FUJITSU MB3827PFV

FUJITSU SEMICONDUCTOR
DATA SHEET
ASSP
DS04-27222-1E
For Power Supply Applications
6-ch DC/DC Converter IC
With Synchronous Rectification for voltage step-up and step-down
MB3827
■ DESCRIPTION
The MB3827 is a pulse width modulation (PWM) type 6-channel DC/DC converter IC with, synchronous rectification for voltage step-up and step-down. The MB3827 is ideal for low voltage, high efficiency, compact applications
and for down conversion and up/down conversion (with two types of voltage step-up/step-down methods allowing
input/output relations to be set independently).
In addition the MB3827 features a built-in self-supply power channel (channel 7) providing a wide range of supply
voltages, and operates from two dry-cell batteries.
This product is ideal for high performance portable devices such as digital still cameras.
■ FEATURES
•
•
•
•
•
•
•
•
Compatible with step-up/step-down switching methods (channel 1)
Compatible with step-up/step-down Zeta methods (channels 2 to 6)
Synchronous rectification (channels 1 and 2)
Low start-up voltage : 1.8 V (channel 7 for self-power supply)
Power supply voltage range : 4 V to 13 V (channels 1 to 6)
Built-in high-precision reference voltage generator : 2.5 V±1%
Oscillator frequency range : 100 kHz to 800 kHz
Error amplifier output for soft start (channels 1 to 6)
■ PACKAGE
64-pin plastic LQFP
(FPT-64P-M03)
2
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
-IN(C)5
-IN5
FB5
FB4
-IN4
DTC4
-IN(C)8
VREF
GND
VCC
CTL1-4,7
CTL5
CTL6
CS1-6
CSCP
VB
DTC1-4
DTC7
9
40
DTC2
-IN(A)6
10
39
-IN2
OUT(A)6
11
38
FB2
-IN6
12
37
FB3
FB6
13
36
-IN3
-IN(C)6
14
35
DTC3
DTC6
15
34
CT
DTC5
16
33
RT
OUT1-3
41
49
8
OUT1-2
+IN7
50
DTC1-3
VG(O)1
42
51
7
OUT1-1
-IN7-2
52
DTC1-1
VCC(O)1,2
43
53
6
VSS(O)1,2
-IN7-1
54
-IN1
OUT2-1
44
55
5
GND(O)2,3,4
FB7
56
FB1
OUT2-2
45
57
4
VCC(O)3,4
XENB1-6
58
GND(O)1
VSS(O)3,4,5,6
46
59
3
OUT3
GND(O)5,6,7
60
RB1
OUT4
47
61
2
OUT5
RB7
62
OUT1-4
OUT6
48
63
1
VCC(O)5,6,7
OUT7
64
MB3827
■ PIN ASSIGNMENT
MB3827
■ PIN DESCRIPTION
Pin No.
CH 1
CH 2
CH 3
CH 4
CH 5
Symbol
I/O
Descriptions
45
FB1
O
Channel 1 error amplifier output pin.
44
–IN1
I
Channel 1 error amplifier inverted input pin.
43
DTC1-1
I
Channel 1 step-down main side dead time control pin.
42
DTC1-3
I
Channel 1 step-up main side dead time control pin.
41
DTC1-4
I
Channel 1 step-up synchronous rectifier side dead time control pin.
52
OUT1-1
O
Channel 1 step-down main side output pin.
50
OUT1-2
O
Channel 1 step-down synchronous rectifier side output pin.
47
RB1
—
Channel 1 step-up main side output current setting pin.
49
OUT1-3
O
Channel 1 step-up main side output pin.
48
OUT1-4
O
Channel 1 step-up synchronous rectifier side output pin.
38
FB2
O
Channel 2 error amplifier output pin.
39
–IN2
I
Channel 2 error amplifier inverted input pin.
40
DTC2
I
Channel 2 dead time control pin.
55
OUT2-1
O
Channel 2 main side output pin.
57
OUT2-2
O
Channel 2 synchronous rectifier side output pin.
37
FB3
O
Channel 3 error amplifier output pin.
36
–IN3
I
Channel 3 error amplifier inverted input pin.
35
DTC3
I
Channel 3 dead time control pin.
60
OUT3
O
Channel 3 output pin.
20
FB4
O
Channel 4 error amplifier output pin.
21
–IN4
I
Channel 4 error amplifier inverted input pin.
22
DTC4
I
Channel 4 dead time control pin.
61
OUT4
O
Channel 4 output pin.
19
FB5
O
Channel 5 error amplifier output pin.
18
–IN5
I
Channel 5 error amplifier inverted input pin.
17
–IN(C)5
I
Channel 5 short detection comparator input pin.
16
DTC5
I
Channel 5 dead time control pin.
62
OUT5
O
Channel 5 output pin.
(Continued)
3
MB3827
(Continued)
Pin No.
Triangular-Wave
Oscillator Circuit
CH 7
(for self power supply)
CH 6
Symbol
I/O
10
–IN(A)6
I
Channel 6 inverted amplifier input pin.
11
OUT(A)6
O
Channel 6 inverted amplifier output pin.
13
FB6
O
Channel 6 error amplifier output pin.
12
–IN6
I
Channel 6 error amplifier inverted input pin.
14
–IN4(C)6
I
Channel 6 short detection comparator input pin.
15
DTC6
I
Channel 6 dead time control pin.
63
OUT6
O
Channel 6 output pin.
5
FB7
O
Channel 7 error amplifier output pin.
6
–IN7-1
I
Channel 7 error amplifier 1 inverted input pin.
8
+IN7
I
Channel 7 error amplifier non-inverted input pin.
7
–IN7-2
I
Channel 7 error amplifier 2 inverted input pin.
9
DTC7
I
Channel 7 dead time control pin.
1
OUT7
O
Channel 7 output pin.
2
RB7
—
Channel 7 output current setting pin.
33
RT
—
Triangular wave frequency setting resistor connection pin.
34
CT
—
Triangular wave frequency setting capacitor connection pin.
27
CTL1-4, 7
I
Power supply control circuit pin.(channel 1 to 4 and 7)
“H” level: Power supply active mode
“L” level: Standby mode
I
Channel 5 control circuit pin.
When CTL1-4,7 pins = “H” level
“H” level: Channel 5 in active mode
“L” level: Channel 5 in standby mode
Control
Circuit
28
CTL5
Descriptions
29
CTL6
I
Channel 6 control circuit pin.
When CTL1-4,7 pins = “H” level
“H” level: Channel 6 in active mode
“L” level: Channel 6 in standby mode
23
–IN(C)8
I
Short detection comparator input pin.
31
CSCP
—
Short protection circuit capacitor connection pin.
30
CS1-6
—
Soft start circuit capacitor connection pin (channel 1 to 6).
4
XENB1-6
I
VREF control pin (channel 1 to 6 output control pin).
When CTL1-4, 7 pin = “H”
“H” level: VREF “L” level, channel 1 to 6 output “OFF”
“L” level: VREF “H” level, channel 1 to 6 output “active”
(Continued)
4
MB3827
Power Supply
Circuit
(Continued)
Pin No.
Symbol
I/O
Description
26
VCC
—
Reference voltage and control circuit power supply pin.
53
VCC(O)1,2
—
Output circuit power supply pin (Channel 1, 2).
58
VCC(O)3,4
—
Output circuit power supply pin (Channel 3, 4).
64
VCC(O)5,6,7
—
Output circuit power supply pin (Channel 5, 6, 7).
54
VSS(O)1,2
—
Main side output circuit power supply pin (Channel 1, 2).
51
VG(O)1
—
Step-up synchronous rectifier side output circuit power supply pin
(Channel 1).
59
VSS(O)3,4,5,6
—
Output circuit power supply pin (Channel 3, 4, 5, 6).
24
VREF
O
Reference voltage output pin.
32
VB
O
Triangular wave oscillator regulator output pin.
25
GND
—
Ground pin.
46
GND(O)1
—
Output circuit ground pin (Channel 1).
56
GND(O)2,3,4
—
Output circuit ground pin (Channel 2, 3, 4).
3
GND(O)5,6,7
—
Output circuit ground pin (Channel 5, 6, 7).
5
MB3827
■ BLOCK DIAGRAM
• General view
FB1 45
Error
− Amp.1
+
+
−IN1 44
VB1-1
(0.50 V)
VB1-2
(0.55 V)
1.26 V
DTC1-1 43
SCP
Comp.1
−
+
+
DTC1-3 42
DTC1-4 41
53 VCC(O)1, 2
CH1
Drive
1-1
52 OUT1-1
PWM
Comp.1-2
+
−
PWM
Comp.1-3
−
−
+
VB1-4
PWM
(0.02 V) Comp.1-4
+
+
−
1.0 V
RB1
PWM
Comp.1-1
+
+
−
54 VSS(O)1, 2
Drive
1-2
50 OUT1-2
47 RB1
Drive
1-3
49 OUT1-3
51 VG(O)1
Drive
1-4
48 OUT1-4
+
−
SEL
Comp.
1.26 V
FB2 38
46 GND(O)1
Error
− Amp.2
+
+
−IN2 39
VB2
(0.04 V)
1.26 V
SCP
Comp.2
−
+
+
PWM
Comp.2-1
+
+
−
CH2
A
Drive
2-1
55 OUT2-1
Drive
2-2
57 OUT2-2
PWM
Comp.2-2
+
−
1.0 V
DTC2 40
FB3 37
Error
− Amp.3
+
+
−IN3 36
1.26 V
SCP
Comp.3
−
58 VCC(O)3, 4
CH3
PWM
Comp.3
+
+
−
Drive
3
60 OUT3
59 VSS(O)3, 4, 5, 6
+
+
1.0 V
DTC3 35
FB4 20
Error
− Amp.4
+
+
−IN4 21
CH4
PWM
Comp.4
+
+
−
1.26 V
SCP
Comp.4
−
+
+
Drive
4
61 OUT4
1.0 V
DTC4 22
56 GND(O)2, 3, 4
64 VCC(O)5, 6, 7
CH5
FB5 19
−IN5 18
Error
− Amp.5
+
+
-IN(C)5 17
1.26 V
SCP
Comp.5
−
+
+
PWM
Comp.5
+
+
−
Drive
5
62 OUT5
B
1.26 V
DTC5 16
−
−IN(A)6 10
INV
Amp.6
CH6
+
OUT(A)6 11
FB6 13
−IN6 12
Error
− Amp.6
+
+
−IN(C)6 14
1.26 V
SCP
Comp.6
−
+
+
PWM
Comp.6
+
+
−
Drive
6
63 OUT6
1.26 V
DTC6 15
FB7 5
−IN7-1 6
−
+IN7 8
+
10 kΩ
VB : 2 V
48.5 kΩ
PWM
− Comp.7
Error
Amp.7
0.77 V
Voffset
1.6 V
−
+
CH7
Drive
7
1 OUT7
30.1 kΩ
−IN7-2 7
+
2 RB7
SCP
Comp.7
−
DTC7 9
VSCP
0.9 V
SCP
Comp.8
−
−IN7(C)8 23
3 GND(O)5, 6, 7
+
1.26 V
+
CTL1-4 CS CTL
CTL5 28
Logic
CTL6 29
0.6 V
−1.8 V
−1.1 V
−1.8 V
−1.1 V
−0.8 V
−0.3 V
Buff
Buff
C
Power
Comp.
−
×0.8
4 XENB1-6
CS1-6 30
26 VCC
UVLO
OSC
2V
32
6
SCP
33
34
31
VB RT
CT
CSCP
Ref
2.5 V
24
VREF
Power
ON/OFF
CTL
25
GND
27 CTL1-4, 7
MB3827
• Enlarged view of A
FB1 45
Error
− Amp.1
+
+
−IN1 44
1.26 V
DTC1-1 43
−
+
+
SCP
Comp.1
1.0 V
DTC1-3 42
DTC1-4 41
RB1
VB1-1
(0.50 V)
VB1-2
(0.55 V)
PWM
Comp.1-1
+
+
−
CH1
Drive
1-1
PWM
Comp.1-2
+
−
PWM
Comp.1-3
−
−
+
VB1-4
PWM
(0.02 V) Comp.1-4
+
+
−
53 VCC(O)1, 2
52 OUT1-1
54 VSS(O)1, 2
Drive
1-2
50 OUT1-2
47 RB1
Drive
1-3
49 OUT1-3
51 VG(O)1
Drive
1-4
48 OUT1-4
+
−
SEL
Comp.
1.26 V
FB2 38
−IN2 39
46 GND(O)1
Error
− Amp.2
+
+
1.26 V
SCP
Comp.2
−
+
+
VB2
(0.04 V)
PWM
Comp.2-1
+
+
−
CH2
Drive
2-1
55 OUT2-1
Drive
2-2
57 OUT2-2
PWM
Comp.2-2
+
−
1.0 V
DTC2 40
FB3 37
−IN3 36
Error
− Amp.3
+
+
1.26 V
SCP
Comp.3
−
+
+
PWM
Comp.3
+
+
−
CH3
Drive
3
58 VCC(O)3, 4
60 OUT3
59 VSS(O)3, 4, 5, 6
1.0 V
DTC3 35
7
MB3827
• Enlarged view of B
FB4 20
Error
− Amp.4
+
+
−IN4 21
1.26 V
SCP
Comp.4
−
+
+
PWM
Comp.4
+
+
−
CH4
Drive
4
61 OUT4
1.0 V
DTC4 22
56 GND(O)2, 3, 4
CH5
FB5 19
Error
− Amp.5
+
+
−IN5 18
-IN(C)5 17
PWM
Comp.5
+
+
−
1.26 V
SCP
Comp.5
−
+
+
Drive
5
64 VCC(O)5, 6, 7
62 OUT5
1.26 V
DTC5 16
−IN(A)6 10
−
INV
Amp.6
CH6
+
OUT(A)6 11
FB6 13
−IN6 12
Error
− Amp.6
+
+
−IN(C)6 14
1.26 V
SCP
Comp.6
−
+
+
1.26 V
DTC6 15
8
PWM
Comp.6
+
+
−
Drive
6
63 OUT6
MB3827
• Enlarged view of C
FB7 5
−IN7-1 6
−
+IN7 8
+
10 kΩ
VB : 2 V
48.5 kΩ
PWM
− Comp.7
0.77 V −
+
Error
Amp.7
Voffset
1.6 V
CH7
Drive
7
1 OUT7
30.1 kΩ
−IN7-2 7
+
2 RB7
SCP
Comp.7
−
DTC7 9
VSCP
0.9 V
SCP
Comp.8
−
−IN7(C)8 23
3 GND(O)5, 6, 7
+
1.26 V
+
CTL1-4 CS CTL
CTL5 28
Logic
CTL6 29
−
0.6 V
−1.8 V
−1.1 V
−1.8 V
−1.1 V
−0.8 V
−0.3 V
Buff
Buff
Power
Comp.
×0.8
4 XENB1-6
CS1-6 30
26 VCC
UVLO
OSC
2V
32
SCP
33
34
31
VB RT
CT
CSCP
Ref
2.5 V
24
VREF
Power
ON/OFF
CTL
27 CTL1-4, 7
25
GND
9
MB3827
■ ABSOLUTE MAXIMUM RAGINGS
Parameter
Power supply voltage
Symbol
Conditions
VCC
VG
Rating
Unit
Min.
Max.
—
—
17
V
—
—
17
V
Output current
Io
OUT pin
—
20
mA
Peak output current
Io
OUT pin, Duty ≤ 5%
—
200
mA
Power dissipation
PD
Ta ≤ +25°C
—
1000*
mW
−55
+125
°C
Storage temperature
Tstg
—
* : The packages are mounted on the dual-sided epoxy board (10 cm × 10 cm).
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Conditions
Channel 7
Value
Unit
Min.
Typ.
Max.
1.8
9
13
V
4
9
13
V
–1
—
0
mA
Power supply voltage
VCC
Reference voltage output
current
IOR
Input voltage
VIN
+IN,−IN,−IN(C) pin
0
—
VCC – 1.8
V
Control input voltage
VCTL
CTL pin
0
—
13
V
Output current
IO
OUT pin
1
2
15
mA
Output current setting resistor
RB
RB pin
2.2
24
51
kΩ
Triangular wave oscillator
frequency
fOSC
—
100
500
800
kHz
Timing capacitor
CT
—
47
100
1000
pF
Timing resistor
RT
—
13
18
47
kΩ
CS
—
—
0.1
1.0
µF
—
1
10
µF
Soft-start capacitor
Short detection capacitor
Operating ambient
temperature
CDTC
Channel 1 to 6
—
DTC7 pin
CSCP
—
—
0.1
1.0
µF
Ta
—
–30
+25
+85
°C
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
10
MB3827
■ ELECTRICAL CHARACTERISTICS
(Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V)
Pin No.
Conditions
VREF
24
—
Output voltage
temperature stability
∆VREF
/VREF
24
Ta = –30°C to +85°C
Input stability
Line
24
Load stability
Load
Short-circuit output current
Value
Unit
Typ.
Max.
2.475
2.5
2.525
V
—
0.5*
—
%
VCC = 4 V to 13 V
–10
—
10
mV
24
VREF = 0 mA to –1 mA
–10
—
10
mV
IOS
24
VREF = 2 V
–20
–5
–1
mA
Threshold voltage
VTH
52
VCC =
2.6
2.8
3.0
V
Hysteresis width
VH
52
—
—
0.2
—
V
Reset voltage
VRST
52
—
1.35
1.50
1.65
V
Threshold voltage
VTH
1
1.3
1.5
1.7
V
Input standby voltage
VSTB
30
—
—
50
100
mV
Charge current
ICS
30
—
–1.4
–1.0
–0.6
µA
Threshold voltage
VTH
31
—
0.63
0.68
0.73
V
Input standby voltage
VSTB
31
—
—
50
100
mV
VI
31
—
—
50
100
mV
Input source current
ICSCP
31
—
–1.4
–1.0
–0.6
µA
Oscillator frequency
fOSC
52,50,49,48,
CT = 100 pF,
55,57,60,61,
R
T = 18 kΩ
62,63
450
500
550
kHz
Triangular waveform
oscillator block
(OSC)
Short circuit
detection block
(SCP)
Soft-start
block
(CS)
Reference voltage
block (Ref)
Min.
Under voltage
lockout protection
circuit block
(CH1 to 6) (UVLO)
Symbol
Under voltage
lockout protection
circuit block
(CH7) (UVLO)
Parameter
Output voltage
Input latch voltage
VCC =
Frequency voltage
stability
∆f/fdV
52,50,49,48,
55,57,60,61, VCC = 4 V to 13 V
62,63
—
1
10
%
Frequency temperature
stability
∆f/fdT
52,50,49,48,
55,57,60,61, Ta = –30°C to +85°C
62,63
—
1*
—
%
*: Standard design value.
(Continued)
11
MB3827
(Continued)
(Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V)
Parameter
Symbol
Threshold voltage
VTH
45,38,37,
FB = 1.0 V
20,19,13
VT temperature stability
∆VT
/VT
IB
Input bias current
Pin No
Error amplifier block
(CH1 to CH6)
Value
Unit
Min.
Typ.
Max.
1.45
1.50
1.55
V
45,38,37,
Ta = –30°C to +85°C
20,19,13
—
0.5*
—
%
45,39,36,2
−IN = 0 V (CH1 to 4)
1
–320
–80
—
nA
–120
–30
—
nA
18,12
−IN = 0 V (CH5,6)
Voltage gain
AV
45,38,37,
DC
20,19,13
60
100
—
dB
Frequency bandwidth
BW
45,38,37,
AV = 0 dB
20,19,13
—
1.0*
—
MHz
VOH
45,38,37,
20,19,13
—
2.2
2.4
—
V
VOL
45,38,37,
20,19,13
—
—
20
200
mV
45,38,37,
FB = 1.35 V
20,19,13
—
–2.0
–1.0
mA
50
100
—
µA
65
130
—
µA
FB = 1.35 V(CH3 to 6)
75
150
—
µA
6
−IN2 = 0V,FB = 0.55V
—
—
20
mV
7
+IN = 0 V
1.45
1.55
1.65
V
5
Ta = –30°C to +85°C
—
0.5*
—
%
7
−IN2 = VCC
—
15
30
µA
8
+IN = 0 V
–100
–20
—
nA
0
—
VCC–
0.9
V
Output voltage
Output source current
Output sink current
Error amplifier block
(CH7)
Conditions
ISOURCE
ISINK
Input offset voltage
VIO
VT temperature stability
∆VT
/VT
Input bias current
IB
FB = 1.35 V (CH1)
45,38,37,
FB = 1.35 V (CH2)
20,19,13
Common mode input
voltage rage
VCM
5
Voltage gain
AV
5
DC
60
75
—
dB
Frequency bandwidth
BW
5
AV = 0 dB
—
1.0*
—
MHz
VOH
5
—
1.1
1.3
—
V
VOL
5
—
—
20
200
mV
ISOURCE
5
FB = 0.55 V
—
–2.0
–1.0
mA
ISINK
5
FB = 0.55 V
65
130
—
µA
Output voltage
Output source current
Output sink current
—
*: Standard design value.
(Continued)
12
MB3827
(Continued)
PWM comparator
block (CH1)
(PWM Comp.-1)
Short detection
comparator block
(CH7)(SCP Comp.)
Short detection
comparator block
(CH5,6)(SCP Comp.)
Short detection
comparator block
(CH1-4) (SCP Comp.)
Inverse amplifier
block (CH6)
(INV Amp.)
(Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V)
Parameter
Symbol
Pin No.
Conditions
Threshold voltage
VTH
11
—
Input bias current
IB
10
−IN = −0.1 V
Voltage gain
AV
11
Frequency bandwidth
BW
11
VOH
11
VOL
11
ISOURCE
11
Output sink current
ISINK
11
Threshold voltage
VTH
52,50,49,
48,55,57,
60,61
Input bias current
IB
Output voltage
Output source current
Value
Unit
Min.
Typ.
Max.
–10
0
10
mV
–120
–30
—
nA
DC
60
100
—
dB
AV = 0 dB
—
1.0*
—
MHz
—
2.2
2.4
—
V
—
—
20
100
mV
OUT = 1.26 V
—
–2.0
–1.0
mA
OUT = 1.26 V
75
150
—
µA
0.97
1.00
1.03
V
–320
–80
—
nA
1.22
1.26
1.30
V
–200
–50
—
nA
0.8
0.9
1.0
V
—
44,39,36,
−IN = 0 V
21
VIO
62,63
Input bias current
IB
17,14,23
Threshold voltage
VTH
1
VT0
52
Duty cycle = 0 %
0.5
0.6
—
V
VT100
52
Duty cycle = 100 %
—
1.3
1.4
V
Input offset voltage
—
−IN(C) = 0 V
—
Threshold voltage
*: Standard design value.
(Continued)
13
MB3827
(Continued)
(Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V)
PWM comparator
block (CH3 to 6)
(PWM Comp.)
PWM comparator
block (CH2)
(PWM Comp.-2)
PWM comparator
block (CH2)
(PWM Comp.-1)
PWM comparator
block (CH1)
(PWM Comp.-4)
PWM comparator
block (CH1)
(PWM Comp.-3)
PWM comparator
block (CH1)
(PWM Comp.-2)
Parameter
Symbol
Pin No.
Conditions
VT100
50
Duty cycle = 100 %
VT0
50
VT0
Value
Unit
Min.
Typ.
Max.
0.450
0.550
—
V
Duty cycle = 0 %
—
1.250
1.350
V
49
Duty cycle = 0 %
1.0
1.1
—
V
VT100
49
Duty cycle = 100 %
—
1.8
1.9
V
VT100
48
Duty cycle = 100 %
0.980
1.080
—
V
VT0
48
Duty cycle = 0 %
—
1.780
1.880
V
VT0
55
Duty cycle = 0 %
1.0
1.1
—
V
VT100
55
Duty cycle = 100 %
—
1.8
1.9
V
VT100
57
Duty cycle = 100 %
0.960
1.060
—
V
VT0
57
Duty cycle = 0 %
—
1.760
1.860
V
60,61,62,
Duty cycle = 0 %
63
1.0
1.1
—
V
60,61,62,
Duty cycle = 100 %
63
—
1.8
1.9
V
Threshold voltage
Threshold voltage
Threshold voltage
Threshold voltage
Threshold voltage
VT0
Threshold voltage
VT100
*: Standard design value.
(Continued)
14
MB3827
(Continued)
(Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V)
Dead time control
block (CH7)
(PWM Comp.)
Dead time control
block (CH1-6)
(PWM Comp.)
PWM comparator
block (CH7)
(PWM Comp.)
Parameter
Output block
(CH1-6)
(Drive-1)
Output block
(CH1,2)
(Drive-2)
Pin No.
VT0
1
VTmax
1
Dtr
1
Conditions
Value
Unit
Min.
Typ.
Max.
0.2
0.3
—
V
—
—
0.77
0.87
V
CT=100pF,RT=18kΩ,
RB=24kΩ,RL=390kΩ
70
80
90
%
52,49,48,55,
Duty cycle = 0 %
60,61,62,63
1.0
1.1
—
V
52,49,48,55,
Duty cycle = 100 %
60,61,62,63
—
1.8
1.9
V
–1.0
–0.3
—
µA
Duty cycle = 0 %
Threshold voltage
Maximum duty cycle
VTD0
Threshold voltage
VTD100
Input current
IDTC
43,42,41,40,
DTC = 0.4 V
35,22,16,15
VTD0
1
Duty cycle = 0 %
0.2
0.3
—
V
VTD100
1
Duty cycle = 100 %
—
0.8
0.9
V
Threshold voltage
Output source current
Output block
(CH1)
(Drive-3)
Symbol
Output sink current
ISOURCE
52,55,60,
Duty ≤ 5 %, OUT= 4.4V
61,62,63
—
–90
—
mA
ISINK
52,55,60,
Duty ≤ 5 %, OUT= 9V
61,62,63
—
80
—
mA
VOH
52,55,60,
IO = −15 mA
61,62,63
3.5
4.0
—
V
VOL
52,55,60,
IO = 15 mA
61,62,63
—
100
300
mV
Output voltage
Output source current
Output sink current
Output voltage
Output source current
Output sink current
ISOURCE
50,57
Duty ≤ 5 %, OUT= 0V
—
–100
—
mA
ISINK
50,57
Duty ≤ 5 %, OUT= 4V
—
80
—
mA
VOH
50,57
IO = −15 mA
3.5
4.0
—
V
VOL
50,57
IO = 15 mA
—
100
300
mV
ISOURCE
49
RB= 24kΩ, OUT= 0.7V
–2.6
–2.0
–1.4
mA
ISINK
49
Duty ≤ 5 %, OUT= 0.7V
—
40
—
mA
*: Standard design value.
(Continued)
15
MB3827
(Continued)
(Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V)
General
Control block
(CTL5,6)
(CTL)
Control block
(CTL1 to 4,7,XENB1 to 6)
(CTL,XENB)
Output block
(CH7)
(Drive)
Output block
(CH1)
(Drive-4)
Parameter
Output source current
Output sink current
Output voltage
Output source current
Output sink current
Symbol
Pin No.
ISOURCE
48
ISINK
Value
Unit
Min.
Typ.
Max.
Duty ≤ 5 %, OUT= 5V
—
–100
—
mA
48
Duty ≤ 5 %, OUT= 2V
—
120
—
mA
VOH
48
IO = −15 mA
9.7
10
—
V
VOL
48
IO = 15 mA
—
1.0
1.3
V
ISOURCE
1
RB= 24kΩ, OUT= 0.7V
–2.6
–2.0
–1.4
mA
ISINK
1
Duty ≤ 5 %, OUT= 0.7V
—
40
—
mA
VIH
27,4
Active mode
1.5
—
13
V
VIL
27,4
Standby mode
0
—
0.5
V
ICTL
27,4
CTL=5V, XENB=5V
—
100
200
µA
VIH
28,9
Active mode
2.1
—
13
V
VIL
28,9
Standby mode
0
—
0.7
V
ICTL
28,9
CTL= 5V
—
50
100
µA
ICCS
26
CTL1-4,7= 0V
—
—
10
µA
53,58,64 CTL1-4,7= 0V
—
—
10
µA
—
—
10
µA
—
8
12
mA
CTL input condition
Input current
CTL input condition
Input current
Standby current
ICCS(O)
IG
Power supply current
* Standard design value.
16
Conditions
ICC
51
CTL1-4,7= 0V
26,53,58, CTL1-4,7= CTL5
64
=CTL6=5V
MB3827
■ TYPICAL CHARACTERISTICS
10
Reference voltage vs. power supply voltage
5
Ta = +25 °C
CTL1−4, 7 = CTL5 = CTL6 = 5 V
Reference voltage VREF (V)
Power supply current ICC (mA)
Power supply current vs. power supply voltage
8
6
4
2
0
0
2
4
6
8
10
12
14
16
Ta = +25 °C
CTL = VCC
IREF = 0 mA
2.5
0
0
2
Power supply voltage VCC (V)
4
6
8
10
12
14
16
Power supply voltage VCC (V)
Reference voltage vs. ambient temperature
Reference voltage VREF (V)
2.56
VCC = 9 V
CTL1−4, 7 = CTL5 = CTL6 = 5 V
2.54
2.52
2.5
2.48
2.46
2.44
−40
−20
0
20
40
60
80
100
Ambient temperature Ta (°C)
Reference voltage vs. control voltage
500
Ta = +25 °C
VCC = 9 V
IREF = 0 mA
Control current ICTL (µA)
Reference voltage VREF (V)
5
Control current vs. control voltage
2.5
0
0
1
2
3
Control voltage VCTL1-4,7 (V)
4
5
Ta = +25 °C
VCC = 9 V
400
CTL1−4, 7
300
200
CTL5
CTL6
100
0
0
2
4
6
8
10
12
14
16
Control voltage VCTL (V)
(Continued)
17
MB3827
(Continued)
Triangular wave upper and lower limit voltage
vs. ambient temperature
1
Ta = +25 °C
VCC = 9 V
RT = 18 kΩ
0.8
Upper
0.6
0.4
Lower
0.2
0
10
100
1000
10000
Triangular wave upper and lower
limit voltage VCT (V)
Triangular wave upper and lower
limit voltage VCT (V)
Triangular wave upper and lower limit voltage
vs. timing capacitor
1.2
VCC = 9 V
RT = 18 kΩ
CT = 100 pF
1
0.8
Upper
0.6
0.4
Lower
0.2
0
−40
Ta = +25 °C
VCC = 9 V
1000
RT = 13 kΩ
RT = 18 kΩ
RT = 30 kΩ
RT = 47 kΩ
10
10
100
1000
10000
Triangular wave oscillator frequency
fOSC (kHz)
Triangular wave oscillator frequency
fOSC (kHz)
Triangular wave oscillator frequency vs.
timing capacitor
100
460
0
20
40
60
Ambient temperature Ta (°C)
100
Ta = +25 °C
VCC = 9 V
CT = 47 pF
CT = 100 pF
CT = 220 pF
100
CT = 470 pF
CT = 680 pF
CT = 1000 pF
10
10
100
80
100
100
Maximum duty cycle Dtr (%)
Triangular wave oscillator frequency
fOSC (kHz)
480
−20
80
Maximum duty cycle vs.
triangular wave oscillator frequency (CH7)
500
440
−40
60
Timing resistor RT (Ω)
VCC = 9 V
CTL1−4, 7 = CTL5 = CTL6 = 5 V
RT = 18 kΩ
CT = 100 pF
520
40
1000
Triangular wave oscillator frequency vs.
ambient temperature
540
20
Triangular wave oscillator frequency vs.
timing resistor
Timing capacitor CT (pF)
560
0
Ambient temperature Ta (°C)
Timing capacitor CT (pF)
10000
−20
Ta = +25 °C
VCC = 9 V
90
80
70
60
50
0
200
400
600
800
1000
Triangular wave oscillator frequency
fOSC (kHz)
(Continued)
18
MB3827
(Continued)
Error amplifier gain and phase vs. frequency (CH1)
Gain AV (dB)
20
90
φ
0
0
AV
−90
−20
−40
1k
VCC = 9 V
180
Phase φ (deg)
Ta = +25 °C
40
240 kΩ
4.7 kΩ
IN − + 2.4 kΩ
44
10 µF
4.7 kΩ
1.4 V
−
+
+
45
OUT
1.26 V
−180
10 k
100 k
1M
10 M
Frequency f (Hz)
Error amplifier gain and phase vs. frequency (CH7)
Ta = +25 °C
240 kΩ
90
φ
0
0
AV
−20
−90
−40
1k
VCC = 9 V
180
Phase φ (deg)
20
IN
4.7 kΩ
− +
2.4 kΩ
10 µF
6
−
8
+
5
4.7 kΩ
OUT
1.26 V
−180
10 k
100 k
1M
10 M
Frequency f (Hz)
Power dissipation vs. ambient temperature
1200
Power dissipation PD (mW)
Gain AV (dB)
40
1000
800
600
400
200
0
−40
−20
0
20
40
60
80
100
Ambient temperature Ta (°C)
19
MB3827
■ FUNCTIONAL DESCRIPTION
1. Switching Regulator Function
(1) Reference voltage circuit
The reference voltage circuit generates a temperature-compensated reference voltage ( =: 2.50 V) using the
voltage supplied from the power supply terminal (pin 26). This voltage is used as the reference voltage for the
internal circuits of the IC. The reference voltage of up to 1mA can also be supplied to an external device from
the VREF terminal (pin 24).
(2) Triangular-wave oscillator circuit
By connecting a timing capacitor and a resistor to the CT (pin 34) and the RT (pin 33) terminals, it is possible
to generate any desired triangular oscillation waveform (CT : amplitude 0.3V to 0.8V, CT1 : amplitude 1.1V to
1.8V in phase with CT, and CT2 : amplitude 1.1V to 1.8V in inverse phase with CT). The triangular wave is input
to CT1, CT2 and the PWM comparator within the IC.
(3) Error amplifier (Error Amp.)
The error amp. is an amplifier circuit that detects the output voltage from the switching regulator and produces
the PWM control signal. The broad in-phase input voltage range of 0 V to Vcc − 1.8 V (1-6 ch) and 0 V to Vcc
− 0.9 V (channel 7) provides easy setting from external power supplies.
Also, it is possible to provide stable phase compensation for a system by setting up any desired level of loop
gain, by connecting feedback resistance and a capacitor between the error amp. output pin and the inverse input
pin.
(4) Inverter amplifier (Inv. Amp.)
The inverter amplifier detects the output voltage (negative voltage) from the switching regulator, and outputs a
control signal to the error amplifier.
(5) PWM comparator (PWM Comp.)
The voltage-pulse width modulator controls the output duty according to the input voltage.
(Channel 1 to 2, main side, and channel 3 to 7)
During the interval that the error amplifier output voltage and DTC are higher than the triangular wave,
the output transistor is turned on.
(Channel 1 step-down synchronous rectifier side)
During the interval when the error amplifier output voltage is lower than the triangular wave, the output
transistor is turned on.
(Channel 1 step-up synchronous rectifier side)
During the interval when the error amplifier output voltage and DTC3 voltage are lower than the triangular
wave, the output transistor is turned on.
(6) Output circuit
The output circuits is comprised of a totem-pole configuration on both the main side and synchronous rectifier
side, and can drive an external PNP transistor (main side) or NPN transistor (channel 1 step-up main side,
channel 7) or N-ch MOSFET (synchronous rectifier side).
20
MB3827
2. Channel Control Function
Channel on and off levels are dependent on the voltage levels of the CTL1-4,7 terminal (pin 27), XENB1-6
terminal (pin 4), CTL5 terminal (pin 28), and CTL6 terminal (pin 29).
Each Channel On/Off Setting Conditions.
Voltage level of CTL pin
Channel on/off setting conditions
CTL1-4,7
XENB1-6
CTL5
CTL6
L
X
X
X
H
X
X
H
L
L
H
Power CH7
CH1 to 4
L
H
CH6
OFF (standby state)
OFF
ON
L
H
CH5
ON
OFF
ON
ON
OFF
OFF
ON
Note: When the RB1 pin is connected to the VREF pin, the OUT1-3 and OUT1-4 pins are held at “L” level.
X : Don’t care.
3. Protective Functions
(1) Timer-latch short protection circuit
The short detection comparator in each channel detects the output voltage level, and when any channel output
voltage falls below the short detection voltage, or the −IN(C)8 terminal (pin 23) voltage falls below the reference
voltage, the timer circuit starts operating and the capacitor CSCP connected to the CSCP terminal (pin 31) starts
charging.
When the capacitor voltage reaches approximately 0.68 V, the output transistor is turned off and the dead time
becomes 100%.
When actuated, this protection circuit can be reset by turning on the power supply again.(See “METHOD OF
SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT”.)
(2) Under voltage lockout protection circuit
A transient state at power-on or a momentary drop of the power supply voltage causes the control IC to malfunction, resulting in system breakdown or system deterioration. Malfunction like the above-mentioned will be
prevented, by detecting the internal reference voltage with respect to the power supply voltage, this protection
circuit resets the latch circuit to turn off the output transistor and set the duty (OFF) = 100 %, while at the same
time holding the CSCP terminal (pin 31) at the “L”. The reset is cleared when the power supply voltage becomes
greater than or equal to the threshold voltage level of this protection circuit.
21
MB3827
4. Soft Start Operation
(1) Operating Description
• Simultaneous “H” level of CTL1-4, 7 terminal, and CTL5 terminal, CTL6 terminal
When CTL1-4, 7 terminal (pin 27) , and CTL5 terminal (pin 28) , CTL6 terminal (pin 29) are started at the same
time, the capacitor (CDTC) connected to DTC7 terminal (pin 9) starts charging. When the DTC7 terminal (pin 9)
voltage reaches 0.6V, the capacitors (CS) connected to the CS1-6 terminal (pin 30) start charging. The error
amplifier thus provides the output voltage from channels 1 to 6 with a soft start operation in proportion to the
voltage at pin CS1-6.
CTL1−4, 7 (pin 27)
CTL5 (pin 28)
CTL6 (pin 29)
DTC7 (pin 9)
0.77 V
0.6 V
0.3 V
Channel 7
output voltage
1.26 V
CS1−6 (pin 30)
Channel 1 to 6
output voltage
t
(1) (2) (3)
(4)
(1) to (2) : Channel 7 soft start interval
(3) to (4) : Channel 1 to 6 soft start interval
22
MB3827
• Starting CTL5 (CTL6) after a soft start on channels 1 to 4 and 7
When CTL5 (CTL6) is started after a soft start on channels 1-4 and 7, the capacitor (CS) connected to the CS1-6
terminal (pin 30) start charging. The error amplifier thus provides the output voltage from channel 5 (6) with a
soft start operation in comparison with the voltage at pin CS1-6.
CTL1−4, 7 (pin 27)
0.77 V
0.6 V
0.3 V
DTC7 (pin 9)
Channel 7
output voltage
1.26 V
CS1−6 (pin 30)
Channel 1 to 4
output voltage
CTL5 (pin 28)
(CTL6 (pin 29))
Channel 5
output voltage VO5
(Channel 6
output voltage VO6)
t
(1) (2) (3)
(4)
(5)’
(5)
(6)
(6)’
(1) to (2) : Channel 7 soft start interval
(3) to (4) : Channel 1 to 4 soft start interval
(5) to (6) : Channel 5 (channel 6) soft start interval
(5)’ to (6)’: Channel 5 (channel 6) soft start interval (wave form) as CTL5 (CTL6)
goes “L” to “H” during a soft start on channels 1-4.
23
MB3827
(2) Setting Methods
• Channel 7 soft start interval
Before CTL1-4, 7 are ON: Vin is applied along path (A) below and charges CFB7.
After CTL1-4, 7 are ON: Along path (B), CFB7 is discharged by R2, R3, D1 at I1 to 15 µA on a time constant,
and with the fall of V-IN7-1, channel 7 is activated with a soft start.
Note : The short detection function is suspended while VDTC is below 0.6V.
Channel 7 equivalent circuit of soft start section
A
FB7
CFB7
B
−
−IN7−1
VSS (O)
Error
Amp.7
+
+IN7
R1
100 kΩ
100 kΩ
R3
10 kΩ
Vin
−IN7−2
: Before CTL1-4, 7 are ON
D1
R2
60 kΩ
: After CTL1-4, 7 are ON
I1
15 µA
Channel 7 soft start operating waveform
V −IN7−1
VSS (O)
V −IN7−1
VSS (O)
=: 1.55 V
(V)
VDTC7
VCT
VFB7
VFB7
0.8 V
0.77 V
0.6 V
VCT
0.3 V
VDTC7
t
CTL1−4, 7
Soft start operate
Short detection suspended during this interval
24
MB3827
• Channel 1 to 6 soft start time
tS(sec) =: 1.26 × Cs (µF)
Note : The short detection function operates during soft starts on channel 1 to channel 6.
■ METHOD OF SETTING THE OSCILLATOR FREQUENCY SETTING
The oscillator frequency can be set by the timing resistor RT connected to the RT pin (pin 33), and the timing
capacitor CT connected to the CT pin (pin 34).
Oscillator frequency:
fOSC [kHz] =:
900000
CT [pF] × RT [kΩ]
25
MB3827
■ METHODS OF SETTING THE OUTPUT VOLTAGE
1. Channel 1 to 4
VO
FB1
VO =
15
R1
−IN1
R2
(R1 + R2)
Error
Amp.
−
+
+
14
1.26 V
R2
1.26 V
SCP
Comp.
−
+
+
1.0 V
2. Channel 5
VO
VO =
R1
R2
18
−IN5
R3
−
+
+
Error
Amp.5
1.26 V
17
−IN (C) 5
−
+
+
1.26 V
26
SCP
Comp.5
1.26 V
R3
(R1 + R2 + R3)
MB3827
3. Channel 6
VO
R1
−IN (A) 6
10
−
INV
Amp.6
VO =
V−IN (A) 6 − VOUT (A) 6
R1
R2
[ VOUT (A) 6 = V−IN6 ]
+
R2
OUT (A) 6
11
R3
Error
Amp.6
12
−IN6
−
+
+
1.26 V
27
MB3827
■ SAMPLE POWER SUPPLY USING SELF-POWER SUPPLY (Channel 7)
The MB3827 has a built-in self-supply channel (channel 7), capable of supplying the IC with power through
transformer winding, with low input voltage (Vin ≥ 1.8V) drive capability. Following figure shows a sample of a
power supply using the transformer.
Vin
VG (O)
VSS (O)
H
FB7
−IN7−1
H
+IN7
I
5
6
−
8
+
10 kΩ
Voffset
1.6 V
−IN7−2
I
7
Error
Amp.7
1
OUT7
2
RB7
VCC
VCC (O)
Note: The following settings are shown in “APPLICATION EXAMPLE”.
• VSS(0) is Vin −1.6V, from the voltage offset between −IN7-1 and −IN7-2.
• VCC and VCC(0) are set at the winding that produces Vin +1.6V.
• VG(0) is set at the winding that produces 8V.
Note that because channels 1-6 operate at Vcc ≥ 4V, Vcc and Vcc(0) must be set at the winding that produces
VIN + 2.2V in order to operate at VIN ≥ 1.8V.
28
MB3827
■ METHOD OF SETTING THE OUTPUT CURRENT
“Output circuit (main side)” shows the configuration of the output circuits (Drive1-3,Drive7), and “Output current
waveform” illustrates how the source current value of the output current waveform has a constant current setting
(When channel 1 operates as a step-up unit). Note that the source current is set by the following formula
Output source current = (VB/RB) × 80 =: 48/RB [A] (VB =: 0.6V)
Output circuit (main side)
VCC (O)
80I
Source
current setting
External NPN transistor
× 33
Output sourrce current
OUT
Output sink current
I
Sink current
setting
70 kΩ
× 33
RB
0.6 V
RB
VB =: 0.6V
GND (O)
Output current waveform
Output source current (peak)
Output source current
Output current
0
Output sink current (peak)
t
29
MB3827
■ METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION
CIRCUIT
The short detection comparator (SCP comparator) in each of the channels constantly compares the error
amplifier output level to the reference voltage and the −IN(C)8 terminal (pin 23).
While the switching regulator load conditions are stable on all channels, or when the voltage level at the −IN(C)8
pin is higher than the reference voltage, LOG_SCP output remains at “H” level, transistor Q1 is on, and the
CSCP terminal (pin 31) is held at input standby voltage (VSTB =: 50mV).
If the load conditions change rapidly due to a short-circuiting of load, causing the output voltage to drop, or if
the voltage at the −IN(C)8 terminal falls below the reference voltage level, the output from the short detection
comparator on the corresponding channel or the input at the −IN(C)8 terminal goes to “H” level. This causes
transistor Q1 to turn off and the external short protection capacitor CSCP connected to the CSCP pin to charge
at 1.0 µA.
Short Detection Time (tPE)
tPE(sec) =: 0.68 × CSCP (µF)
When the capacitor CSCP is charged to the threshold voltage VTH =: 0.68 V the SR latch is set, and the external
PNP is turned off (dead time is set to 100%). At this point the SR latch input is closed and the CSCP terminal
is held at input latch voltage (VI =: 50 mV).
External PNP transistor
Protection timer-latch short protection circuit
A
R1
SCP
Comp.1
−
44
−IN1
Drive
1−1
+
R2
52
OUT1−1
1.0 V
Drive
1−2
SCP
Comp.8
−
23
−IN (C) 8
50
OUT1−2
+
LOG_SCP
1.26 V
Drive
7
1 µA
CSCP
bias
bias
31
CSCP
30
1
OUT7
S
Q1
R
Timer-latch short
protection circuit
UVLO
Ref
Power
ON/OFF CTL
27
CTL1−4, 7
MB3827
■ TREATMENT WITHOUT USING CSCP
When you do not use the timer-latch short protection circuit, connect the CSCP terminal (pin 31) to GND with
the shortest distance.
Treatment when not using CSCP
CSCP
31
■ PROCESSING WITHOUT USING CS PIN
When not using the soft start function on channels 1 to 6, the CS1-6 terminal (pin 30)should be left open.
When not using the soft start function on channel 7, the DTC7 terminal (pin 9) should be left open.
When no soft start time is set
CS1−6
30
“Open”
“Open”
9
DTC7
31
MB3827
■ METHOD OF SETTING THE DEAD TIME
When setting step-up/step-down switching, Zeta type, or fly-back type step-up or inverter output, the output
transistor at start-up is in full-on (ON duty cycle = 100%) state. To prevent this, the DTC voltage from the DTC11 terminal (pin 43) to the DTC6 terminal (pin 15) voltage is determined from the VREF voltage, as shown in
following figure , so that the output transistor dead time (the maximum value of the ON interval) can be set easily.
When the voltage on the DTC5 and DTC6 terminals is lower than the triangular-wave output voltage from the
oscillator, the output transistor turns off. The dead time calculation formula assuming that triangular-wave amplitude =: 0.7 V and triangular-wave maximum voltage =: 1.8 V is given below.
DUTY(ON)max =:
Vdt − 1.1
0.7
× 100[%], Vdt =
Rb
× VREF
Ra + Rb
When you do not use these DTC5 and DTC6 terminals, connect then to VREF terminal (pin 24) as shown
following figure (Not setting the channel 5,6 dead time).
Setting the channel 5, 6 dead time (same as for other channels)
VREF
24
DTC5
16
VREF
24
Ra
Ra
DTC6
Rb
15
Vdt
Rb
Not setting the channel 5,6 dead time (same as for other channels)
32
VREF
24
DTC5
16
VREF
24
DTC6
15
Vdt
MB3827
■ PROCESSING WHEN NOT USING THE XENB1-6 PIN
When VREF control (channel 1 to 6 output control) is not used, the XENB1-6 terminal (pin 4) should be shorted
to GND using the shortest available connection.
When not using the XENB1-6 pin
4
XNB1−6
■ PROCESSING WHEN NOT USING THE CHANNEL 6 INV AMP.
When the channel 6 INV amplifier is not in use, the -IN(A)6 terminal (pin 10), and OUT(A)6 terminal (pin 11)
should be shorted using the shortest available connection.
When not using the channel 6 INV Amp.
10
−IN(A)6
11
OUT(A)6
33
MB3827
■ APPLICATION EXAMPLE
• General view
A
0.1 µF
FB1 45
36 kΩ
Error
− Amp.1
+
+
1 KΩ
44
−IN1
12 kΩ
VB1-1
PWM
(0.50 V) Comp.1-1
+
+
−
VB1-2
(0.55 V) PWM
Comp1-2.
+
1.26 V
DTC1-1
43
SCP
Comp.1
−
+
+
22 kΩ
DTC1-3
−
PWM
Comp.1-3
−
−
+
VB1-4 PWM
(0.02 V) Comp.1-4
+
+
−
1.0 V
42
47 kΩ
20 kΩ
DTC1-4 41
18 kΩ
RB1
22 µH CPH3403
160 Ω
OUT1-1
Drive
1-1
U1FWJ44N
52
54
Drive
1-2
Vo1
(5 V)
A
U1FWJ44N
FMMT717
VCC(O)1, 2
53
CH1
RL1
50 Ω
3300 pF
VSS(O)1, 2
50 OUT1-2
100 pF
10 kΩ
47
CPH3403 FMMT617 4.7 µF
RB1
OUT1-3
49
Drive
1-3
VG(O)1
51
OUT1-4
48
Drive
1-4
U1FWJ44N
+
−
B
SEL
Comp.
1.26 V
0.1 µF
FB2 38
36 kΩ
GND(O)1
46
Error
− Amp.2
+
+
1 KΩ
39
−IN2
PWM
Comp.2-1
+
+
−
12 kΩ
VB2
(0.04 V) PWM
Comp.2-2
+
1.26 V
SCP
Comp.2
−
+
+
22 µH
91 Ω
OUT2-1
55
Drive
2-1
22 µH
A
U1FWJ44N
3300 pF
RL2
50 Ω
4.7 µF
OUT2-2
57
Drive
2-2
−
Vo2
(5 V)
B
4.7 µF
FMMT717
CH2
CPH3403
1.0 V
22 kΩ
DTC2
40
47 kΩ
C
0.1 µF
FB3 37
22 kΩ
Error
− Amp.3
+
+
1 KΩ
36
−IN3
16 kΩ
24 kΩ DTC3
PWM
Comp.3
+
+
−
1.26 V
SCP
Comp.3
−
+
+
58
CH3
22 µH
VCC(O)
3, 4
91 Ω
OUT3
60
Drive
3
59
Vo3
(3 V)
C
4.7 µF
FMMT717
U1FWJ44N
3300 pF
VSS(O)
3, 4, 5, 6
22 µH
1.0 V
35
47 kΩ
0.1 µF
D
FB4
20
1 KΩ
21
−IN4
22 kΩ
VIN
(3.6 V)
Error
− Amp.4
+
+
16 kΩ
22 µH
91 Ω
OUT4
61
Drive
4
4.7 µF
RL4
13 Ω
1.0 V
22
56
E
0.1 µF
150 kΩ
FB5
Vo2
(5.0 V)
GND(O)
2, 3, 4
Vo5-1
(15 V)
E
64
CH5
19
1 KΩ
18
−IN5
Error
− Amp.5
+
+
15 kΩ
-IN(C)5
U1FWJ44N
22 µH
3300 pF
47 kΩ
13 kΩ
Vo4
(3 V)
D
4.7 µF
FMMT717
CH4
PWM
Comp.4
+
+
−
1.26 V
SCP
Comp.4
−
+
+
24 kΩ DTC4
RL3
13 Ω
4.7 µF
PWM
Comp.5
+
+
−
Drive
5
1.26 V
SCP
Comp.5
−
+
+
17
VCC(O)
5, 6, 7
62
FMMT717
MA796
820 Ω
OUT5
RL5-1
1.5 kΩ
4.7 µF
Vo5-2
(−7.5 V)
3300 pF
MA796
4.7 µF
RL5-2
3 kΩ
B
1.26 V
24 kΩ
DTC5
16
47 kΩ
F
56 kΩ
−IN(A)6
−
10
10 kΩ
OUT(A)6
11
0.1 µF
FB6 13
10 kΩ
1 KΩ
−IN6 12
47 kΩ−IN(C)6
CH6
INV
Amp.6
18 kΩ
27 kΩ
Error
− Amp.6
+
+
Vo6-2
F
(−7 V)
FMMT717
Vo2(5 V) Vo6-1
(11 V)
MA796 4.7 µF
PWM
Comp.6
+
+
−
14
RL6-1
3 kΩ
820 Ω
OUT6
63
Drive
6
1.26 V
SCP
Comp.6
−
+
+
G
MA796
Vo6-3
3300 pF
MA796 −14 V
4.7 µF
RL6-2
1 kΩ
4.7 µF RL6-3
VG(O) 3.9 kΩ
(8 V)
1.26 V
24 kΩ DTC6
VREF
G
2SD1621
+
15
47 kΩ
VSS(O)
(2 V)
H
I
RB491D
FB7
0.1 µF
−IN7-1
H
+IN7
5
−
6
+
8
10 kΩ
−IN7-2
I
VB : 2 V
48.5 kΩ
PWM
− Comp.7
0.77 V −
+
Error
Amp.7
Voffset
1.6 V
4.7 µF
MA796
Drive
7
1
OUT7
100 pF
MA796
24 kΩ
2
FMMT617
RB7
SCP
Comp.7
4.7 µF
VCC(O)
(5.2 V)
9
−
23
VSCP
0.9 V
SCP
Comp.8
−
1 µF
−IN(C)8
4.7 µF
30.1 kΩ
7
+
DTC7
CH7
3
GND(O)
5, 6, 7
+
1.26 V
FMMT717: ZETEX plc.
FMMT617: ZETEX plc.
CPH3403: SANYO Electric Co., Ltd.
U1FWJ44N:TOSHIBA CORPORATION
MA796:
Matsushita Electronic
Components Co., Ltd.
2SD1621: SANYO Electric Co., Ltd.
RB491D: ROHM CO.LTD
+
CTL1-4 CS CTL
CTL5 28
Logic
CTL6 29
0.6 V
−1.8 V
−1.1 V
−1.8 V
−1.1 V
−0.8 V
−0.3 V
Buff
Buff
CS1-6
C
Power
Comp.
−
×0.8
4 XENB1-6
30
26
UVLO
VCC
0.1 µF
OSC
2V
32
VB
0.1 µF
33
34
RT
18 kΩ
SCP
CT
100 pF
31
CSCP
0.1 µF
Ref
Power
ON/OFF
CTL
2.5 V
24
25
VREF
GND
0.1 µF
34
H: Power/CH1 to 6 in OFF
L: Control by CTL terminal function
27 CTL1-4, 7
H: ON (Power/CH1 to 4,7)
L: OFF (Standby mode)
MB3827
• Enlarged view of A
A
0.1 µF
FB1 45
36 kΩ
Error
− Amp.1
+
+
1 KΩ
44
−IN1
12 kΩ
1.26 V
DTC1-1
43
−
+
+
22 kΩ
DTC1-3
SCP
Comp.1
1.0 V
42
47 kΩ
20 kΩ
DTC1-4 41
18 kΩ
RB1
VB1-1
(0.50 V)
VB1-2
(0.55 V)
PWM
Comp.1-1
+
+
−
CH1
Drive
1-1
PWM
Comp1-2.
+
−
PWM
Comp.1-3
−
−
+
VB1-4
PWM
(0.02 V) Comp.1-4
+
+
−
VCC(O)1, 2
53
52
54
Drive
1-2
Drive
1-3
FMMT717
Vo1
(5 V)
A
U1FWJ44N
22 µH CPH3403
160 Ω
OUT1-1
U1FWJ44N
50 OUT1-2
100 pF
10 kΩ
47
RB1
OUT1-3
49
CPH3403 FMMT617 4.7 µF
VG(O)1
51
Drive
1-4
OUT1-4
48
U1FWJ44N
+
−
B
0.1 µF
FB2 38
36 kΩ
1 KΩ
39
−IN2
SEL
Comp.
1.26 V
1.26 V
SCP
Comp.2
−
+
+
22 kΩ
GND(O)1
46
Error
− Amp.2
+
+
12 kΩ
RL1
50 Ω
3300 pF
VSS(O)1, 2
VB2
(0.04 V)
PWM
Comp.2-1
+
+
−
CH2
Drive
2-1
91 Ω
OUT2-1
55
22 µH
3300 pF
Drive
2-2
B
Vo2
(5 V)
22 µH
PWM
Comp.2-2
+
−
4.7 µF
FMMT717
U1FWJ44N
4.7 µF
OUT2-2
57
RL2
50 Ω
CPH3403
1.0 V
DTC2
40
47 kΩ
C
22 kΩ
0.1 µF
FB3 37
1 KΩ
36
−IN3
16 kΩ
24 kΩ DTC3
C
Error
− Amp.3
+
+
1.26 V
SCP
Comp.3
−
+
+
PWM
Comp.3
+
+
−
CH3
Drive
3
58
FMMT717
VCC(O)
3, 4
4.7 µF
91 Ω
OUT3
60
59
Vo3
(3 V)
3300 pF
VSS(O)
3, 4, 5, 6
22 µH
U1FWJ44N
22 µH
4.7 µF
RL3
13 Ω
1.0 V
35
47 kΩ
FMMT717: ZETEX plc.
FMMT617: ZETEX plc.
CPH3403: SANYO Electric Co., Ltd.
U1FWJ44N:TOSHIBA CORPORATION
MA796:
Matsushita Electronic
Components Co., Ltd.
2SD1621: SANYO Electric Co., Ltd.
RB491D: ROHM CO.LTD
35
MB3827
• Enlarged view of B
D
0.1 µF
FB4
20
1 KΩ
21
−IN4
22 kΩ
VIN
(3.6 V)
Error
− Amp.4
+
+
16 kΩ
1.26 V
SCP
Comp.4
−
+
+
24 kΩ DTC4
PWM
Comp.4
+
+
−
CH4
Drive
4
91 Ω
OUT4
61
4.7 µF
RL4
13 Ω
1.0 V
22
56
Vo2
(5.0 V)
GND(O)
2, 3, 4
Vo5-1
(15 V)
E
CH5
19
1 KΩ
18
−IN5
Error
− Amp.5
+
+
15 kΩ
24 kΩ
U1FWJ44N
22 µH
3300 pF
E
0.1 µF
150 kΩ
FB5
-IN(C)5
Vo4
(3 V)
22 µH
47 kΩ
13 kΩ
D
4.7 µF
FMMT717
17
PWM
Comp.5
+
+
−
1.26 V
SCP
Comp.5
−
+
+
Drive
5
64
VCC(O)
5, 6, 7
62
FMMT717
MA796
820 Ω
OUT5
RL5-1
1.5 kΩ
4.7 µF
Vo5-2
(−7.5 V)
3300 pF
MA796
4.7 µF
RL5-2
3 kΩ
1.26 V
DTC5
16
47 kΩ
F
56 kΩ
−IN(A)6
10
10 kΩ
14
G
18 kΩ
2SD1621
27 kΩ
Error
− Amp.6
+
+
1.26 V
SCP
Comp.6
−
+
+
1.26 V
24 kΩ DTC6
15
47 kΩ
FMMT717: ZETEX plc.
FMMT617: ZETEX plc.
CPH3403: SANYO Electric Co., Ltd.
U1FWJ44N:TOSHIBA CORPORATION
MA796:
Matsushita Electronic
Components Co., Ltd.
2SD1621: SANYO Electric Co., Ltd.
RB491D: ROHM CO.LTD
36
VREF
G
+
OUT(A)6
11
0.1 µF
FB6 13
10 kΩ
1 KΩ
−IN6 12
47 kΩ−IN(C)6
−
CH6
INV
Amp.6
PWM
Comp.6
+
+
−
Vo6-2
F
(−7 V)
FMMT717
Vo2(5 V) Vo6-1
(11 V)
MA796 4.7 µF
Drive
6
820 Ω
OUT6
63
RL6-1
3 kΩ
MA796
Vo6-3
3300 pF
MA796 −14 V
4.7 µF
RL6-2
1 kΩ
4.7 µF RL6-3
3.9 kΩ
MB3827
• Enlarged view of C
VG(O)
(8 V)
VSS(O)
(2 V)
H
I
RB491D
FB7
0.1 µF
−IN7-1
H
+IN7
5
6
−
8
+
10 kΩ
−IN7-2
I
VB : 2 V
48.5 kΩ
PWM
− Comp.7
0.77 V −
+
Error
Amp.7
Voffset
1.6 V
4.7 µF
MA796
OUT7
1
100 pF
Drive
7
MA796
24 kΩ
2
FMMT617
RB7
7
SCP
Comp.7
4.7 µF
VCC(O)
(5.2 V)
9
−
23
VSCP
0.9 V
SCP
Comp.8
−
1 µF
−IN(C)8
4.7 µF
30.1 kΩ
+
DTC7
CH7
3
GND(O)
5, 6, 7
+
1.26 V
+
CTL1-4 CS CTL
CTL5 28
Logic
CTL6 29
−
0.6 V
−1.8 V
−1.1 V
−1.8 V
−1.1 V
−0.8 V
−0.3 V
Buff
Buff
CS1-6
Power
Comp.
×0.8
4 XENB1-6
30
26
UVLO
VCC
0.1 µF
OSC
2V
32
VB
0.1 µF
33
34
RT
18 kΩ
SCP
CT
100 pF
31
CSCP
0.1 µF
Ref
Power
ON/OFF
CTL
H: Power/CH1 to 6 in OFF
L: Control by CTL terminal
function
27 CTL1-4, 7
H: ON (Power/CH1 to 4,7)
L: OFF (Standby mode)
2.5 V
24
25
VREF
GND
0.1 µF
FMMT717: ZETEX plc.
FMMT617: ZETEX plc.
CPH3403: SANYO Electric Co., Ltd.
U1FWJ44N:TOSHIBA CORPORATION
MA796:
Matsushita Electronic
Components Co., Ltd.
2SD1621: SANYO Electric Co., Ltd.
RB491D: ROHM CO.LTD
37
MB3827
■ REFERENCE DATA
Efficiency vs. load current (ch1, step-up/step-down switching method)
100
5V output
Vo1
(5 V)
A
Iin
Vin = 4.2 V
Vin
Vin = 6 V
22 µH
90
to OUT1-1
Efficiency η (%)
Vin = 3 V
IL
Vin = 3.6 V
80
to OUT1-2
Vin = 2.5 V
70
4.7 µF
to OUT1-3
to OUT1-4
60
η = Vo1 × IL × 100 (%)
Vin × Iin
50
0
50
100
150
200
250
300
350
400
450
500
Load current IL (mA)
Efficiency vs. load current (ch2, Zeta Method with Synchronous Rectification)
100
5V output
Efficiency η (%)
90
Vin = 4.2 V
Vin = 6 V
80
Iin
Vin = 3 V
4.7 µF
Vin
22 µH
Vin = 3.6 V
70
Vin = 2.5 V
to OUT2-1
B
Vo2
(5 V)
22 µH
IL
4.7 µF
60
to OUT2-2
η = Vo2 × IL × 100 (%)
Vin × Iin
50
0
50
100
150
200
250
300
350
Load current IL (mA)
38
400
450
500
MB3827
■ USAGE PRECAUTIONS
1. Never use settings exceeding maximum rated conditions.
Exceeding maximum rated conditions may cause permanent damage to the LSI.
Also, it is recommended that recommended operating conditions be observed in normal use.
Exceeding recommended operating conditions may adversely affect LSI reliability.
2. Use this device within recommended operating conditions.
Recommended operating conditions are values within which normal LSI operation is warranted. Standard electrical characteristics are warranted within the range of recommended operating conditions and within the listed
conditions for each parameter.
3. Printed circuit board ground lines should be set up with consideration for common impedance.
4. Take appropriate static electricity measures.
•
•
•
•
Containers for semiconductor materials should have anti-static protection or be made of conductive material.
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
Work platforms, tools, and instruments should be properly grounded.
Working personnel should be grounded with resistance of 250 kΩ to 1 mΩ between body and ground.
■ ORDERING INFORMATION
Part number
MB3827PFV
Package
Remarks
64-pin plastic LQFP
(FPT-64P-M03)
39
MB3827
■ PACKAGE DIMENSION
64-pin Plastic LQFP
(FPT-64P-M03)
∗Pins width and pins thickness include plating thickness.
12.00±0.20(.472±.008)SQ
10.00±0.10(.394±.004)SQ
48
33
49
32
0.08(.003)
Details of "A" part
INDEX
+0.20
1.50 –0.10
+.008
(Mounting height)
.059 –.004
64
17
"A"
LEAD No.
1
0.50±0.08
(.020±.003)
0~8°
16
0.18
.007
+0.08
–0.03
+.003
–.001
0.08(.003)
M
0.145±0.055
(.006±.002)
0.50±0.20
(.020±.008)
0.45/0.75
(.018/.030)
C
0.10±0.10
(.004±.004)
(Stand off)
0.25(.010)
1998 FUJITSU LIMITED F64009S-3C-6
Dimensions in: mm (inches)
40
MB3827
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
F9906
 FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications,
and are not intended to be incorporated in devices for actual use.
Also, FUJITSU is unable to assume responsibility for
infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and measurement
equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have an inherent chance of failure.
You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for
export of those products from Japan.