STMICROELECTRONICS TDA7438

TDA7438

THREE BANDS
DIGITALLY CONTROLLED AUDIO PROCESSOR
INPUT MULTIPLEXER
- 3 STEREO INPUTS
- SELECTABLE INPUT GAIN FOR OPTIMAL
ADAPTATION TO DIFFERENT SOURCES
ONE STEREO OUTPUT
TREBLE, MIDDLE AND BASS CONTROL IN
2.0dB STEPS
VOLUME CONTROL IN 1.0dB STEPS
TWO SPEAKER ATTENUATORS:
- TWO INDEPENDENT SPEAKER CONTROL
IN 1.0dB STEPS FOR BALANCE FACILITY
- INDEPENDENT MUTE FUNCTION
ALL FUNCTION ARE PROGRAMMABLE VIA
SERIAL BUS
DESCRIPTION
The TDA7438 is a volume tone (bass, middle and
treble) balance (Left/Right) processor for quality
audio applications in car-radio and Hi-Fi systems.
Selectable input gain is provided. Control of all
the functions is accomplished by serial bus.
SO28
DIP28
ORDERING NUMBER: TDA7438D (SO28)
TDA7438 (DIP28)
The AC signal setting is obtained by resistor networks and switches combined with operational
amplifiers.
Thanks to the used BIPOLAR/CMOS Technology,
Low Distortion, Low Noise and DC stepping are
obtained.
BLOCK DIAGRAM
MUXOUTL
L-IN1
3
6
INL
TREBLE(L)
7
18
17
100K
L-IN2
BOUT(L)
MIN(L) MOUT(L) BIN(L)
16
14
RM
15
RB
4
100K
L-IN3
5
G
VOLUME
TREBLE
MIDDLE
SPKR ATT
LEFT
BASS
27
LOUT
100K
R-IN1
21
0/30dB
2dB STEP
2
I2CBUS DECODER + LATCHES
22
20
100K
R-IN2
SDA
DIG_GND
1
100K
R-IN3
SCL
G
VOLUME
TREBLE
MIDDLE
SPKR ATT
RIGHT
BASS
26
ROUT
28
V REF
100K
24
SUPPLY
INPUT MULTIPLEXER
+ GAIN
RM
8
MUXOUTR
April 1999
9
INR
19
TREBLE(R)
10
RB
11
12
MIN(R) MOUT(R) BIN(R)
13
25
VS
AGND
23
BOUT(R) CREF
D96AU488A
1/17
TDA7438
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
10.5
V
Tamb
Operating Ambient Temperature
-10 to 85
°C
Tstg
Storage Temperature Range
-55 to 150
°C
VS
Operating Supply Voltage
Unit
PIN CONNECTION
R_IN2
1
28
R_IN3
R_IN1
2
27
LOUT
L_IN1
3
26
ROUT
L_IN2
4
25
AGND
L_IN3
5
24
VS
MUXOUTL
6
23
CREF
INL
7
22
SDA
MUXOUTR
8
21
SCL
INR
9
20
DIG-GND
MIN(R)
10
19
TREBLE(R)
MOUT(R)
11
18
TREBLE(L)
BIN(R)
12
17
MIN(L)
BOUT(R)
13
16
MOUT(L)
BIN(L)
14
15
BOUT(L)
D96AU489A
THERMAL DATA
Symbol
R th j-pin
Parameter
Thermal Resistance Junction-pins
Value
Unit
85
°C/W
QUICK REFERENCE DATA
Symbol
Parameter
Min.
Typ.
Max.
9
10.2
VS
Supply Voltage
6
VCL
Max. input signal handling
2
Total Harmonic Distortion V = 1Vrms f = 1KHz
0.01
S/N
Signal to Noise Ratio V out = 1Vrms (mode = OFF)
106
SC
Channel Separation f = 1KHz
Volume Control
Treble Control
(1dB step)
(2dB step)
0.1
%
dB
90
dB
0
30
dB
-47
0
dB
-14
+14
dB
-14
+14
dB
Bass Control (2dB step)
-14
+14
dB
Balance Control
-79
0
dB
Middle Control (2dB step)
1dB step
Mute Attenuation (*)
80
100
(*) Even applied to Speaker Attenuator Left, Speaker Attenuator Right, Volume Control stand alone or to the combination, if any.
2/17
V
Vrms
THD
Input Gain in (2dB step)
Unit
dB
TDA7438
ELECTRICAL CHARACTERISTICS (refer to the test circuit Tamb = 25°C, VS = 9V, RL= 10KΩ,
RG = 600Ω, all controls flat (G = 0dB), unless otherwise specified)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
10.2
V
SUPPLY
VS
Supply Voltage
6
9
IS
SVR
Supply Current
Ripple Rejection
60
7
90
mA
dB
THD = 0.3%
2
100
2.5
KΩ
Vrms
The selected input is grounded
through a 2.2µ capacitor
80
100
dB
-1
0
INPUT STAGE
RIN
VCL
Input Resistance
Clipping Level
SIN
Input Separation
Ginmin
Minimum Input Gain
Ginman
Gstep
Maximum Input Gain
Step Resolution
1
30
2
dB
dB
dB
VOLUME CONTROL
Ri
CRANGE
AVMAX
ASTEP
EA
ET
Input Resistance
Control Range
Max. Attenuation
Step Resolution
Attenuation Set Error
Tracking Error
VDC
DC Step
Amute
Mute Attenuation
AV = 0 to -24dB
AV = -24 to -47dB
20
45
45
33
47
47
50
49
49
KΩ
dB
dB
0.5
-1.0
-1.5
1
0
0
1.5
1.0
1.5
dB
dB
dB
1
2
3
80
0
0
0
0.5
100
dB
dB
mV
mV
dB
AV = 0 to -24dB
AV = -24 to -47dB
adjacent attenuation steps
from 0dB to AV max
BASS CONTROL (The center frequency and the response quality can be chosen by the ext. circuitry)
Gb
BSTEP
RB
Control Range
Max. Boost/cut
Step Resolution
Internal Feedback Resistance
+12.0
+14.0
+16.0
dB
1
33
2
44
3
55
dB
KΩ
TREBLE CONTROL (The center frequency and the response quality can be chosen by the ext. circuitry)
Gt
TSTEP
Control Range
Max. Boost/cut
Step Resolution
+13.0
+14.0
+15.0
dB
1
2
3
dB
MIDDLE CONTROL (The center frequency and the response quality can be chosen by the ext. circuitry)
Gm
MSTEP
RM
Control Range
Step Resolution
Internal Feedback Resistance
Max. Boost/cut
+12.0
1
18.75
+14.0
2
25
+16.0
3
31.25
dB
dB
KΩ
SPEAKER ATTENUATORS
CRANGE
SSTEP
EA
ET
Control Range
Step Resolution
Attenuation Set Error
Tracking Error
VDC
DC Step
Amute
Mute Attenuation
76
AV = 0 to -20dB
AV = -20 to -56dB
0.5
-1.5
-2
AV = 0 to -24dB
AV = -24 to -47dB
adjacent attenuation steps
80
dB
1
0
0
1.5
1.5
2
dB
dB
dB
0
0
0
1
2
3
dB
dB
mV
100
dB
3/17
TDA7438
ELECTRICAL CHARACTERISTICS (continued.)
Symbol
Parameter
Test Condition
Min.
Typ.
2.1
2
10
2.6
Max.
Unit
AUDIO OUTPUTS
VCLIP
RL
RO
Clipping Level
Output Load Resistance
Output Impedance
VDC
DC Voltage Level
d = 0.3%
VRMS
KΩ
40
70
Ω
V
3.8
GENERAL (Gain, Bass, Treble, Middle Controls Flat)
ENO
Et
Output Noise
All gains = 0dB;
BW = 20Hz to 20KHz flat
5
15
µV
Total Tracking Error
AV = 0 to -24dB
AV = -24 to -47dB
AV = -47 to -79dB
0
0
0
1
2
3
dB
dB
dB
0.08
dB
dB
%
(Volume + Speaker Attenuator)
S/N
SC
d
All gains 0dB; VO = 1VRMS ;
Signal to Noise Ratio
Channel Separation Left/Right
Distortion
90
80
106
100
0.01
AV = 0; V I = 1VRMS ;
BUS INPUT
V IL
VIH
IIN
Input Low Voltage
Input High Voltage
Input Current
3
-5
VIN = 0.4V
1
V
V
5
µA
TEST CIRCUIT
2.7K
5.6nF
5.6K
18nF
22nF 100nF
100nF
MUXOUTL
L-IN1
3
0.47µF
L-IN2
5
0.47µF
16
BIN(L)
BOUT(L)
14
15
RM
RB
G
VOLUME
TREBLE
MIDDLE
SPKR ATT
LEFT
BASS
27
21
0/30dB
2dB STEP
2
2
I CBUS DECODER + LATCHES
22
20
100K
SCL
SDA
DIGGND
1
100K
G
VOLUME
TREBLE
MIDDLE
SPKR ATT
RIGHT
BASS
26
ROUT
28
VREF
100K
24
INPUT MULTIPLEXER
+ GAIN
RM
9
INR
19
TREBLE(R)
2.2µF
5.6nF
10
MIN(R)
MUXOUTR
SUPPLY
RB
25
VS
AGND
8
4/17
LOUT
100K
0.47µF
R-IN3
MOUT(L)
17
100K
0.47µF
R-IN2
18
100K
0.47µF
R-IN1
TREBLE(L)
7
4
0.47µF
L-IN3
INL
6
MIN(L)
2.2µF
11
MOUT(R)
18nF
2.7K
12
13
BIN(R)
BOUT(R)
22nF 100nF
5.6K
100nF
23
CREF
10µF
D96AU490A
TDA7438
APPLICATION SUGGESTIONS
The first and the last stages are volume control
blocks. The control range is 0 to -47dB (mute) for
the first one, 0 to -79dB (mute) for the last one.
Both of them have 1dB step resolution.
The very high resolution allows the implementation
of systems free from any noisy acoustical effect.
The TDA7438 audioprocessor provides 3 bands
tones control.
Bass, Middle Stages
The Bass and the middle cells have the same
structure.
The Bass cell has an internal resistor Ri = 44KΩ
typical.
The Middle cell has an internal resistor Ri = 25KΩ
typical.
Several filter types can be implemented, connecting external components to the Bass/Middle IN
and OUT pins.
The fig.1 refers to basic T Type Bandpass Filter
starting from the filter component values (R1 internal and R2,C1,C2 external) the centre frequency Fc, the gain Av at max. boost and the filter Q factor are computed as follows:
FC =
AV =
OUT
C1
C2
R2 C2 + R2 C1 + Ri C1
R2 C1 + R2 C2
√

Ri R2 + C1 C2

R2 C1 + R2 C2
Viceversa, once Fc, Av, and Ri internal value are
fixed, the external components values will be:
C1 =
AV − 1
2 ⋅ π ⋅ Ri ⋅ Q
R2 =
IN
2 ⋅ π ⋅√

Ri, R2, C1, C2
Q=
Figure 1.
Ri internal
1
C2 =
Q2 ⋅ C1
AV − 1 Q2
AV − 1 − Q2
2 ⋅ π ⋅ C1 ⋅ FC ⋅ (AV − 1) ⋅Q
Treble Stage
The treble stage is a high pass filter whose time
constant is fixed by an internal resistor (25KΩ
typical) and an external capacitor connected between treble pins and ground
Typical responses are reported in Figg. 10 to 13.
R2
D95AU313
Figure 2: THD vs. frequency
CREF
The suggested 10µF reference capacitor (CREF)
value can be reduced to 4.7µF if the application
requires faster power ON.
Figure 3: THD vs. RLOAD
5/17
TDA7438
Figure 4: Channel separation vs. frequency
Figure 5: Bass response
Ri = 44kΩ
C9 = C10 = 100nF (Bout, Bin)
R3 = 5.6kΩ
Figure 6: Middle response
Ri = 25kΩ
C9 = 15nF (MIN)
C6 - 22nF (MOUT)
R1 = 2.7kΩ
Figure 8: Typical tone response
6/17
Figure 7: Treble response
TDA7438
I2C BUS INTERFACE
Data transmission from microprocessor to the
TDA7438 and vice versa takes place through the
2 wires I2C BUS interface, consisting of the two
lines SDA and SCL (pull-up resistors to positive
supply voltage must be connected).
Data Validity
As shown in fig. 3, the data on the SDA line must
be stable during the high period of the clock. The
HIGH and LOW state of the data line can only
change when the clock signal on the SCL line is
LOW.
Start and Stop Conditions
As shown in fig.4 a start condition is a HIGH to
LOW transition of the SDA line while SCL is
HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.
Byte Format
Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an ac-
knowledge bit. The MSB is transferred first.
Acknowledge
The master (µP) puts a resistive HIGH level on the
SDA line during the acknowledge clock pulse (see
fig. 5). The peripheral (audio processor) that acknowledges has to pull-down (LOW) the SDA line
during this clock pulse.
The audio processor which has been addressed
has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains
at the HIGH level during the ninth clock pulse
time. In this case the master transmitter can generate the STOP information in order to abort the
transfer.
Transmission without Acknowledge
Avoiding to detect the acknowledge of the audio
processor, the µP can use a simpler transmission:
simply it waits one clock without checking the
slave acknowledging, and sends the new data.
This approach of course is less protected from
misworking.
Figure 3: Data Validity on the I2CBUS
Figure 4: Timing Diagram of I2CBUS
Figure 5: Acknowledge on the I2CBUS
7/17
TDA7438
address
A subaddress bytes
A sequence of data (N byte + acknowledge)
A stop condition (P)
SOFTWARE SPECIFICATION
Interface Protocol
The interface protocol comprises:
A start condition (S)
A chip address byte, containing the TDA7438
CHIP ADDRESS
SUBADDRESS
MSB
S
1
LSB
0
0
0
1
0
0
0
MSB
ACK
X
DATA 1 to DATA n
LSB
X
X
B
DATA
MSB
ACK
LSB
DATA
ACK
P
D96AU420
ACK = Acknowledge
S = Start
P = Stop
A = Address
B = Auto Increment
EXAMPLES
No Incremental Bus
The TDA7438 receives a start condition, the cor-
CHIP ADDRESS
SUBADDRESS
MSB
S
1
LSB
0
0
0
1
0
rect chip address, a subaddress with the B = 0
(no incremental bus), N-data (all these data concern the subaddress selected), a stop condition.
0
0
MSB
ACK
X
DATA
LSB
X
X
MSB
0 D3 D2 D1 D0 ACK
LSB
DATA
ACK
P
D96AU421
Incremental Bus
The TDA7438 receive a start conditions, the correct chip address, a subaddress with the B = 1
(incremental bus): now it is in a loop condition
with an autoincrease of the subaddress whereas
CHIP ADDRESS
SUBADDRESS
MSB
S
1
LSB
0
0
0
D96AU422
8/17
1
0
SUBADDRESS from ”XXX1000” to ”XXX1111” of
DATA are ignored.
The DATA 1 concern the subaddress sent, and
the DATA 2 concern the subaddress sent plus
one in the loop etc, and at the end it receivers the
stop condition.
0
0
MSB
ACK
X
DATA 1 to DATA n
LSB
X
X
1 D3 D2 D1 D0 ACK
MSB
LSB
DATA
ACK
P
TDA7438
POWER ON RESET CONDITION
INPUT SELECTION
IN2
INPUT GAIN
28dB
VOLUME
MUTE
BASS
0dB
MIDDLE
2dB
TREBLE
2dB
SPEAKER
MUTE
DATA BYTES
Address = 88 HEX (ADDR:OPEN).
FUNCTION SELECTION: First byte (subaddress)
MSB
LSB
SUBADDRESS
D7
D6
D5
D4
D3
D2
D1
D0
X
X
X
B
0
0
0
0
INPUT SELECT
X
X
X
B
0
0
0
1
INPUT GAIN
X
X
X
B
0
0
1
0
VOLUME
X
X
X
B
0
0
1
1
BASS
X
X
X
B
0
1
0
0
MIDDLE
X
X
X
B
0
1
0
1
TREBLE
X
X
X
B
0
1
1
0
SPEAKER ATTENUATE ”R”
X
X
X
B
0
1
1
1
SPEAKER ATTENUATE ”L”
B = 1: INCREMENTAL BUS ACTIVE
B = 0: NO INCREMENTAL BUS
X = DON’T CARE
INPUT SELECTION
MSB
LSB
INPUT MULTIPLEXER
D7
D6
D5
D4
D3
D2
D1
D0
X
X
X
X
X
X
0
0
IN3
X
X
X
X
X
X
0
1
NOT ALLOWED
X
X
X
X
X
X
1
0
IN2
X
X
X
X
X
X
1
1
IN1
9/17
TDA7438
DATA BYTES (continued)
INPUT GAIN SELECTION
MSB
D7
D6
D5
D4
LSB
INPUT GAIN
D3
D2
D1
D0
2dB STEPS
0
0
0
0
0dB
0
0
0
1
2dB
0
0
1
0
4dB
0
0
1
1
6dB
0
1
0
0
8dB
0
1
0
1
10dB
0
1
1
0
12dB
0
1
1
1
14dB
1
0
0
0
16dB
1
0
0
1
18dB
1
0
1
0
20dB
1
0
1
1
22dB
1
1
0
0
24dB
1
1
0
1
26dB
1
1
1
0
28dB
1
1
1
1
30dB
LSB
VOLUME
1dB STEPS
GAIN = 0 to 30dB
VOLUME SELECTION
MSB
D7
D6
D4
D3
D2
D1
D0
0
0
0
0dB
0
0
1
-1dB
0
1
0
-2dB
0
1
1
-3dB
1
0
0
-4dB
1
0
1
-5dB
1
1
0
-6dB
1
1
1
-7dB
0
0
0
0
0dB
0
0
0
1
-8dB
0
0
1
0
-16dB
0
0
1
1
-24dB
0
1
0
0
-32dB
0
1
0
1
X
1
1
1
VOLUME = 0 to 47dB/MUTE
10/17
D5
-40dB
X
X
X
MUTE
TDA7438
DATA BYTES (continued)
BASS SELECTION
MSB
D7
D6
D5
D4
LSB
BASS
D3
D2
D1
D0
2dB STEPS
0
0
0
0
-14dB
0
0
0
1
-12dB
0
0
1
0
-10dB
0
0
1
1
-8dB
0
1
0
0
-6dB
0
1
0
1
-4dB
0
1
1
0
-2dB
0
1
1
1
0dB
1
1
1
1
0dB
1
1
1
0
2dB
1
1
0
1
4dB
1
1
0
0
6dB
1
0
1
1
8dB
1
0
1
0
10dB
1
0
0
1
12dB
1
0
0
0
14dB
LSB
MIDDLE
MIDDLE SELECTION
MSB
D7
D6
D5
D4
D3
D2
D1
D0
2dB STEPS
0
0
0
0
-14dB
0
0
0
1
-12dB
0
0
1
0
-10dB
0
0
1
1
-8dB
0
1
0
0
-6dB
0
1
0
1
-4dB
0
1
1
0
-2dB
0
1
1
1
0dB
1
1
1
1
0dB
1
1
1
0
2dB
1
1
0
1
4dB
1
1
0
0
6dB
1
0
1
1
8dB
1
0
1
0
10dB
1
0
0
1
12dB
1
0
0
0
14dB
11/17
TDA7438
DATA BYTES (continued)
TREBLE SELECTION
MSB
D7
D6
D5
D4
LSB
TREBLE
D3
D2
D1
D0
2dB STEPS
0
0
0
0
-14dB
0
0
0
1
-12dB
0
0
1
0
-10dB
0
0
1
1
-8dB
0
1
0
0
-6dB
0
1
0
1
-4dB
0
1
1
0
-2dB
0
1
1
1
0dB
1
1
1
1
0dB
1
1
1
0
2dB
1
1
0
1
4dB
1
1
0
0
6dB
1
0
1
1
8dB
1
0
1
0
10dB
1
0
0
1
12dB
1
0
0
0
14dB
LSB
SPEAKER ATTENUATION
D3
D2
D1
D0
1dB
0
0
0
0dB
0
0
1
-1dB
0
1
0
-2dB
0
1
1
-3dB
1
0
0
-4dB
1
0
1
-5dB
1
1
0
-6dB
1
1
1
-7dB
SPEAKER ATTENUATE SELECTION
MSB
D7
D6
D5
D4
0
0
0
0
0dB
0
0
0
1
-8dB
0
0
1
0
-16dB
0
0
1
1
-24dB
0
1
0
0
-32dB
0
1
0
1
-40dB
0
1
1
0
-48dB
0
1
1
1
-56dB
1
0
0
0
-64dB
1
0
0
1
1
1
1
1
SPEAKER ATTENUATION = 0 to -79dB/MUTE
12/17
-72dB
X
X
X
MUTE
TDA7438
PINS: 23
PINS: 26,27
VS
VS
VS
20K
24
ROUT
LOUT
CREF
20µA
20K
D96AU430
D96AU434
PINS: 1, 2, 3, 4, 5, 28
PINS: 6, 8
VS
VS
VS
20µA
20µA
MUXOUT
IN
100K
GND
VREF
D96AU425
PINS: 7, 9
D96AU491
PINS: 10, 11
VS
VS
20µA
20µA
INL
INR
33K
25K
D96AU427
V REF
MOUT(L)
MOUT(R)
D96AU431
13/17
TDA7438
PINS: 10, 17
PINS: 12,14
VS
VS
20µA
20µA
25K
44K
MIN(L)
BIN(L)
MIN(R)
D96AU431
PINS: 13,15
BIN(R)
D96AU428
PINS: 18, 19
VS
VS
20µA
20µA
TREBLE(L)
TREBLE(R)
50K
44K
BOUT(L)
BOUT(R)
D96AU433
D96AU429
PINS: 20
PINS: 21
20µA
SCL
20µA
SDA
D96AU423
D96AU424
14/17
TDA7438
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
a1
0.63
0.025
b
0.45
0.018
b1
0.23
b2
0.31
D
E
0.012
0.009
1.27
0.050
37.34
15.2
16.68
1.470
0.598
0.657
e
2.54
0.100
e3
33.02
1.300
F
MAX.
OUTLINE AND
MECHANICAL DATA
14.1
0.555
I
4.445
0.175
L
3.3
0.130
DIP28
15/17
TDA7438
mm
DIM.
MIN.
TYP.
A
inch
MAX.
MIN.
TYP.
2.65
MAX.
0.104
a1
0.1
0.3
0.004
0.012
b
0.35
0.49
0.014
0.019
b1
0.23
0.32
0.009
0.013
C
0.5
c1
0.020
45° (typ.)
D
17.7
18.1
0.697
0.713
E
10
10.65
0.394
0.419
e
1.27
0.050
e3
16.51
0.65
F
7.4
7.6
0.291
0.299
L
0.4
1.27
0.016
0.050
S
16/17
OUTLINE AND
MECHANICAL DATA
8 ° (max.)
SO28
TDA7438
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 1999 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com
17/17