FUJITSU SEMICONDUCTOR DATA SHEET ASSP DS04-27222-1E For Power Supply Applications 6-ch DC/DC Converter IC With Synchronous Rectification for voltage step-up and step-down MB3827 ■ DESCRIPTION The MB3827 is a pulse width modulation (PWM) type 6-channel DC/DC converter IC with, synchronous rectification for voltage step-up and step-down. The MB3827 is ideal for low voltage, high efficiency, compact applications and for down conversion and up/down conversion (with two types of voltage step-up/step-down methods allowing input/output relations to be set independently). In addition the MB3827 features a built-in self-supply power channel (channel 7) providing a wide range of supply voltages, and operates from two dry-cell batteries. This product is ideal for high performance portable devices such as digital still cameras. ■ FEATURES • • • • • • • • Compatible with step-up/step-down switching methods (channel 1) Compatible with step-up/step-down Zeta methods (channels 2 to 6) Synchronous rectification (channels 1 and 2) Low start-up voltage : 1.8 V (channel 7 for self-power supply) Power supply voltage range : 4 V to 13 V (channels 1 to 6) Built-in high-precision reference voltage generator : 2.5 V±1% Oscillator frequency range : 100 kHz to 800 kHz Error amplifier output for soft start (channels 1 to 6) ■ PACKAGE 64-pin plastic LQFP (FPT-64P-M03) 2 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 -IN(C)5 -IN5 FB5 FB4 -IN4 DTC4 -IN(C)8 VREF GND VCC CTL1-4,7 CTL5 CTL6 CS1-6 CSCP VB DTC1-4 DTC7 9 40 DTC2 -IN(A)6 10 39 -IN2 OUT(A)6 11 38 FB2 -IN6 12 37 FB3 FB6 13 36 -IN3 -IN(C)6 14 35 DTC3 DTC6 15 34 CT DTC5 16 33 RT OUT1-3 41 49 8 OUT1-2 +IN7 50 DTC1-3 VG(O)1 42 51 7 OUT1-1 -IN7-2 52 DTC1-1 VCC(O)1,2 43 53 6 VSS(O)1,2 -IN7-1 54 -IN1 OUT2-1 44 55 5 GND(O)2,3,4 FB7 56 FB1 OUT2-2 45 57 4 VCC(O)3,4 XENB1-6 58 GND(O)1 VSS(O)3,4,5,6 46 59 3 OUT3 GND(O)5,6,7 60 RB1 OUT4 47 61 2 OUT5 RB7 62 OUT1-4 OUT6 48 63 1 VCC(O)5,6,7 OUT7 64 MB3827 ■ PIN ASSIGNMENT MB3827 ■ PIN DESCRIPTION Pin No. CH 1 CH 2 CH 3 CH 4 CH 5 Symbol I/O Descriptions 45 FB1 O Channel 1 error amplifier output pin. 44 –IN1 I Channel 1 error amplifier inverted input pin. 43 DTC1-1 I Channel 1 step-down main side dead time control pin. 42 DTC1-3 I Channel 1 step-up main side dead time control pin. 41 DTC1-4 I Channel 1 step-up synchronous rectifier side dead time control pin. 52 OUT1-1 O Channel 1 step-down main side output pin. 50 OUT1-2 O Channel 1 step-down synchronous rectifier side output pin. 47 RB1 — Channel 1 step-up main side output current setting pin. 49 OUT1-3 O Channel 1 step-up main side output pin. 48 OUT1-4 O Channel 1 step-up synchronous rectifier side output pin. 38 FB2 O Channel 2 error amplifier output pin. 39 –IN2 I Channel 2 error amplifier inverted input pin. 40 DTC2 I Channel 2 dead time control pin. 55 OUT2-1 O Channel 2 main side output pin. 57 OUT2-2 O Channel 2 synchronous rectifier side output pin. 37 FB3 O Channel 3 error amplifier output pin. 36 –IN3 I Channel 3 error amplifier inverted input pin. 35 DTC3 I Channel 3 dead time control pin. 60 OUT3 O Channel 3 output pin. 20 FB4 O Channel 4 error amplifier output pin. 21 –IN4 I Channel 4 error amplifier inverted input pin. 22 DTC4 I Channel 4 dead time control pin. 61 OUT4 O Channel 4 output pin. 19 FB5 O Channel 5 error amplifier output pin. 18 –IN5 I Channel 5 error amplifier inverted input pin. 17 –IN(C)5 I Channel 5 short detection comparator input pin. 16 DTC5 I Channel 5 dead time control pin. 62 OUT5 O Channel 5 output pin. (Continued) 3 MB3827 (Continued) Pin No. Triangular-Wave Oscillator Circuit CH 7 (for self power supply) CH 6 Symbol I/O 10 –IN(A)6 I Channel 6 inverted amplifier input pin. 11 OUT(A)6 O Channel 6 inverted amplifier output pin. 13 FB6 O Channel 6 error amplifier output pin. 12 –IN6 I Channel 6 error amplifier inverted input pin. 14 –IN4(C)6 I Channel 6 short detection comparator input pin. 15 DTC6 I Channel 6 dead time control pin. 63 OUT6 O Channel 6 output pin. 5 FB7 O Channel 7 error amplifier output pin. 6 –IN7-1 I Channel 7 error amplifier 1 inverted input pin. 8 +IN7 I Channel 7 error amplifier non-inverted input pin. 7 –IN7-2 I Channel 7 error amplifier 2 inverted input pin. 9 DTC7 I Channel 7 dead time control pin. 1 OUT7 O Channel 7 output pin. 2 RB7 — Channel 7 output current setting pin. 33 RT — Triangular wave frequency setting resistor connection pin. 34 CT — Triangular wave frequency setting capacitor connection pin. 27 CTL1-4, 7 I Power supply control circuit pin.(channel 1 to 4 and 7) “H” level: Power supply active mode “L” level: Standby mode I Channel 5 control circuit pin. When CTL1-4,7 pins = “H” level “H” level: Channel 5 in active mode “L” level: Channel 5 in standby mode Control Circuit 28 CTL5 Descriptions 29 CTL6 I Channel 6 control circuit pin. When CTL1-4,7 pins = “H” level “H” level: Channel 6 in active mode “L” level: Channel 6 in standby mode 23 –IN(C)8 I Short detection comparator input pin. 31 CSCP — Short protection circuit capacitor connection pin. 30 CS1-6 — Soft start circuit capacitor connection pin (channel 1 to 6). 4 XENB1-6 I VREF control pin (channel 1 to 6 output control pin). When CTL1-4, 7 pin = “H” “H” level: VREF “L” level, channel 1 to 6 output “OFF” “L” level: VREF “H” level, channel 1 to 6 output “active” (Continued) 4 MB3827 Power Supply Circuit (Continued) Pin No. Symbol I/O Description 26 VCC — Reference voltage and control circuit power supply pin. 53 VCC(O)1,2 — Output circuit power supply pin (Channel 1, 2). 58 VCC(O)3,4 — Output circuit power supply pin (Channel 3, 4). 64 VCC(O)5,6,7 — Output circuit power supply pin (Channel 5, 6, 7). 54 VSS(O)1,2 — Main side output circuit power supply pin (Channel 1, 2). 51 VG(O)1 — Step-up synchronous rectifier side output circuit power supply pin (Channel 1). 59 VSS(O)3,4,5,6 — Output circuit power supply pin (Channel 3, 4, 5, 6). 24 VREF O Reference voltage output pin. 32 VB O Triangular wave oscillator regulator output pin. 25 GND — Ground pin. 46 GND(O)1 — Output circuit ground pin (Channel 1). 56 GND(O)2,3,4 — Output circuit ground pin (Channel 2, 3, 4). 3 GND(O)5,6,7 — Output circuit ground pin (Channel 5, 6, 7). 5 MB3827 ■ BLOCK DIAGRAM • General view FB1 45 Error − Amp.1 + + −IN1 44 VB1-1 (0.50 V) VB1-2 (0.55 V) 1.26 V DTC1-1 43 SCP Comp.1 − + + DTC1-3 42 DTC1-4 41 53 VCC(O)1, 2 CH1 Drive 1-1 52 OUT1-1 PWM Comp.1-2 + − PWM Comp.1-3 − − + VB1-4 PWM (0.02 V) Comp.1-4 + + − 1.0 V RB1 PWM Comp.1-1 + + − 54 VSS(O)1, 2 Drive 1-2 50 OUT1-2 47 RB1 Drive 1-3 49 OUT1-3 51 VG(O)1 Drive 1-4 48 OUT1-4 + − SEL Comp. 1.26 V FB2 38 46 GND(O)1 Error − Amp.2 + + −IN2 39 VB2 (0.04 V) 1.26 V SCP Comp.2 − + + PWM Comp.2-1 + + − CH2 A Drive 2-1 55 OUT2-1 Drive 2-2 57 OUT2-2 PWM Comp.2-2 + − 1.0 V DTC2 40 FB3 37 Error − Amp.3 + + −IN3 36 1.26 V SCP Comp.3 − 58 VCC(O)3, 4 CH3 PWM Comp.3 + + − Drive 3 60 OUT3 59 VSS(O)3, 4, 5, 6 + + 1.0 V DTC3 35 FB4 20 Error − Amp.4 + + −IN4 21 CH4 PWM Comp.4 + + − 1.26 V SCP Comp.4 − + + Drive 4 61 OUT4 1.0 V DTC4 22 56 GND(O)2, 3, 4 64 VCC(O)5, 6, 7 CH5 FB5 19 −IN5 18 Error − Amp.5 + + -IN(C)5 17 1.26 V SCP Comp.5 − + + PWM Comp.5 + + − Drive 5 62 OUT5 B 1.26 V DTC5 16 − −IN(A)6 10 INV Amp.6 CH6 + OUT(A)6 11 FB6 13 −IN6 12 Error − Amp.6 + + −IN(C)6 14 1.26 V SCP Comp.6 − + + PWM Comp.6 + + − Drive 6 63 OUT6 1.26 V DTC6 15 FB7 5 −IN7-1 6 − +IN7 8 + 10 kΩ VB : 2 V 48.5 kΩ PWM − Comp.7 Error Amp.7 0.77 V Voffset 1.6 V − + CH7 Drive 7 1 OUT7 30.1 kΩ −IN7-2 7 + 2 RB7 SCP Comp.7 − DTC7 9 VSCP 0.9 V SCP Comp.8 − −IN7(C)8 23 3 GND(O)5, 6, 7 + 1.26 V + CTL1-4 CS CTL CTL5 28 Logic CTL6 29 0.6 V −1.8 V −1.1 V −1.8 V −1.1 V −0.8 V −0.3 V Buff Buff C Power Comp. − ×0.8 4 XENB1-6 CS1-6 30 26 VCC UVLO OSC 2V 32 6 SCP 33 34 31 VB RT CT CSCP Ref 2.5 V 24 VREF Power ON/OFF CTL 25 GND 27 CTL1-4, 7 MB3827 • Enlarged view of A FB1 45 Error − Amp.1 + + −IN1 44 1.26 V DTC1-1 43 − + + SCP Comp.1 1.0 V DTC1-3 42 DTC1-4 41 RB1 VB1-1 (0.50 V) VB1-2 (0.55 V) PWM Comp.1-1 + + − CH1 Drive 1-1 PWM Comp.1-2 + − PWM Comp.1-3 − − + VB1-4 PWM (0.02 V) Comp.1-4 + + − 53 VCC(O)1, 2 52 OUT1-1 54 VSS(O)1, 2 Drive 1-2 50 OUT1-2 47 RB1 Drive 1-3 49 OUT1-3 51 VG(O)1 Drive 1-4 48 OUT1-4 + − SEL Comp. 1.26 V FB2 38 −IN2 39 46 GND(O)1 Error − Amp.2 + + 1.26 V SCP Comp.2 − + + VB2 (0.04 V) PWM Comp.2-1 + + − CH2 Drive 2-1 55 OUT2-1 Drive 2-2 57 OUT2-2 PWM Comp.2-2 + − 1.0 V DTC2 40 FB3 37 −IN3 36 Error − Amp.3 + + 1.26 V SCP Comp.3 − + + PWM Comp.3 + + − CH3 Drive 3 58 VCC(O)3, 4 60 OUT3 59 VSS(O)3, 4, 5, 6 1.0 V DTC3 35 7 MB3827 • Enlarged view of B FB4 20 Error − Amp.4 + + −IN4 21 1.26 V SCP Comp.4 − + + PWM Comp.4 + + − CH4 Drive 4 61 OUT4 1.0 V DTC4 22 56 GND(O)2, 3, 4 CH5 FB5 19 Error − Amp.5 + + −IN5 18 -IN(C)5 17 PWM Comp.5 + + − 1.26 V SCP Comp.5 − + + Drive 5 64 VCC(O)5, 6, 7 62 OUT5 1.26 V DTC5 16 −IN(A)6 10 − INV Amp.6 CH6 + OUT(A)6 11 FB6 13 −IN6 12 Error − Amp.6 + + −IN(C)6 14 1.26 V SCP Comp.6 − + + 1.26 V DTC6 15 8 PWM Comp.6 + + − Drive 6 63 OUT6 MB3827 • Enlarged view of C FB7 5 −IN7-1 6 − +IN7 8 + 10 kΩ VB : 2 V 48.5 kΩ PWM − Comp.7 0.77 V − + Error Amp.7 Voffset 1.6 V CH7 Drive 7 1 OUT7 30.1 kΩ −IN7-2 7 + 2 RB7 SCP Comp.7 − DTC7 9 VSCP 0.9 V SCP Comp.8 − −IN7(C)8 23 3 GND(O)5, 6, 7 + 1.26 V + CTL1-4 CS CTL CTL5 28 Logic CTL6 29 − 0.6 V −1.8 V −1.1 V −1.8 V −1.1 V −0.8 V −0.3 V Buff Buff Power Comp. ×0.8 4 XENB1-6 CS1-6 30 26 VCC UVLO OSC 2V 32 SCP 33 34 31 VB RT CT CSCP Ref 2.5 V 24 VREF Power ON/OFF CTL 27 CTL1-4, 7 25 GND 9 MB3827 ■ ABSOLUTE MAXIMUM RAGINGS Parameter Power supply voltage Symbol Conditions VCC VG Rating Unit Min. Max. — — 17 V — — 17 V Output current Io OUT pin — 20 mA Peak output current Io OUT pin, Duty ≤ 5% — 200 mA Power dissipation PD Ta ≤ +25°C — 1000* mW −55 +125 °C Storage temperature Tstg — * : The packages are mounted on the dual-sided epoxy board (10 cm × 10 cm). WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ■ RECOMMENDED OPERATING CONDITIONS Parameter Symbol Conditions Channel 7 Value Unit Min. Typ. Max. 1.8 9 13 V 4 9 13 V –1 — 0 mA Power supply voltage VCC Reference voltage output current IOR Input voltage VIN +IN,−IN,−IN(C) pin 0 — VCC – 1.8 V Control input voltage VCTL CTL pin 0 — 13 V Output current IO OUT pin 1 2 15 mA Output current setting resistor RB RB pin 2.2 24 51 kΩ Triangular wave oscillator frequency fOSC — 100 500 800 kHz Timing capacitor CT — 47 100 1000 pF Timing resistor RT — 13 18 47 kΩ CS — — 0.1 1.0 µF — 1 10 µF Soft-start capacitor Short detection capacitor Operating ambient temperature CDTC Channel 1 to 6 — DTC7 pin CSCP — — 0.1 1.0 µF Ta — –30 +25 +85 °C WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 10 MB3827 ■ ELECTRICAL CHARACTERISTICS (Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Pin No. Conditions VREF 24 — Output voltage temperature stability ∆VREF /VREF 24 Ta = –30°C to +85°C Input stability Line 24 Load stability Load Short-circuit output current Value Unit Typ. Max. 2.475 2.5 2.525 V — 0.5* — % VCC = 4 V to 13 V –10 — 10 mV 24 VREF = 0 mA to –1 mA –10 — 10 mV IOS 24 VREF = 2 V –20 –5 –1 mA Threshold voltage VTH 52 VCC = 2.6 2.8 3.0 V Hysteresis width VH 52 — — 0.2 — V Reset voltage VRST 52 — 1.35 1.50 1.65 V Threshold voltage VTH 1 1.3 1.5 1.7 V Input standby voltage VSTB 30 — — 50 100 mV Charge current ICS 30 — –1.4 –1.0 –0.6 µA Threshold voltage VTH 31 — 0.63 0.68 0.73 V Input standby voltage VSTB 31 — — 50 100 mV VI 31 — — 50 100 mV Input source current ICSCP 31 — –1.4 –1.0 –0.6 µA Oscillator frequency fOSC 52,50,49,48, CT = 100 pF, 55,57,60,61, R T = 18 kΩ 62,63 450 500 550 kHz Triangular waveform oscillator block (OSC) Short circuit detection block (SCP) Soft-start block (CS) Reference voltage block (Ref) Min. Under voltage lockout protection circuit block (CH1 to 6) (UVLO) Symbol Under voltage lockout protection circuit block (CH7) (UVLO) Parameter Output voltage Input latch voltage VCC = Frequency voltage stability ∆f/fdV 52,50,49,48, 55,57,60,61, VCC = 4 V to 13 V 62,63 — 1 10 % Frequency temperature stability ∆f/fdT 52,50,49,48, 55,57,60,61, Ta = –30°C to +85°C 62,63 — 1* — % *: Standard design value. (Continued) 11 MB3827 (Continued) (Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Parameter Symbol Threshold voltage VTH 45,38,37, FB = 1.0 V 20,19,13 VT temperature stability ∆VT /VT IB Input bias current Pin No Error amplifier block (CH1 to CH6) Value Unit Min. Typ. Max. 1.45 1.50 1.55 V 45,38,37, Ta = –30°C to +85°C 20,19,13 — 0.5* — % 45,39,36,2 −IN = 0 V (CH1 to 4) 1 –320 –80 — nA –120 –30 — nA 18,12 −IN = 0 V (CH5,6) Voltage gain AV 45,38,37, DC 20,19,13 60 100 — dB Frequency bandwidth BW 45,38,37, AV = 0 dB 20,19,13 — 1.0* — MHz VOH 45,38,37, 20,19,13 — 2.2 2.4 — V VOL 45,38,37, 20,19,13 — — 20 200 mV 45,38,37, FB = 1.35 V 20,19,13 — –2.0 –1.0 mA 50 100 — µA 65 130 — µA FB = 1.35 V(CH3 to 6) 75 150 — µA 6 −IN2 = 0V,FB = 0.55V — — 20 mV 7 +IN = 0 V 1.45 1.55 1.65 V 5 Ta = –30°C to +85°C — 0.5* — % 7 −IN2 = VCC — 15 30 µA 8 +IN = 0 V –100 –20 — nA 0 — VCC– 0.9 V Output voltage Output source current Output sink current Error amplifier block (CH7) Conditions ISOURCE ISINK Input offset voltage VIO VT temperature stability ∆VT /VT Input bias current IB FB = 1.35 V (CH1) 45,38,37, FB = 1.35 V (CH2) 20,19,13 Common mode input voltage rage VCM 5 Voltage gain AV 5 DC 60 75 — dB Frequency bandwidth BW 5 AV = 0 dB — 1.0* — MHz VOH 5 — 1.1 1.3 — V VOL 5 — — 20 200 mV ISOURCE 5 FB = 0.55 V — –2.0 –1.0 mA ISINK 5 FB = 0.55 V 65 130 — µA Output voltage Output source current Output sink current — *: Standard design value. (Continued) 12 MB3827 (Continued) PWM comparator block (CH1) (PWM Comp.-1) Short detection comparator block (CH7)(SCP Comp.) Short detection comparator block (CH5,6)(SCP Comp.) Short detection comparator block (CH1-4) (SCP Comp.) Inverse amplifier block (CH6) (INV Amp.) (Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Parameter Symbol Pin No. Conditions Threshold voltage VTH 11 — Input bias current IB 10 −IN = −0.1 V Voltage gain AV 11 Frequency bandwidth BW 11 VOH 11 VOL 11 ISOURCE 11 Output sink current ISINK 11 Threshold voltage VTH 52,50,49, 48,55,57, 60,61 Input bias current IB Output voltage Output source current Value Unit Min. Typ. Max. –10 0 10 mV –120 –30 — nA DC 60 100 — dB AV = 0 dB — 1.0* — MHz — 2.2 2.4 — V — — 20 100 mV OUT = 1.26 V — –2.0 –1.0 mA OUT = 1.26 V 75 150 — µA 0.97 1.00 1.03 V –320 –80 — nA 1.22 1.26 1.30 V –200 –50 — nA 0.8 0.9 1.0 V — 44,39,36, −IN = 0 V 21 VIO 62,63 Input bias current IB 17,14,23 Threshold voltage VTH 1 VT0 52 Duty cycle = 0 % 0.5 0.6 — V VT100 52 Duty cycle = 100 % — 1.3 1.4 V Input offset voltage — −IN(C) = 0 V — Threshold voltage *: Standard design value. (Continued) 13 MB3827 (Continued) (Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) PWM comparator block (CH3 to 6) (PWM Comp.) PWM comparator block (CH2) (PWM Comp.-2) PWM comparator block (CH2) (PWM Comp.-1) PWM comparator block (CH1) (PWM Comp.-4) PWM comparator block (CH1) (PWM Comp.-3) PWM comparator block (CH1) (PWM Comp.-2) Parameter Symbol Pin No. Conditions VT100 50 Duty cycle = 100 % VT0 50 VT0 Value Unit Min. Typ. Max. 0.450 0.550 — V Duty cycle = 0 % — 1.250 1.350 V 49 Duty cycle = 0 % 1.0 1.1 — V VT100 49 Duty cycle = 100 % — 1.8 1.9 V VT100 48 Duty cycle = 100 % 0.980 1.080 — V VT0 48 Duty cycle = 0 % — 1.780 1.880 V VT0 55 Duty cycle = 0 % 1.0 1.1 — V VT100 55 Duty cycle = 100 % — 1.8 1.9 V VT100 57 Duty cycle = 100 % 0.960 1.060 — V VT0 57 Duty cycle = 0 % — 1.760 1.860 V 60,61,62, Duty cycle = 0 % 63 1.0 1.1 — V 60,61,62, Duty cycle = 100 % 63 — 1.8 1.9 V Threshold voltage Threshold voltage Threshold voltage Threshold voltage Threshold voltage VT0 Threshold voltage VT100 *: Standard design value. (Continued) 14 MB3827 (Continued) (Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Dead time control block (CH7) (PWM Comp.) Dead time control block (CH1-6) (PWM Comp.) PWM comparator block (CH7) (PWM Comp.) Parameter Output block (CH1-6) (Drive-1) Output block (CH1,2) (Drive-2) Pin No. VT0 1 VTmax 1 Dtr 1 Conditions Value Unit Min. Typ. Max. 0.2 0.3 — V — — 0.77 0.87 V CT=100pF,RT=18kΩ, RB=24kΩ,RL=390kΩ 70 80 90 % 52,49,48,55, Duty cycle = 0 % 60,61,62,63 1.0 1.1 — V 52,49,48,55, Duty cycle = 100 % 60,61,62,63 — 1.8 1.9 V –1.0 –0.3 — µA Duty cycle = 0 % Threshold voltage Maximum duty cycle VTD0 Threshold voltage VTD100 Input current IDTC 43,42,41,40, DTC = 0.4 V 35,22,16,15 VTD0 1 Duty cycle = 0 % 0.2 0.3 — V VTD100 1 Duty cycle = 100 % — 0.8 0.9 V Threshold voltage Output source current Output block (CH1) (Drive-3) Symbol Output sink current ISOURCE 52,55,60, Duty ≤ 5 %, OUT= 4.4V 61,62,63 — –90 — mA ISINK 52,55,60, Duty ≤ 5 %, OUT= 9V 61,62,63 — 80 — mA VOH 52,55,60, IO = −15 mA 61,62,63 3.5 4.0 — V VOL 52,55,60, IO = 15 mA 61,62,63 — 100 300 mV Output voltage Output source current Output sink current Output voltage Output source current Output sink current ISOURCE 50,57 Duty ≤ 5 %, OUT= 0V — –100 — mA ISINK 50,57 Duty ≤ 5 %, OUT= 4V — 80 — mA VOH 50,57 IO = −15 mA 3.5 4.0 — V VOL 50,57 IO = 15 mA — 100 300 mV ISOURCE 49 RB= 24kΩ, OUT= 0.7V –2.6 –2.0 –1.4 mA ISINK 49 Duty ≤ 5 %, OUT= 0.7V — 40 — mA *: Standard design value. (Continued) 15 MB3827 (Continued) (Ta = +25°C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) General Control block (CTL5,6) (CTL) Control block (CTL1 to 4,7,XENB1 to 6) (CTL,XENB) Output block (CH7) (Drive) Output block (CH1) (Drive-4) Parameter Output source current Output sink current Output voltage Output source current Output sink current Symbol Pin No. ISOURCE 48 ISINK Value Unit Min. Typ. Max. Duty ≤ 5 %, OUT= 5V — –100 — mA 48 Duty ≤ 5 %, OUT= 2V — 120 — mA VOH 48 IO = −15 mA 9.7 10 — V VOL 48 IO = 15 mA — 1.0 1.3 V ISOURCE 1 RB= 24kΩ, OUT= 0.7V –2.6 –2.0 –1.4 mA ISINK 1 Duty ≤ 5 %, OUT= 0.7V — 40 — mA VIH 27,4 Active mode 1.5 — 13 V VIL 27,4 Standby mode 0 — 0.5 V ICTL 27,4 CTL=5V, XENB=5V — 100 200 µA VIH 28,9 Active mode 2.1 — 13 V VIL 28,9 Standby mode 0 — 0.7 V ICTL 28,9 CTL= 5V — 50 100 µA ICCS 26 CTL1-4,7= 0V — — 10 µA 53,58,64 CTL1-4,7= 0V — — 10 µA — — 10 µA — 8 12 mA CTL input condition Input current CTL input condition Input current Standby current ICCS(O) IG Power supply current * Standard design value. 16 Conditions ICC 51 CTL1-4,7= 0V 26,53,58, CTL1-4,7= CTL5 64 =CTL6=5V MB3827 ■ TYPICAL CHARACTERISTICS 10 Reference voltage vs. power supply voltage 5 Ta = +25 °C CTL1−4, 7 = CTL5 = CTL6 = 5 V Reference voltage VREF (V) Power supply current ICC (mA) Power supply current vs. power supply voltage 8 6 4 2 0 0 2 4 6 8 10 12 14 16 Ta = +25 °C CTL = VCC IREF = 0 mA 2.5 0 0 2 Power supply voltage VCC (V) 4 6 8 10 12 14 16 Power supply voltage VCC (V) Reference voltage vs. ambient temperature Reference voltage VREF (V) 2.56 VCC = 9 V CTL1−4, 7 = CTL5 = CTL6 = 5 V 2.54 2.52 2.5 2.48 2.46 2.44 −40 −20 0 20 40 60 80 100 Ambient temperature Ta (°C) Reference voltage vs. control voltage 500 Ta = +25 °C VCC = 9 V IREF = 0 mA Control current ICTL (µA) Reference voltage VREF (V) 5 Control current vs. control voltage 2.5 0 0 1 2 3 Control voltage VCTL1-4,7 (V) 4 5 Ta = +25 °C VCC = 9 V 400 CTL1−4, 7 300 200 CTL5 CTL6 100 0 0 2 4 6 8 10 12 14 16 Control voltage VCTL (V) (Continued) 17 MB3827 (Continued) Triangular wave upper and lower limit voltage vs. ambient temperature 1 Ta = +25 °C VCC = 9 V RT = 18 kΩ 0.8 Upper 0.6 0.4 Lower 0.2 0 10 100 1000 10000 Triangular wave upper and lower limit voltage VCT (V) Triangular wave upper and lower limit voltage VCT (V) Triangular wave upper and lower limit voltage vs. timing capacitor 1.2 VCC = 9 V RT = 18 kΩ CT = 100 pF 1 0.8 Upper 0.6 0.4 Lower 0.2 0 −40 Ta = +25 °C VCC = 9 V 1000 RT = 13 kΩ RT = 18 kΩ RT = 30 kΩ RT = 47 kΩ 10 10 100 1000 10000 Triangular wave oscillator frequency fOSC (kHz) Triangular wave oscillator frequency fOSC (kHz) Triangular wave oscillator frequency vs. timing capacitor 100 460 0 20 40 60 Ambient temperature Ta (°C) 100 Ta = +25 °C VCC = 9 V CT = 47 pF CT = 100 pF CT = 220 pF 100 CT = 470 pF CT = 680 pF CT = 1000 pF 10 10 100 80 100 100 Maximum duty cycle Dtr (%) Triangular wave oscillator frequency fOSC (kHz) 480 −20 80 Maximum duty cycle vs. triangular wave oscillator frequency (CH7) 500 440 −40 60 Timing resistor RT (Ω) VCC = 9 V CTL1−4, 7 = CTL5 = CTL6 = 5 V RT = 18 kΩ CT = 100 pF 520 40 1000 Triangular wave oscillator frequency vs. ambient temperature 540 20 Triangular wave oscillator frequency vs. timing resistor Timing capacitor CT (pF) 560 0 Ambient temperature Ta (°C) Timing capacitor CT (pF) 10000 −20 Ta = +25 °C VCC = 9 V 90 80 70 60 50 0 200 400 600 800 1000 Triangular wave oscillator frequency fOSC (kHz) (Continued) 18 MB3827 (Continued) Error amplifier gain and phase vs. frequency (CH1) Gain AV (dB) 20 90 φ 0 0 AV −90 −20 −40 1k VCC = 9 V 180 Phase φ (deg) Ta = +25 °C 40 240 kΩ 4.7 kΩ IN − + 2.4 kΩ 44 10 µF 4.7 kΩ 1.4 V − + + 45 OUT 1.26 V −180 10 k 100 k 1M 10 M Frequency f (Hz) Error amplifier gain and phase vs. frequency (CH7) Ta = +25 °C 240 kΩ 90 φ 0 0 AV −20 −90 −40 1k VCC = 9 V 180 Phase φ (deg) 20 IN 4.7 kΩ − + 2.4 kΩ 10 µF 6 − 8 + 5 4.7 kΩ OUT 1.26 V −180 10 k 100 k 1M 10 M Frequency f (Hz) Power dissipation vs. ambient temperature 1200 Power dissipation PD (mW) Gain AV (dB) 40 1000 800 600 400 200 0 −40 −20 0 20 40 60 80 100 Ambient temperature Ta (°C) 19 MB3827 ■ FUNCTIONAL DESCRIPTION 1. Switching Regulator Function (1) Reference voltage circuit The reference voltage circuit generates a temperature-compensated reference voltage ( =: 2.50 V) using the voltage supplied from the power supply terminal (pin 26). This voltage is used as the reference voltage for the internal circuits of the IC. The reference voltage of up to 1mA can also be supplied to an external device from the VREF terminal (pin 24). (2) Triangular-wave oscillator circuit By connecting a timing capacitor and a resistor to the CT (pin 34) and the RT (pin 33) terminals, it is possible to generate any desired triangular oscillation waveform (CT : amplitude 0.3V to 0.8V, CT1 : amplitude 1.1V to 1.8V in phase with CT, and CT2 : amplitude 1.1V to 1.8V in inverse phase with CT). The triangular wave is input to CT1, CT2 and the PWM comparator within the IC. (3) Error amplifier (Error Amp.) The error amp. is an amplifier circuit that detects the output voltage from the switching regulator and produces the PWM control signal. The broad in-phase input voltage range of 0 V to Vcc − 1.8 V (1-6 ch) and 0 V to Vcc − 0.9 V (channel 7) provides easy setting from external power supplies. Also, it is possible to provide stable phase compensation for a system by setting up any desired level of loop gain, by connecting feedback resistance and a capacitor between the error amp. output pin and the inverse input pin. (4) Inverter amplifier (Inv. Amp.) The inverter amplifier detects the output voltage (negative voltage) from the switching regulator, and outputs a control signal to the error amplifier. (5) PWM comparator (PWM Comp.) The voltage-pulse width modulator controls the output duty according to the input voltage. (Channel 1 to 2, main side, and channel 3 to 7) During the interval that the error amplifier output voltage and DTC are higher than the triangular wave, the output transistor is turned on. (Channel 1 step-down synchronous rectifier side) During the interval when the error amplifier output voltage is lower than the triangular wave, the output transistor is turned on. (Channel 1 step-up synchronous rectifier side) During the interval when the error amplifier output voltage and DTC3 voltage are lower than the triangular wave, the output transistor is turned on. (6) Output circuit The output circuits is comprised of a totem-pole configuration on both the main side and synchronous rectifier side, and can drive an external PNP transistor (main side) or NPN transistor (channel 1 step-up main side, channel 7) or N-ch MOSFET (synchronous rectifier side). 20 MB3827 2. Channel Control Function Channel on and off levels are dependent on the voltage levels of the CTL1-4,7 terminal (pin 27), XENB1-6 terminal (pin 4), CTL5 terminal (pin 28), and CTL6 terminal (pin 29). Each Channel On/Off Setting Conditions. Voltage level of CTL pin Channel on/off setting conditions CTL1-4,7 XENB1-6 CTL5 CTL6 L X X X H X X H L L H Power CH7 CH1 to 4 L H CH6 OFF (standby state) OFF ON L H CH5 ON OFF ON ON OFF OFF ON Note: When the RB1 pin is connected to the VREF pin, the OUT1-3 and OUT1-4 pins are held at “L” level. X : Don’t care. 3. Protective Functions (1) Timer-latch short protection circuit The short detection comparator in each channel detects the output voltage level, and when any channel output voltage falls below the short detection voltage, or the −IN(C)8 terminal (pin 23) voltage falls below the reference voltage, the timer circuit starts operating and the capacitor CSCP connected to the CSCP terminal (pin 31) starts charging. When the capacitor voltage reaches approximately 0.68 V, the output transistor is turned off and the dead time becomes 100%. When actuated, this protection circuit can be reset by turning on the power supply again.(See “METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT”.) (2) Under voltage lockout protection circuit A transient state at power-on or a momentary drop of the power supply voltage causes the control IC to malfunction, resulting in system breakdown or system deterioration. Malfunction like the above-mentioned will be prevented, by detecting the internal reference voltage with respect to the power supply voltage, this protection circuit resets the latch circuit to turn off the output transistor and set the duty (OFF) = 100 %, while at the same time holding the CSCP terminal (pin 31) at the “L”. The reset is cleared when the power supply voltage becomes greater than or equal to the threshold voltage level of this protection circuit. 21 MB3827 4. Soft Start Operation (1) Operating Description • Simultaneous “H” level of CTL1-4, 7 terminal, and CTL5 terminal, CTL6 terminal When CTL1-4, 7 terminal (pin 27) , and CTL5 terminal (pin 28) , CTL6 terminal (pin 29) are started at the same time, the capacitor (CDTC) connected to DTC7 terminal (pin 9) starts charging. When the DTC7 terminal (pin 9) voltage reaches 0.6V, the capacitors (CS) connected to the CS1-6 terminal (pin 30) start charging. The error amplifier thus provides the output voltage from channels 1 to 6 with a soft start operation in proportion to the voltage at pin CS1-6. CTL1−4, 7 (pin 27) CTL5 (pin 28) CTL6 (pin 29) DTC7 (pin 9) 0.77 V 0.6 V 0.3 V Channel 7 output voltage 1.26 V CS1−6 (pin 30) Channel 1 to 6 output voltage t (1) (2) (3) (4) (1) to (2) : Channel 7 soft start interval (3) to (4) : Channel 1 to 6 soft start interval 22 MB3827 • Starting CTL5 (CTL6) after a soft start on channels 1 to 4 and 7 When CTL5 (CTL6) is started after a soft start on channels 1-4 and 7, the capacitor (CS) connected to the CS1-6 terminal (pin 30) start charging. The error amplifier thus provides the output voltage from channel 5 (6) with a soft start operation in comparison with the voltage at pin CS1-6. CTL1−4, 7 (pin 27) 0.77 V 0.6 V 0.3 V DTC7 (pin 9) Channel 7 output voltage 1.26 V CS1−6 (pin 30) Channel 1 to 4 output voltage CTL5 (pin 28) (CTL6 (pin 29)) Channel 5 output voltage VO5 (Channel 6 output voltage VO6) t (1) (2) (3) (4) (5)’ (5) (6) (6)’ (1) to (2) : Channel 7 soft start interval (3) to (4) : Channel 1 to 4 soft start interval (5) to (6) : Channel 5 (channel 6) soft start interval (5)’ to (6)’: Channel 5 (channel 6) soft start interval (wave form) as CTL5 (CTL6) goes “L” to “H” during a soft start on channels 1-4. 23 MB3827 (2) Setting Methods • Channel 7 soft start interval Before CTL1-4, 7 are ON: Vin is applied along path (A) below and charges CFB7. After CTL1-4, 7 are ON: Along path (B), CFB7 is discharged by R2, R3, D1 at I1 to 15 µA on a time constant, and with the fall of V-IN7-1, channel 7 is activated with a soft start. Note : The short detection function is suspended while VDTC is below 0.6V. Channel 7 equivalent circuit of soft start section A FB7 CFB7 B − −IN7−1 VSS (O) Error Amp.7 + +IN7 R1 100 kΩ 100 kΩ R3 10 kΩ Vin −IN7−2 : Before CTL1-4, 7 are ON D1 R2 60 kΩ : After CTL1-4, 7 are ON I1 15 µA Channel 7 soft start operating waveform V −IN7−1 VSS (O) V −IN7−1 VSS (O) =: 1.55 V (V) VDTC7 VCT VFB7 VFB7 0.8 V 0.77 V 0.6 V VCT 0.3 V VDTC7 t CTL1−4, 7 Soft start operate Short detection suspended during this interval 24 MB3827 • Channel 1 to 6 soft start time tS(sec) =: 1.26 × Cs (µF) Note : The short detection function operates during soft starts on channel 1 to channel 6. ■ METHOD OF SETTING THE OSCILLATOR FREQUENCY SETTING The oscillator frequency can be set by the timing resistor RT connected to the RT pin (pin 33), and the timing capacitor CT connected to the CT pin (pin 34). Oscillator frequency: fOSC [kHz] =: 900000 CT [pF] × RT [kΩ] 25 MB3827 ■ METHODS OF SETTING THE OUTPUT VOLTAGE 1. Channel 1 to 4 VO FB1 VO = 15 R1 −IN1 R2 (R1 + R2) Error Amp. − + + 14 1.26 V R2 1.26 V SCP Comp. − + + 1.0 V 2. Channel 5 VO VO = R1 R2 18 −IN5 R3 − + + Error Amp.5 1.26 V 17 −IN (C) 5 − + + 1.26 V 26 SCP Comp.5 1.26 V R3 (R1 + R2 + R3) MB3827 3. Channel 6 VO R1 −IN (A) 6 10 − INV Amp.6 VO = V−IN (A) 6 − VOUT (A) 6 R1 R2 [ VOUT (A) 6 = V−IN6 ] + R2 OUT (A) 6 11 R3 Error Amp.6 12 −IN6 − + + 1.26 V 27 MB3827 ■ SAMPLE POWER SUPPLY USING SELF-POWER SUPPLY (Channel 7) The MB3827 has a built-in self-supply channel (channel 7), capable of supplying the IC with power through transformer winding, with low input voltage (Vin ≥ 1.8V) drive capability. Following figure shows a sample of a power supply using the transformer. Vin VG (O) VSS (O) H FB7 −IN7−1 H +IN7 I 5 6 − 8 + 10 kΩ Voffset 1.6 V −IN7−2 I 7 Error Amp.7 1 OUT7 2 RB7 VCC VCC (O) Note: The following settings are shown in “APPLICATION EXAMPLE”. • VSS(0) is Vin −1.6V, from the voltage offset between −IN7-1 and −IN7-2. • VCC and VCC(0) are set at the winding that produces Vin +1.6V. • VG(0) is set at the winding that produces 8V. Note that because channels 1-6 operate at Vcc ≥ 4V, Vcc and Vcc(0) must be set at the winding that produces VIN + 2.2V in order to operate at VIN ≥ 1.8V. 28 MB3827 ■ METHOD OF SETTING THE OUTPUT CURRENT “Output circuit (main side)” shows the configuration of the output circuits (Drive1-3,Drive7), and “Output current waveform” illustrates how the source current value of the output current waveform has a constant current setting (When channel 1 operates as a step-up unit). Note that the source current is set by the following formula Output source current = (VB/RB) × 80 =: 48/RB [A] (VB =: 0.6V) Output circuit (main side) VCC (O) 80I Source current setting External NPN transistor × 33 Output sourrce current OUT Output sink current I Sink current setting 70 kΩ × 33 RB 0.6 V RB VB =: 0.6V GND (O) Output current waveform Output source current (peak) Output source current Output current 0 Output sink current (peak) t 29 MB3827 ■ METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT The short detection comparator (SCP comparator) in each of the channels constantly compares the error amplifier output level to the reference voltage and the −IN(C)8 terminal (pin 23). While the switching regulator load conditions are stable on all channels, or when the voltage level at the −IN(C)8 pin is higher than the reference voltage, LOG_SCP output remains at “H” level, transistor Q1 is on, and the CSCP terminal (pin 31) is held at input standby voltage (VSTB =: 50mV). If the load conditions change rapidly due to a short-circuiting of load, causing the output voltage to drop, or if the voltage at the −IN(C)8 terminal falls below the reference voltage level, the output from the short detection comparator on the corresponding channel or the input at the −IN(C)8 terminal goes to “H” level. This causes transistor Q1 to turn off and the external short protection capacitor CSCP connected to the CSCP pin to charge at 1.0 µA. Short Detection Time (tPE) tPE(sec) =: 0.68 × CSCP (µF) When the capacitor CSCP is charged to the threshold voltage VTH =: 0.68 V the SR latch is set, and the external PNP is turned off (dead time is set to 100%). At this point the SR latch input is closed and the CSCP terminal is held at input latch voltage (VI =: 50 mV). External PNP transistor Protection timer-latch short protection circuit A R1 SCP Comp.1 − 44 −IN1 Drive 1−1 + R2 52 OUT1−1 1.0 V Drive 1−2 SCP Comp.8 − 23 −IN (C) 8 50 OUT1−2 + LOG_SCP 1.26 V Drive 7 1 µA CSCP bias bias 31 CSCP 30 1 OUT7 S Q1 R Timer-latch short protection circuit UVLO Ref Power ON/OFF CTL 27 CTL1−4, 7 MB3827 ■ TREATMENT WITHOUT USING CSCP When you do not use the timer-latch short protection circuit, connect the CSCP terminal (pin 31) to GND with the shortest distance. Treatment when not using CSCP CSCP 31 ■ PROCESSING WITHOUT USING CS PIN When not using the soft start function on channels 1 to 6, the CS1-6 terminal (pin 30)should be left open. When not using the soft start function on channel 7, the DTC7 terminal (pin 9) should be left open. When no soft start time is set CS1−6 30 “Open” “Open” 9 DTC7 31 MB3827 ■ METHOD OF SETTING THE DEAD TIME When setting step-up/step-down switching, Zeta type, or fly-back type step-up or inverter output, the output transistor at start-up is in full-on (ON duty cycle = 100%) state. To prevent this, the DTC voltage from the DTC11 terminal (pin 43) to the DTC6 terminal (pin 15) voltage is determined from the VREF voltage, as shown in following figure , so that the output transistor dead time (the maximum value of the ON interval) can be set easily. When the voltage on the DTC5 and DTC6 terminals is lower than the triangular-wave output voltage from the oscillator, the output transistor turns off. The dead time calculation formula assuming that triangular-wave amplitude =: 0.7 V and triangular-wave maximum voltage =: 1.8 V is given below. DUTY(ON)max =: Vdt − 1.1 0.7 × 100[%], Vdt = Rb × VREF Ra + Rb When you do not use these DTC5 and DTC6 terminals, connect then to VREF terminal (pin 24) as shown following figure (Not setting the channel 5,6 dead time). Setting the channel 5, 6 dead time (same as for other channels) VREF 24 DTC5 16 VREF 24 Ra Ra DTC6 Rb 15 Vdt Rb Not setting the channel 5,6 dead time (same as for other channels) 32 VREF 24 DTC5 16 VREF 24 DTC6 15 Vdt MB3827 ■ PROCESSING WHEN NOT USING THE XENB1-6 PIN When VREF control (channel 1 to 6 output control) is not used, the XENB1-6 terminal (pin 4) should be shorted to GND using the shortest available connection. When not using the XENB1-6 pin 4 XNB1−6 ■ PROCESSING WHEN NOT USING THE CHANNEL 6 INV AMP. When the channel 6 INV amplifier is not in use, the -IN(A)6 terminal (pin 10), and OUT(A)6 terminal (pin 11) should be shorted using the shortest available connection. When not using the channel 6 INV Amp. 10 −IN(A)6 11 OUT(A)6 33 MB3827 ■ APPLICATION EXAMPLE • General view A 0.1 µF FB1 45 36 kΩ Error − Amp.1 + + 1 KΩ 44 −IN1 12 kΩ VB1-1 PWM (0.50 V) Comp.1-1 + + − VB1-2 (0.55 V) PWM Comp1-2. + 1.26 V DTC1-1 43 SCP Comp.1 − + + 22 kΩ DTC1-3 − PWM Comp.1-3 − − + VB1-4 PWM (0.02 V) Comp.1-4 + + − 1.0 V 42 47 kΩ 20 kΩ DTC1-4 41 18 kΩ RB1 22 µH CPH3403 160 Ω OUT1-1 Drive 1-1 U1FWJ44N 52 54 Drive 1-2 Vo1 (5 V) A U1FWJ44N FMMT717 VCC(O)1, 2 53 CH1 RL1 50 Ω 3300 pF VSS(O)1, 2 50 OUT1-2 100 pF 10 kΩ 47 CPH3403 FMMT617 4.7 µF RB1 OUT1-3 49 Drive 1-3 VG(O)1 51 OUT1-4 48 Drive 1-4 U1FWJ44N + − B SEL Comp. 1.26 V 0.1 µF FB2 38 36 kΩ GND(O)1 46 Error − Amp.2 + + 1 KΩ 39 −IN2 PWM Comp.2-1 + + − 12 kΩ VB2 (0.04 V) PWM Comp.2-2 + 1.26 V SCP Comp.2 − + + 22 µH 91 Ω OUT2-1 55 Drive 2-1 22 µH A U1FWJ44N 3300 pF RL2 50 Ω 4.7 µF OUT2-2 57 Drive 2-2 − Vo2 (5 V) B 4.7 µF FMMT717 CH2 CPH3403 1.0 V 22 kΩ DTC2 40 47 kΩ C 0.1 µF FB3 37 22 kΩ Error − Amp.3 + + 1 KΩ 36 −IN3 16 kΩ 24 kΩ DTC3 PWM Comp.3 + + − 1.26 V SCP Comp.3 − + + 58 CH3 22 µH VCC(O) 3, 4 91 Ω OUT3 60 Drive 3 59 Vo3 (3 V) C 4.7 µF FMMT717 U1FWJ44N 3300 pF VSS(O) 3, 4, 5, 6 22 µH 1.0 V 35 47 kΩ 0.1 µF D FB4 20 1 KΩ 21 −IN4 22 kΩ VIN (3.6 V) Error − Amp.4 + + 16 kΩ 22 µH 91 Ω OUT4 61 Drive 4 4.7 µF RL4 13 Ω 1.0 V 22 56 E 0.1 µF 150 kΩ FB5 Vo2 (5.0 V) GND(O) 2, 3, 4 Vo5-1 (15 V) E 64 CH5 19 1 KΩ 18 −IN5 Error − Amp.5 + + 15 kΩ -IN(C)5 U1FWJ44N 22 µH 3300 pF 47 kΩ 13 kΩ Vo4 (3 V) D 4.7 µF FMMT717 CH4 PWM Comp.4 + + − 1.26 V SCP Comp.4 − + + 24 kΩ DTC4 RL3 13 Ω 4.7 µF PWM Comp.5 + + − Drive 5 1.26 V SCP Comp.5 − + + 17 VCC(O) 5, 6, 7 62 FMMT717 MA796 820 Ω OUT5 RL5-1 1.5 kΩ 4.7 µF Vo5-2 (−7.5 V) 3300 pF MA796 4.7 µF RL5-2 3 kΩ B 1.26 V 24 kΩ DTC5 16 47 kΩ F 56 kΩ −IN(A)6 − 10 10 kΩ OUT(A)6 11 0.1 µF FB6 13 10 kΩ 1 KΩ −IN6 12 47 kΩ−IN(C)6 CH6 INV Amp.6 18 kΩ 27 kΩ Error − Amp.6 + + Vo6-2 F (−7 V) FMMT717 Vo2(5 V) Vo6-1 (11 V) MA796 4.7 µF PWM Comp.6 + + − 14 RL6-1 3 kΩ 820 Ω OUT6 63 Drive 6 1.26 V SCP Comp.6 − + + G MA796 Vo6-3 3300 pF MA796 −14 V 4.7 µF RL6-2 1 kΩ 4.7 µF RL6-3 VG(O) 3.9 kΩ (8 V) 1.26 V 24 kΩ DTC6 VREF G 2SD1621 + 15 47 kΩ VSS(O) (2 V) H I RB491D FB7 0.1 µF −IN7-1 H +IN7 5 − 6 + 8 10 kΩ −IN7-2 I VB : 2 V 48.5 kΩ PWM − Comp.7 0.77 V − + Error Amp.7 Voffset 1.6 V 4.7 µF MA796 Drive 7 1 OUT7 100 pF MA796 24 kΩ 2 FMMT617 RB7 SCP Comp.7 4.7 µF VCC(O) (5.2 V) 9 − 23 VSCP 0.9 V SCP Comp.8 − 1 µF −IN(C)8 4.7 µF 30.1 kΩ 7 + DTC7 CH7 3 GND(O) 5, 6, 7 + 1.26 V FMMT717: ZETEX plc. FMMT617: ZETEX plc. CPH3403: SANYO Electric Co., Ltd. U1FWJ44N:TOSHIBA CORPORATION MA796: Matsushita Electronic Components Co., Ltd. 2SD1621: SANYO Electric Co., Ltd. RB491D: ROHM CO.LTD + CTL1-4 CS CTL CTL5 28 Logic CTL6 29 0.6 V −1.8 V −1.1 V −1.8 V −1.1 V −0.8 V −0.3 V Buff Buff CS1-6 C Power Comp. − ×0.8 4 XENB1-6 30 26 UVLO VCC 0.1 µF OSC 2V 32 VB 0.1 µF 33 34 RT 18 kΩ SCP CT 100 pF 31 CSCP 0.1 µF Ref Power ON/OFF CTL 2.5 V 24 25 VREF GND 0.1 µF 34 H: Power/CH1 to 6 in OFF L: Control by CTL terminal function 27 CTL1-4, 7 H: ON (Power/CH1 to 4,7) L: OFF (Standby mode) MB3827 • Enlarged view of A A 0.1 µF FB1 45 36 kΩ Error − Amp.1 + + 1 KΩ 44 −IN1 12 kΩ 1.26 V DTC1-1 43 − + + 22 kΩ DTC1-3 SCP Comp.1 1.0 V 42 47 kΩ 20 kΩ DTC1-4 41 18 kΩ RB1 VB1-1 (0.50 V) VB1-2 (0.55 V) PWM Comp.1-1 + + − CH1 Drive 1-1 PWM Comp1-2. + − PWM Comp.1-3 − − + VB1-4 PWM (0.02 V) Comp.1-4 + + − VCC(O)1, 2 53 52 54 Drive 1-2 Drive 1-3 FMMT717 Vo1 (5 V) A U1FWJ44N 22 µH CPH3403 160 Ω OUT1-1 U1FWJ44N 50 OUT1-2 100 pF 10 kΩ 47 RB1 OUT1-3 49 CPH3403 FMMT617 4.7 µF VG(O)1 51 Drive 1-4 OUT1-4 48 U1FWJ44N + − B 0.1 µF FB2 38 36 kΩ 1 KΩ 39 −IN2 SEL Comp. 1.26 V 1.26 V SCP Comp.2 − + + 22 kΩ GND(O)1 46 Error − Amp.2 + + 12 kΩ RL1 50 Ω 3300 pF VSS(O)1, 2 VB2 (0.04 V) PWM Comp.2-1 + + − CH2 Drive 2-1 91 Ω OUT2-1 55 22 µH 3300 pF Drive 2-2 B Vo2 (5 V) 22 µH PWM Comp.2-2 + − 4.7 µF FMMT717 U1FWJ44N 4.7 µF OUT2-2 57 RL2 50 Ω CPH3403 1.0 V DTC2 40 47 kΩ C 22 kΩ 0.1 µF FB3 37 1 KΩ 36 −IN3 16 kΩ 24 kΩ DTC3 C Error − Amp.3 + + 1.26 V SCP Comp.3 − + + PWM Comp.3 + + − CH3 Drive 3 58 FMMT717 VCC(O) 3, 4 4.7 µF 91 Ω OUT3 60 59 Vo3 (3 V) 3300 pF VSS(O) 3, 4, 5, 6 22 µH U1FWJ44N 22 µH 4.7 µF RL3 13 Ω 1.0 V 35 47 kΩ FMMT717: ZETEX plc. FMMT617: ZETEX plc. CPH3403: SANYO Electric Co., Ltd. U1FWJ44N:TOSHIBA CORPORATION MA796: Matsushita Electronic Components Co., Ltd. 2SD1621: SANYO Electric Co., Ltd. RB491D: ROHM CO.LTD 35 MB3827 • Enlarged view of B D 0.1 µF FB4 20 1 KΩ 21 −IN4 22 kΩ VIN (3.6 V) Error − Amp.4 + + 16 kΩ 1.26 V SCP Comp.4 − + + 24 kΩ DTC4 PWM Comp.4 + + − CH4 Drive 4 91 Ω OUT4 61 4.7 µF RL4 13 Ω 1.0 V 22 56 Vo2 (5.0 V) GND(O) 2, 3, 4 Vo5-1 (15 V) E CH5 19 1 KΩ 18 −IN5 Error − Amp.5 + + 15 kΩ 24 kΩ U1FWJ44N 22 µH 3300 pF E 0.1 µF 150 kΩ FB5 -IN(C)5 Vo4 (3 V) 22 µH 47 kΩ 13 kΩ D 4.7 µF FMMT717 17 PWM Comp.5 + + − 1.26 V SCP Comp.5 − + + Drive 5 64 VCC(O) 5, 6, 7 62 FMMT717 MA796 820 Ω OUT5 RL5-1 1.5 kΩ 4.7 µF Vo5-2 (−7.5 V) 3300 pF MA796 4.7 µF RL5-2 3 kΩ 1.26 V DTC5 16 47 kΩ F 56 kΩ −IN(A)6 10 10 kΩ 14 G 18 kΩ 2SD1621 27 kΩ Error − Amp.6 + + 1.26 V SCP Comp.6 − + + 1.26 V 24 kΩ DTC6 15 47 kΩ FMMT717: ZETEX plc. FMMT617: ZETEX plc. CPH3403: SANYO Electric Co., Ltd. U1FWJ44N:TOSHIBA CORPORATION MA796: Matsushita Electronic Components Co., Ltd. 2SD1621: SANYO Electric Co., Ltd. RB491D: ROHM CO.LTD 36 VREF G + OUT(A)6 11 0.1 µF FB6 13 10 kΩ 1 KΩ −IN6 12 47 kΩ−IN(C)6 − CH6 INV Amp.6 PWM Comp.6 + + − Vo6-2 F (−7 V) FMMT717 Vo2(5 V) Vo6-1 (11 V) MA796 4.7 µF Drive 6 820 Ω OUT6 63 RL6-1 3 kΩ MA796 Vo6-3 3300 pF MA796 −14 V 4.7 µF RL6-2 1 kΩ 4.7 µF RL6-3 3.9 kΩ MB3827 • Enlarged view of C VG(O) (8 V) VSS(O) (2 V) H I RB491D FB7 0.1 µF −IN7-1 H +IN7 5 6 − 8 + 10 kΩ −IN7-2 I VB : 2 V 48.5 kΩ PWM − Comp.7 0.77 V − + Error Amp.7 Voffset 1.6 V 4.7 µF MA796 OUT7 1 100 pF Drive 7 MA796 24 kΩ 2 FMMT617 RB7 7 SCP Comp.7 4.7 µF VCC(O) (5.2 V) 9 − 23 VSCP 0.9 V SCP Comp.8 − 1 µF −IN(C)8 4.7 µF 30.1 kΩ + DTC7 CH7 3 GND(O) 5, 6, 7 + 1.26 V + CTL1-4 CS CTL CTL5 28 Logic CTL6 29 − 0.6 V −1.8 V −1.1 V −1.8 V −1.1 V −0.8 V −0.3 V Buff Buff CS1-6 Power Comp. ×0.8 4 XENB1-6 30 26 UVLO VCC 0.1 µF OSC 2V 32 VB 0.1 µF 33 34 RT 18 kΩ SCP CT 100 pF 31 CSCP 0.1 µF Ref Power ON/OFF CTL H: Power/CH1 to 6 in OFF L: Control by CTL terminal function 27 CTL1-4, 7 H: ON (Power/CH1 to 4,7) L: OFF (Standby mode) 2.5 V 24 25 VREF GND 0.1 µF FMMT717: ZETEX plc. FMMT617: ZETEX plc. CPH3403: SANYO Electric Co., Ltd. U1FWJ44N:TOSHIBA CORPORATION MA796: Matsushita Electronic Components Co., Ltd. 2SD1621: SANYO Electric Co., Ltd. RB491D: ROHM CO.LTD 37 MB3827 ■ REFERENCE DATA Efficiency vs. load current (ch1, step-up/step-down switching method) 100 5V output Vo1 (5 V) A Iin Vin = 4.2 V Vin Vin = 6 V 22 µH 90 to OUT1-1 Efficiency η (%) Vin = 3 V IL Vin = 3.6 V 80 to OUT1-2 Vin = 2.5 V 70 4.7 µF to OUT1-3 to OUT1-4 60 η = Vo1 × IL × 100 (%) Vin × Iin 50 0 50 100 150 200 250 300 350 400 450 500 Load current IL (mA) Efficiency vs. load current (ch2, Zeta Method with Synchronous Rectification) 100 5V output Efficiency η (%) 90 Vin = 4.2 V Vin = 6 V 80 Iin Vin = 3 V 4.7 µF Vin 22 µH Vin = 3.6 V 70 Vin = 2.5 V to OUT2-1 B Vo2 (5 V) 22 µH IL 4.7 µF 60 to OUT2-2 η = Vo2 × IL × 100 (%) Vin × Iin 50 0 50 100 150 200 250 300 350 Load current IL (mA) 38 400 450 500 MB3827 ■ USAGE PRECAUTIONS 1. Never use settings exceeding maximum rated conditions. Exceeding maximum rated conditions may cause permanent damage to the LSI. Also, it is recommended that recommended operating conditions be observed in normal use. Exceeding recommended operating conditions may adversely affect LSI reliability. 2. Use this device within recommended operating conditions. Recommended operating conditions are values within which normal LSI operation is warranted. Standard electrical characteristics are warranted within the range of recommended operating conditions and within the listed conditions for each parameter. 3. Printed circuit board ground lines should be set up with consideration for common impedance. 4. Take appropriate static electricity measures. • • • • Containers for semiconductor materials should have anti-static protection or be made of conductive material. After mounting, printed circuit boards should be stored and shipped in conductive bags or containers. Work platforms, tools, and instruments should be properly grounded. Working personnel should be grounded with resistance of 250 kΩ to 1 mΩ between body and ground. ■ ORDERING INFORMATION Part number MB3827PFV Package Remarks 64-pin plastic LQFP (FPT-64P-M03) 39 MB3827 ■ PACKAGE DIMENSION 64-pin Plastic LQFP (FPT-64P-M03) ∗Pins width and pins thickness include plating thickness. 12.00±0.20(.472±.008)SQ 10.00±0.10(.394±.004)SQ 48 33 49 32 0.08(.003) Details of "A" part INDEX +0.20 1.50 –0.10 +.008 (Mounting height) .059 –.004 64 17 "A" LEAD No. 1 0.50±0.08 (.020±.003) 0~8° 16 0.18 .007 +0.08 –0.03 +.003 –.001 0.08(.003) M 0.145±0.055 (.006±.002) 0.50±0.20 (.020±.008) 0.45/0.75 (.018/.030) C 0.10±0.10 (.004±.004) (Stand off) 0.25(.010) 1998 FUJITSU LIMITED F64009S-3C-6 Dimensions in: mm (inches) 40 MB3827 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: (800) 866-8608 Fax: (408) 922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 http://www.fujitsu-ede.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 http://www.fmap.com.sg/ F9906 FUJITSU LIMITED Printed in Japan All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.