC VCC VIL Low-level input voltage V 7, P00–P07, P30–P33, P40–P47, P50–P5 ______ P60–P67, P70–P77, P80–P87, XIN, RESET, CNVSS, BYTE 0 0.2VCC V VIL Low-level input voltage P10–P17, P20–P27 (in single-chip mode) 0 0.2VCC VIL Low-level input voltage P10–P17, P20–P27 (in memory expansion mode and microprocessor mode) 0 0.16VCC IOH(peak) IOH(avg) IOL(peak) IOL(avg) f(XIN) –10 High-level average output current P00–P07, P10–P17, P20–P27, P30–P33, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 –5 Low-level peak output current P00–P07, P10–P17, P20–P27, P30–P33, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 10 P00–P07, P10–P17, P20–P27, P30–P33, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 5 Low-level average output current External clock frequency input V V P00–P07, P10–P17, P20–P27, P30–P33, P40–P47, P50–P57, P60–P67, P70–P77, P80–P87 High-level peak output current V mA mA mA mA 8 MHz Note 2. Average output current is the average value of a 100 ms interval. 3. The sum of IOL(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOH(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, and P7 must be 80 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, and P7 must be 80 mA or less. 8 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (VCC = 5 V, VSS = 0 V, Ta = 25 °C, f(XIN) = 8 MHz, unless otherwise noted) Symbol VOH Parameter Limits Test conditions Min. High-level output voltage P00–P07, P10–P17, P20–P27, VCC = 5 V, IOH = –10 mA P30, P31, P33, P40–P47, P50–P57, VCC = 3 V, IOH = –1 mA P60–P67, P70–P77, P80–P87 VOH High-level output voltage P00–P07, P10–P17, P20–P27, VCC P30, P31, P33 VCC High-level output voltage P32 VCC VCC _ High-level output voltage E VCC VCC VCC VOH VOH Typ. Max. 3 V 2.5 = 5 V, IOH = –400 µA 4.7 = 5 V, IOH = –10 mA = 5 V, IOH = –400 µA 3.1 4.8 2.6 3.4 = 3 V, IOH = –1 mA = 5 V, IOH = –10 mA = 5 V, IOH = –400 µA V V 4.8 2.6 = 3 V, IOH = –1 mA V Low-level output voltage P00–P07, P10–P17, P20–P27, VCC = 5 V, IOL = 10 mA P30, P31, P33, P40–P47, P50–P57, VCC = 3 V, IOL = 1 mA P60–P67, P70–P77, P80–P87 VOL VOL Low-level output voltage P00–P07, P10–P17, P20–P27, VCC = 5 V, IOL = 2 mA P30, P31, P33 VOL Low-level output voltage P32 _ VOL Low-level output voltage E VT+ – VT– VT+ – VT– VT+ – VT– IIH IIL VRAM ICC VCC = VCC = VCC = VCC = Unit 2 0.5 0.45 1.9 0.43 0.4 1.6 5 V, IOL = 10 mA 5 V, IOL = 2 mA 3 V, IOL = 1 mA 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA _____ ____ Hysteresis ____ VCC = 5 V HOLD, RDY,_____ TA0IN–TA4 , TB0IN____ –TB2____ IN, ____ ____IN____ INT0–INT2, ADTRG, CTS0, CTS1, CLK0, CLK1 VCC = 3 V ______ VCC = 5 V Hysteresis RESET VCC = 3 V VCC = 5 V Hysteresis XIN VCC = 3 V High-level input current P00–P07, P10–P17, P20–P27, VCC = 5 V, VI = 5 V P30–P33, P40–P47, P50–P57, P60–P6 7, P70–P77, P80–P87, ______ VCC = 3 V, VI = 3 V XIN, RESET, CNVSS, BYTE Low-level input current P00–P07, P10–P17, P20–P27, VCC = 5 V, VI = 0 V P30–P33, P40–P47, P50–P57, 7, P70–P77, P80–P87, P60–P6 ______ VCC = 3 V, VI = 0 V XIN, RESET, CNVSS, BYTE RAM hold voltage When clock is stopped. In singleVCC = 5 V Power supply current f(XIN) = 8 MHz, chip mode square waveform VCC = 3 V output only Ta = 25 °C when clock pin is open is stopped. and other pins are VSS Ta = 85 °C when clock during reset. is stopped. 0.4 0.4 1 0.7 0.4 0.1 0.5 0.2 0.1 0.4 0.3 0.2 0.1 0.06 5 V V V V V V V µA 4 –5 µA –4 V 2 6 12 4 8 1 mA µA 20 A-D CONVERTER CHARACTERISTICS (VCC = 5 V, VSS = 0 V, Ta = 25 °C, f(XIN) = 8 MHz, unless otherwise noted) Symbol Parameter Test conditions Limits Min. Typ. Max. Unit — Resolution VREF = VCC 8 Bits — Absolute accuracy VREF = VCC ±3 LSB RLADDER Ladder resistance VREF = VCC 10 kΩ tCONV Conversion time VREF Reference voltage VIA Analog input voltage 2 µs 28.5 2.7 VCC V 0 VREF V 9 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = 25 °C, f(XIN) = 8 MHz, unless otherwise noted) External clock input Symbol Parameter Limits Min. Max. Unit tC External clock input cycle time 125 ns tW(H) External clock input high-level pulse width 50 ns tW(L) External clock input low-level pulse width 50 tr External clock rise time 20 ns tf External clock fall time 20 ns ns Single-chip mode Symbol Parameter Limits Min. Max. Unit tsu(P0D–E) Port P0 input setup time 300 ns tsu(P1D–E) Port P1 input setup time 300 ns tsu(P2D–E) Port P2 input setup time 300 ns tsu(P3D–E) Port P3 input setup time 300 ns tsu(P4D–E) Port P4 input setup time 300 ns tsu(P5D–E) Port P5 input setup time 300 ns tsu(P6D–E) Port P6 input setup time 300 ns tsu(P7D–E) Port P7 input setup time 300 ns tsu(P8D–E) Port P8 input setup time 300 ns th(E–P0D) Port P0 input hold time 0 ns th(E–P1D) Port P1 input hold time 0 ns th(E–P2D) Port P2 input hold time 0 ns th(E–P3D) Port P3 input hold time 0 ns th(E–P4D) Port P4 input hold time 0 ns th(E–P5D) Port P5 input hold time 0 ns th(E–P6D) Port P6 input hold time 0 ns th(E–P7D) Port P7 input hold time 0 ns th(E–P8D) Port P8 input hold time 0 ns Memory expansion mode and microprocessor mode Symbol Parameter Limits Min. Max. Unit tsu(P1D–E) Port P1 input setup time 80 ns tsu(P2D–E) Port P2 input setup time 80 ns 90 ns ____ tsu(RDY–φ1) RDY input setup time tsu(HOLD–φ1) HOLD input setup time 90 ns th(E–P1D) Port P1 input hold time 0 ns th(E–P2D) Port P2 input hold time 0 ns 0 ns 0 ns _____ ____ th(φ1–RDY) RDY input hold time th(φ1–HOLD) HOLD input hold time _____ 10 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Timer A input (Count input in event counter mode) Symbol Parameter Limits Min. Max. Unit tC(TA) TAiIN input cycle time 250 ns tW(TAH) TAiIN input high-level pulse width 125 ns tW(TAL) TAiIN input low-level pulse width 125 ns Timer A input (Gating input in timer mode) Symbol Parameter Limits Min. Max. Unit tC(TA) TAiIN input cycle time 1000 ns tW(TAH) TAiIN input high-level pulse width 500 ns tW(TAL) TAiIN input low-level pulse width 500 ns Timer A input (External trigger input in one-shot pulse mode) Symbol Parameter Limits Min. Max. Unit tC(TA) TAiIN input cycle time 500 ns tW(TAH) TAiIN input high-level pulse width 250 ns tW(TAL) TAiIN input low-level pulse width 250 ns Timer A input (External trigger input in pulse width modulation mode) Symbol Parameter Limits Min. Max. Unit tW(TAH) TAiIN input high-level pulse width 250 ns tW(TAL) TAiIN input low-level pulse width 250 ns Timer A input (Up-down input in event counter mode) Symbol Parameter Limits Min. Max. Unit tC(UP) TAiOUT input cycle time 5000 ns tW(UPH) TAiOUT input high-level pulse width 2500 ns tW(UPL) TAiOUT input low-level pulse width 2500 ns tsu(UP-TIN) TAiOUT input setup time 1000 ns th(TIN-UP) TAiOUT input hold time 1000 ns 11 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Timer B input (Count input in event counter mode) Symbol Parameter Limits Min. Max. Unit tC(TB) TBiIN input cycle time (one edge count) 250 ns tW(TBH) TBiIN input high-level pulse width (one edge count) 125 ns tW(TBL) TBiIN input low-level pulse width (one edge count) 125 ns tC(TB) TBiIN input cycle time (both edges count) 500 ns tW(TBH) TBiIN input high-level pulse width (both edges count) 250 ns tW(TBL) TBiIN input low-level pulse width (both edges count) 250 ns Timer B input (Pulse period measurement mode) Symbol Parameter Limits Min. Max. Unit tC(TB) TBiIN input cycle time 1000 ns tW(TBH) TBiIN input high-level pulse width 500 ns tW(TBL) TBiIN input low-level pulse width 500 ns Timer B input (Pulse width measurement mode) Symbol Parameter Limits Min. Max. Unit tC(TB) TBiIN input cycle time 1000 ns tW(TBH) TBiIN input high-level pulse width 500 ns tW(TBL) TBiIN input low-level pulse width 500 ns A-D trigger input Symbol Parameter Limits Min. Max. Unit ______ tC(AD) ADTRG input cycle time (minimum allowable trigger) tW(ADL) ADTRG input low-level pulse width 2000 ns 250 ns _____ Serial I/O Symbol Parameter Limits Min. Max. Unit tC(CK) CLKi input cycle time 500 ns tW(CKH) CLKi input high-level pulse width 250 ns tW(CKL) CLKi input low-level pulse width 250 td(C–Q) TxDi output delay time th(C–Q) TxDi hold time tsu(D–C) th(C–D) ns 170 ns 0 ns RxDi input setup time 80 ns RxDi input hold time 100 ns _____ External interrupt INTi input Symbol Parameter Limits Min. Unit Max. ____ tW(INH) INTi input high-level pulse width 250 ns 250 ns ____ tW(INL) 12 INTi input low-level pulse width MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER SWITCHING CHARACTERISTICS Single-chip mode Symbol (VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = 25 °C, f(XIN) = 8 MHz, unless otherwise noted) Parameter Test conditions Limits Min. Max. Unit td(E–P0Q) Port P0 data output delay time 300 ns td(E–P1Q) Port P1 data output delay time 300 ns td(E–P2Q) Port P2 data output delay time 300 ns td(E–P3Q) Port P3 data output delay time 300 ns td(E–P4Q) Port P4 data output delay time 300 ns td(E–P5Q) Port P5 data output delay time 300 ns td(E–P6Q) Port P6 data output delay time 300 ns td(E–P7Q) Port P7 data output delay time 300 ns td(E–P8Q) Port P8 data output delay time 300 ns Fig. 4 Memory expansion mode and microprocessor mode (when wait bit = “0”, and external memory area is accessed) Symbol Parameter Test conditions Limits Min. Max. Unit ns td(P0A–E) Port P0 address output delay time td(E–P1Q) Port P1 data output delay time (BYTE = “L”) 130 ns tPXZ(E–P1Z) Port P1 floating start delay time (BYTE = “L”) 10 ns td(P1A–E) Port P1 address output delay time 50 td(P1A–ALE) Port P1 address output delay time 40 td(E–P2Q) Port P2 data output delay time 130 ns tPXZ(E–P2Z) Port P2 floating start delay time 10 ns td(P2A–E) Port P2 address output delay time 50 Port P2 address output delay time 40 td(P2A–ALE) 50 ns ns ns ns _____ td(φ1–HLDA) HLDA output delay time td(ALE–E) ALE output delay time tW(ALE) ALE pulse width ____ td(BHE–E) BHE output delay time td(R/W–E) R/W output delay time td(E–φ1) φ1 output delay time th(E–P0A) Port P0 address hold time th(ALE–P1A) Port P1 address hold time (BYTE = “L”) th(E–P1Q) 120 Fig. 4 ns 4 ns 60 ns 50 ns __ 50 0 ns 40 ns 50 ns 9 ns Port P1 data hold time (BYTE = “L”) 50 ns tPZX(E–P1Z) Port P1 floating release delay time (BYTE = “L”) 95 ns th(E–P1A) Port P1 address hold time (BYTE = “H”) 50 ns th(ALE–P2A) Port P2 address hold time 9 ns th(E–P2Q) Port P2 data hold time 50 ns tPZX(E–P2Z) Port P2 floating release delay time 95 ns 18 ns 18 ns 460 ns ____ th(E–BHE) BHE hold time th(E–R/W) R/W hold time tW(EL) E pulse width __ _ 13 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion mode and microprocessor mode (when wait bit = “1”) Symbol Parameter Test conditions Limits Min. Max. Unit ns td(P0A–E) Port P0 address output delay time td(E–P1Q) Port P1 data output delay time (BYTE = “L”) tPXZ(E–P1Z) Port P1 floating start delay time (BYTE = “L”) td(P1A–E) Port P1 address output delay time 50 td(P1A–ALE) Port P1 address output delay time 40 td(E–P2Q) Port P2 data output delay time 130 ns tPXZ(E–P2Z) Port P2 floating start delay time 10 ns td(P2A–E) Port P2 address output delay time 50 td(P2A–ALE) Port P2 address output delay time 40 50 130 ns 10 ns ns ns ns ns _____ td(φ1–HLDA) HLDA output delay time td(ALE–E) ALE output delay time tW(ALE) ALE pulse width 120 Fig. 4 ____ td(BHE–E) BHE output delay time td(R/W–E) R/W output delay time td(E–φ1) φ1 output delay time th(E–P0A) Port P0 address hold time th(ALE–P1A) Port P1 address hold time (BYTE = “L”) th(E–P1Q) ns 4 ns 60 ns 50 ns __ 50 0 ns 40 ns 50 ns 9 ns Port P1 data hold time (BYTE = “L”) 50 ns tPZX(E–P1Z) Port P1 floating release delay time (BYTE = “L”) 95 ns th(E–P1A) Port P1 address hold time (BYTE = “H”) 50 ns th(ALE–P2A) Port P2 address hold time 9 ns th(E–P2Q) Port P2 data hold time 50 ns tPZX(E–P2Z) Port P2 floating release delay time 95 ns 18 ns 18 ns 210 ns ____ th(E–BHE) BHE hold time th(E–R/W) R/W hold time tW(EL) E pulse width __ _ P0 P1 P2 P3 P4 P5 P6 P7 P8 φ1 E Fig. 4 Testing circuit for ports P0–P8, φ1 14 100 pF MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER TIMING DIAGRAM tr tf tc tw(H) Single-chip mode tw(L) f(XIN) E td(E–P0Q) Port P0 output tsu(P0D–E) th(E–P0D) Port P0 input td(E–P1Q) Port P1 output tsu(P1D–E) th(E–P1D) Port P1 input td(E–P2Q) Port P2 output tsu(P2D–E) th(E–P2D) Port P2 input td(E–P3Q) Port P3 output tsu(P3D–E) th(E–P3D) Port P3 input td(E–P4Q) Port P4 output tsu(P4D–E) th(E–P4D) Port P4 input td(E–P5Q) Port P5 output tsu(P5D–E) th(E–P5D) Port P5 input td(E–P6Q) Port P6 output tsu(P6D–E) th(E–P6D) Port P6 input td(E–P7Q) Port P7 output tsu(P7D–E) th(E–P7D) Port P7 input td(E–P8Q) Port P8 output tsu(P8D–E) th(E–P8D) Port P8 input 15 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) In Event counter mode TAiOUT input (Up-down input) TAiIN input (when count by falling) TAiIN input (when count by rising) th(TIN –UP) tsu(UP–TIN) tc(TB) tw(TBH) TBiIN input tw(TBL) tc(AD) tw(ADL) ADTRG input tc(CK) tw(CKH) CLKi tw(CKL) th(C–Q) TxDi td(C–Q) tsu(D–C) RxDi tw(INL) INTi input tw(INH) 16 th(C–D) MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion mode and microprocessor mode (When wait bit = “1”) φ1 E RDY input tsu(RDY–φ1) th(φ1–RDY) ( When wait bit = “0”) φ1 E RDY input tsu(RDY–φ1) th(φ1–RDY) (When wait bit = “1” or “0” in common) φ1 tsu(HOLD–φ1) th(φ1–HOLD) HOLD input td(φ1–HLDA) td(φ1–HLDA) HLDA output Test conditions • VCC = 2.7 to 5.5 V • Input timing voltage : V IL = 0.2 VCC, VIH = 0.8 V CC • Output timing voltage : V OL = 0.8 V, VOH = 2.0 V 17 MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion mode and microprocessor mode (When wait bit = “1”) tw(L) tr tf tw(H) tc f(XIN) φ1 td(E- φ1) td(E- φ1) tw(EL) E td(P0A-E) th(E-P0A) Port P0 output (A0 to A7) Address th(ALE-P1A) Port P1 output (A8 to A15/D8 to D15) (BYTE = “L”) Address th(E-P1Q) Address tpxz(E-P1Z) Data Address Address td(E-P1Q) td(P1A-ALE) td(P1A-E) th(E-P1A) Port P1 output (A8 to A15) (BYTE = “H”) tpzx(E-P1Z) Address Address tsu(P1D-E) th(E-P1D) Port P1 input th(E-P2Q) th(ALE-P2A) Port P2 output (A16 to A23/D0 to D7) Address td(P2A-ALE) Data tpxz(E-P2Z) Address td(E-P2Q) td(P2A-E) Address tsu(P2D-E) th(E-P2D) Port P2 input tw(ALE) td(ALE-E) Port P32 output (ALE) td(BHE-E) th(E-BHE) td(R/W-E) th(E-R/W) Port P31 output (BHE) Port P30 output (R/W) Test conditions • VCC = 2.7 to 5.5 V • Output timing voltage : VOL = 0.8 V, VOH = 2.0 V • Ports P1, P2 input 18 : VIL = 0.16 VCC, VIH = 0.5 VCC tpzx(E-P2Z) MITSUBISHI MICROCOMPUTERS M37702M2LXXXGP, M37702S1LGP M37702M2LXXXHP, M37702S1LHP SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion mode and microprocessor mode (When wait bit = “0”, and external memory area is accessed) tc f(XIN) φ1 td(E- φ1) td(E- φ1) tw(EL) E th(E-P0A) Port P0 output (A0 to A7) td(P0A-E) Address th(ALE-P1A) Port P1 output (A8 to A15/D8 to D15) (BYTE = “L”) Address th(E-P1Q) Address Data tpxz(E-P1Z) tpzx(E-P1Z) Address Address td(E-P1Q) td(P1A-ALE) th(E-P1A) Port P1 output (A8 to A15) (BYTE = “H”) td(P1A-E) Address Address tsu(P1D-E) th(E-P1D) Port P1 input th(ALE-P2A) Port P2 output (A16 to A23/D0 to D7) Address th(E-P2Q) Data tpxz(E-P2Z) tpzx(E-P2Z) Address Address tsu(P2D-E) td(E-P2Q) td(P2A-E) th(E-P2D) td(P2A-ALE) Port P2 input tw(ALE) td(ALE-E) Port P32 output (ALE) td(BHE-E) th(E-BHE) Port P31 output (BHE) td(R/W-E) th(E-R/W) Port P30 output (R/W) Test conditions • VCC = 2.7 to 5.5 V • Output timing voltage : VOL = 0.8 V, VOH = 2.0 V • Ports P1, P2 input : VIL = 0.16 VCC, VIH = 0.5 VCC 19 MITSUBISHI DATA BOOK SINGLE-CHIP 16-BIT MICROCOMPUTERS Vol.1 Mar. First Edition 1996 Editioned by Committee of editing of Mitsubishi Semiconductor Data Book Published by Mitsubishi Electric Corp., Semiconductor Division This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation. © 1996 MITSUBISHI ELECTRIC CORPORATION Printed in Japan