TDA7439 THREE BANDS DIGITALLY CONTROLLED AUDIO PROCESSOR 1 ■ FEATURES Figure 1. Package INPUT MULTIPLEXER – 4 STEREO INPUTS – SELECTABLE INPUT GAIN FOR OPTIMAL ADAPTATION TO DIFFERENT SOURCES ■ ONE STEREO OUTPUT ■ TREBLE, MIDDLE AND BASS CONTROL IN 2.0dB STEPS Table 1. Order Codes ■ VOLUME CONTROL IN 1.0dB STEPS ■ TWO SPEAKER ATTENUATORS: – TWO INDEPENDENT SPEAKER CONTROL IN 1.0dB STEPS FOR BALANCE FACILITY – INDEPENDENT MUTE FUNCTION ■ 2 SDIP30 ALL FUNCTION ARE PROGRAMMABLE VIA SERIAL BUS DESCRIPTION The TDA7439 is a volume tone (bass, middle and treble) balance (Left/Right) processor for quality Part Number Package TDA7439 SDIP30 audio applications in car-radio and Hi-Fi systems. Selectable input gain is provided. Control of all the functions is accomplished by serial bus. The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers. Thanks to the used BIPOLAR/CMOS Technology, Low Distortion, Low Noise and DC stepping are obtained Figure 2. Block Diagram MUXOUTL L-IN1 11 TREBLE(L) INL 15 16 MIN(L) MOUT(L) BIN(L) 27 26 100K L-IN2 25 BOUT(L) 23 RM 24 RB 12 100K L-IN3 G 13 VOLUME TREBLE MIDDLE SPKR ATT LEFT BASS 6 LOUT 100K L-IN4 14 100K R-IN1 30 0/30dB 2dB STEP 10 2 I CBUS DECODER + LATCHES 1 29 100K R-IN2 SDA DIG_GND 9 100K R-IN3 SCL VOLUME G TREBLE MIDDLE SPKR ATT RIGHT BASS 5 ROUT 8 VREF 100K R-IN4 3 7 100K SUPPLY INPUT MULTIPLEXER + GAIN RM 17 MUXOUTR June 2004 18 INR 28 TREBLE(R) 19 RB 20 21 MIN(R) MOUT(R) BIN(R) 22 4 VS AGND 2 BOUT(R) CREF D95AU342B REV. 10 1/19 TDA7439 Figure 3. PIN CONNECTION SDA 1 30 SCL CREF 2 29 DIG_GND VS 3 28 TREBLE(R) AGND 4 27 TREBLE(L) ROUT 5 26 MIN(L) LOUT 6 25 MOUT(L) R-IN4 7 24 BOUT(L) R-IN3 8 23 BIN(L) R-IN2 9 22 BOUT(R) R-IN1 10 21 BIN(R) L-IN1 11 20 MOUT(R) L-IN2 12 19 MIN(R) L-IN3 13 18 INR L-IN4 14 17 MUXOUTR MUXOUTL 15 16 INL D95AU340A Table 2. Absolute Maximum Ratings Symbol VS Parameter Operating Supply Voltage Tamb Operating Ambient Temperature Tstg Storage Temperature Range Value Unit 10.5 V 0 to 70 °C -55 to 150 °C Value Unit 85 °C/W Table 3. Thermal Data Symbol Rth j-pin Parameter Thermal Resistance Junction-pins Table 4. QUICK REFERENCE DATA Symbol Parameter Typ. Max. Unit 9 10.2 V VS Supply Voltage 6 VCL Max. input signal handling 2 THD Total Harmonic Distortion V = 1Vrms f = 1KHz 0.01 S/N Signal to Noise Ratio Vout = 1Vrms (mode = OFF) 106 dB SC Channel Separation f = 1KHz 90 dB Input Gain in (2dB step) Vrms 0.1 % 0 30 dB Volume Control (1dB step) -47 0 dB Treble Control (2dB step) -14 +14 dB Middle Control (2dB step) -14 +14 dB Bass Control (2dB step) -14 +14 dB Balance Control 1dB step -79 0 dB Mute Attenuation 2/19 Min. 100 dB TDA7439 Table 5. Electrical Characteristcs (refer to the test circuit Tamb = 25°C, VS = 9V, RL= 10KΩ, RG = 600Ω, all controls flat (G = 0dB), unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit SUPPLY VS Supply Voltage 6 9 10.2 V IS Supply Current 4 7 10 mA Ripple Rejection 60 90 70 100 SVR dB INPUT STAGE RIN Input Resistance VCL Clipping Level THD = 0.3% 2 2.5 Vrms SIN Input Separation The selected input is grounded through a 2.2µ capacitor 80 100 dB 130 KΩ Ginmin Minimum Input Gain -1 0 1 dB Ginman Maximum Input Gain 29 30 31 dB Gstep Step Resolution 1.5 2 2.5 dB Input Resistance 20 33 50 KΩ Control Range 45 47 49 dB AVMAX Max. Attenuation 45 47 49 dB ASTEP Step Resolution 0.5 1 1.5 dB AV = 0 to -24dB -1.0 0 1.0 dB AV = -24 to -47dB -1.5 0 1.5 dB AV = 0 to -24dB 0 1 dB AV = -24 to -47dB 0 2 dB 0 0.5 3 mV mV VOLUME CONTROL R i CRANGE EA EΤ VDC Amute Attenuation Set Error Tracking Error DC Step adjacent attenuation steps from 0dB to AV max Mute Attenuation 80 100 dB ±12.0 ±14.0 ±16.0 dB BASS CONTROL (1) Gb Control Range BSTEP Step Resolution 1 2 3 dB Internal Feedback Resistance 33 44 55 KΩ ±13.0 ±14.0 ±15.0 dB 1 2 3 dB ±12.0 ±14.0 ±16.0 dB 1 2 3 dB 18.75 25 31.25 KΩ RB Max. Boost/cut TREBLE CONTROL (1) Gt Control Range TSTEP Step Resolution Max. Boost/cut MIDDLE CONTROL (1) Gm Control Range MSTEP Step Resolution RM Internal Feedback Resistance Max. Boost/cut 3/19 TDA7439 Table 5. Electrical Characteristcs (continued) SPEAKER ATTENUATORS CRANGE Control Range 70 76 82 dB SSTEP Step Resolution 0.5 1 1.5 dB -1.5 0 1.5 dB -2 0 2 dB 0 3 mV E A Attenuation Set Error AV = 0 to -20dB AV = -20 to -56dB VDC Amute DC Step adjacent attenuation steps Mute Attenuation 80 100 dB 2.1 2.6 VRMS AUDIO OUTPUTS VCLIP Clipping Level d = 0.3% RL Output Load Resistance 2 KΩ RO Output Impedance 10 40 70 Ω VDC DC Voltage Level 3.5 3.8 4.1 V GENERAL ENO Et Output Noise All gains = 0dB; BW = 20Hz to 20KHz flat 5 15 µV Total Tracking Error AV = 0 to -24dB 0 1 dB AV = -24 to -47dB 0 2 dB S/N Signal to Noise Ratio SC Channel Separation Left/Right d Distortion All gains 0dB; VO = 1VRMS ; 95 106 dB 80 100 dB AV = 0; VI = 1VRMS ; 0.01 0.08 % 1 V BUS INPUT VIL Input Low Voltage VIH Input High Voltage IIN Input Current VIN = 0.4V VO Output Voltage SDA Acknowledge IO = 1.6mA 3 -5 V 0 5 µA 0.4 0.8 V Notes: 1. The device is functionally good at Vs = 5V. a step down, on Vs, to 4V does’t reset the device. 2. BASS, MIDDLE and TREBLE response: The center frequency and the response quality can be chosen by the external circuitry. 4/19 TDA7439 Figure 4. TEST CIRCUIT 2.7K 5.6nF MUXOUTL 11 0.47µF 0.47µF 24 RM G VOLUME TREBLE RB MIDDLE SPKR ATT LEFT BASS 6 30 0/30dB 2dB STEP 10 2 I CBUS DECODER + LATCHES 1 29 100K LOUT SCL SDA DIGGND 9 100K VOLUME G TREBLE MIDDLE 5 SPKR ATT RIGHT BASS ROUT 8 VREF 100K 7 3 100K INPUT MULTIPLEXER + GAIN RM SUPPLY RB 4 VS AGND 17 INR MUXOUTR 18 28 TREBLE(R) 2.2µF 19 20 MOUT(R) 18nF 5.6nF 3 BOUT(L) 23 100K 0.47µF R-IN4 BIN(L) 14 0.47µF R-IN3 25 100K 0.47µF R-IN2 26 100K 13 0.47µF R-IN1 MOUT(L) 27 100nF 12 0.47µF L-IN4 22nF 100nF 100K 0.47µF L-IN3 TREBLE(L) 16 MIN(R) L-IN2 INL 15 MIN(L) 2.2µF L-IN1 5.6K 18nF 21 22 BIN(R) BOUT(R) 22nF 100nF 2.7K 5.6K 100nF 2 CREF 10µF D95AU339B APPLICATION SUGGESTIONS The first and the last stages are volume control blocks. The control range is 0 to -47dB (mute) for the first one, 0 to -79dB (mute) for the last one. Both of them have 1dB step resolution. The very high resolution allows the implementation of systems free from any noisy acoustical effect. The TDA7439 audioprocessor provides 3 bands tones control. 3.1 Bass, Middle Stages The Bass and the middle cells have the same structure. The Bass cell has an internal resistor Ri = 44KΩ typical. The Middle cell has an internal resistor Ri = 25KΩ typical. Several filter types can be implemented, connecting external components to the Bass/Middle IN and OUT pins. Figure 5. Ri internal IN OUT C1 C2 R2 D95AU313 5/19 TDA7439 The fig.5 refers to basic T Type Bandpass Filter starting from the filter component values (R1 internal and R2,C1,C2 external) the centre frequency Fc, the gain Av at max. boost and the filter Q factor are computed as follows: 1 FC = ----------------------------------------------------------------2 ⋅ π ⋅ R1 ⋅ R2 ⋅ C 1 ⋅ C2 R2C 2 + R2C1 + RiC1 AV = -----------------------------------------------------------R2 C1 + R2C2 R 1 ⋅ R2 ⋅ C1 ⋅ C2 Q = -------------------------------------------------R 2C1 + R2C2 Viceversa, once Fc, Av, and Ri internal value are fixed, the external components values will be: 2 Q ⋅ C1 C2 = -----------------------------2 AV – 1 – Q AV – 1 C1 = -----------------------------------------2 ⋅ π ⋅ Fc ⋅ Ri ⋅ Q 2 AV – 1 – Q R2 = ---------------------------------------------------------------------2 ⋅ π ⋅ C1 ⋅ Fc ⋅ ( AV – 1 ) ⋅ Q 3.2 Treble Stage The treble stage is a high pass filter whose time constant is fixed by an internal resistor (25KΩ typical) and an external capacitor connected between treble pins and ground Typical responses are reported in Figg. 10 to 13. 3.3 CREF The suggested 10µF reference capacitor (CREF) value can be reduced to 4.7µF if the application requires faster power ON. Figure 6. THD vs. frequency 6/19 Figure 7. THD vs. RLOAD TDA7439 Figure 8. Channel separation vs. frequency Figure 11. Middle response Figure 9. Bass response Figure 12. Typical tone response Figure 10. Treble response 7/19 TDA7439 4 I2C BUS INTERFACE Data transmission from microprocessor to the TDA7439 and vice versa takes place through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). 4.1 Data Validity As shown in fig. 13, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW. 4.2 Start and Stop Conditions As shown in fig.14 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. 4.3 Byte Format Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. 4.4 Acknowledge The master (µP) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 15). The peripheral (audio processor) that acknowledges has to pull-down (LOW) the SDA line during this clock pulse. The audio processor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer. 4.5 Transmission without Acknowledge Avoiding to detect the acknowledge of the audio processor, the mP can use a simpler transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data. This approach of course is less protected from misworking. Figure 13. Data Validity on the I2CBUS SDA SCL DATA LINE STABLE, DATA VALID CHANGE DATA ALLOWED D99AU1031 Figure 14. SCL I2CBUS SDA START 8/19 D99AU1032 STOP TDA7439 Figure 15. SCL 1 2 3 7 8 9 SDA MSB START 5 ACKNOWLEDGMENT FROM RECEIVER D99AU1033 SOFTWARE SPECIFICATION 5.1 Interface Protocol The interface protocol comprises: ■ A start condition (S) ■ A chip address byte, containing the TDA7439 address ■ A subaddress bytes ■ A sequence of data (N byte + acknowledge) ■ A stop condition (P) Figure 16. SUBADDRESS CHIP ADDRESS MSB S 1 LSB 0 0 0 1 0 0 0 MSB ACK X DATA 1 to DATA n LSB X X B DATA MSB ACK LSB DATA ACK P D96AU420 ACK = Acknowledge S = Start P = Stop A = Address B = Auto Increment 6 EXAMPLES 6.1 No Incremental Bus The TDA7439 receives a start condition, the correct chip address, a subaddress with the B = 0 (no incremental bus), N-data (all these data concern the subaddress selected), a stop condition. Figure 17. SUBADDRESS CHIP ADDRESS MSB S 1 LSB 0 0 0 1 0 0 0 MSB ACK X DATA LSB X X 0 D3 D2 D1 D0 ACK MSB LSB DATA ACK P D96AU421 9/19 TDA7439 6.2 Incremental Bus The TDA7439 receive a start conditions, the correct chip address, a subaddress with the B = 1 incremental bus): now it is in a loop condition with an autoincrease of the subaddress whereas SUBADDRESS from "XXX1000" to "XXX1111" of DATA are ignored. The DATA 1 concern the subaddress sent, and the DATA 2 concern the subaddress sent plus one in the loop etc, and at the end it receivers the stop condition. Figure 18. SUBADDRESS CHIP ADDRESS MSB S 1 LSB 0 0 0 1 0 0 0 MSB ACK X DATA 1 to DATA n LSB X X MSB 1 D3 D2 D1 D0 ACK LSB DATA ACK D96AU422 Table 6. POWER ON RESET CONDITION 7 INPUT SELECTION IN2 INPUT GAIN 28dB VOLUME MUTE BASS 0dB MIDDLE 2dB TREBLE 2dB SPEAKER MUTE DATA BYTES Address = 88 HEX (ADDR:OPEN). Figure 19. FUNCTION SELECTION: First byte (subaddress) MSB LSB SUBADDRESS D7 D6 D5 D4 D3 D2 D1 D0 X X X B 0 0 0 0 INPUT SELECT X X X B 0 0 0 1 INPUT GAIN X X X B 0 0 1 0 VOLUME X X X B 0 0 1 1 BASS X X X B 0 1 0 0 MIDDLE X X X B 0 1 0 1 TREBLE X X X B 0 1 1 0 SPEAKER ATTENUATE "R" X X X B 0 1 1 1 SPEAKER ATTENUATE "L" B = 1: INCREMENTAL BUS ACTIVE B = 0: NO INCREMENTAL BUS X = DON’T CARE 10/19 P TDA7439 Table 7. INPUT SELECTION MSB LSB INPUT MULTIPLEXER D7 D6 D5 D4 D3 D2 D1 D0 X X X X X X 0 0 IN4 X X X X X X 0 1 IN3 X X X X X X 1 0 IN2 X X X X X X 1 1 IN1 Table 8. INPUT GAIN SELECTION MSB D7 D6 D5 D4 LSB INPUT GAIN D3 D2 D1 D0 2dB STEPS 0 0 0 0 0dB 0 0 0 1 2dB 0 0 1 0 4dB 0 0 1 1 6dB 0 1 0 0 8dB 0 1 0 1 10dB 0 1 1 0 12dB 0 1 1 1 14dB 1 0 0 0 16dB 1 0 0 1 18dB 1 0 1 0 20dB 1 0 1 1 22dB 1 1 0 0 24dB 1 1 0 1 26dB 1 1 1 0 28dB 1 1 1 1 30dB GAIN = 0 to 30dB 11/19 TDA7439 Table 9. VOLUME SELECTION MSB D7 D6 0 D5 0 D4 D3 0 0 LSB VOLUME D2 D1 D0 1dB STEPS 0 0 0 0dB 0 0 1 -1dB 0 1 0 -2dB 0 1 1 -3dB 1 0 0 -4dB 1 0 1 -5dB 1 1 0 -6dB 1 1 1 -7dB 0dB 0 0 0 1 -8dB 0 0 1 0 -16dB 0 0 1 1 -24dB 0 1 0 0 -32dB 0 1 0 1 -40dB X 1 1 1 X X X MUTE LSB BASS VOLUME = 0 to 47dB/MUTE Table 10. BASS SELECTION MSB D7 12/19 D6 D5 D4 D3 D2 D1 D0 2dB STEPS 0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB 0 1 1 1 0dB 1 1 1 1 0dB 1 1 1 0 2dB 1 1 0 1 4dB 1 1 0 0 6dB 1 0 1 1 8dB 1 0 1 0 10dB 1 0 0 1 12dB 1 0 0 0 14dB TDA7439 Table 11. MIDDLE SELECTION MSB D7 D6 D5 D4 LSB MIDDLE D3 D2 D1 D0 2dB STEPS 0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB 0 1 1 1 0dB 1 1 1 1 0dB 1 1 1 0 2dB 1 1 0 1 4dB 1 1 0 0 6dB 1 0 1 1 8dB 1 0 1 0 10dB 1 0 0 1 12dB 1 0 0 0 14dB LSB TREBLE Table 12. TREBLE SELECTION MSB D7 D6 D5 D4 D3 D2 D1 D0 2dB STEPS 0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB 0 1 1 1 0dB 1 1 1 1 0dB 1 1 1 0 2dB 1 1 0 1 4dB 1 1 0 0 6dB 1 0 1 1 8dB 1 0 1 0 10dB 1 0 0 1 12dB 1 0 0 0 14dB 13/19 TDA7439 Table 13. SPEAKER ATTENUATE SELECTION MSB D7 D6 D5 D4 D3 SPEAKER ATTENUATION D2 D1 D0 1dB 0 0 0 0dB 0 0 1 -1dB 0 1 0 -2dB 0 1 1 -3dB 1 0 0 -4dB 1 0 1 -5dB 1 1 0 -6dB 1 1 1 -7dB 0 0 0 0 0dB 0 0 0 1 -8dB 0 0 1 0 -16dB 0 0 1 1 -24dB 0 1 0 0 -32dB 0 1 0 1 -40dB 0 1 1 0 -48dB 0 1 1 1 -56dB 1 0 0 0 -64dB 1 0 0 1 -72dB 1 1 1 1 SPEAKER ATTENUATION = 0 to -79dB/MUTE 14/19 LSB X X X MUTE TDA7439 Figure 20. PINS: 2 Figure 23. PINS 15, 17 VS VS VS VS 20µA 20K CREF MIXOUT 20K GND D96AU430 Figure 21. PINS: 5, 6 D96AU426 Figure 24. PINS 16, 18 VS VS 20µA 24 ROUT LOUT INL INR 20µA 33K D96AU427 VREF D96AU434 Figure 22. PINS 7, 8, 9, 10, 11, 12, 13, 14 Figure 25. PINS 20, 25 VS VS 20µA 20µA IN 100K VREF 25K D96AU425 MOUT(L) MOUT(R) D96AU431 15/19 TDA7439 Figure 26. PINS 19,26 Figure 29. PINS 27, 28 VS VS 20µA 20µA TREBLE(L) TREBLE(R) 50K 25K MOUT(L) D96AU433 MOUT(R) D96AU431 Figure 27. PINS 21, 23 Figure 30. PIN 30 VS 20µA 20µA SCL 44K BIN(L) D96AU424 BIN(R) D96AU428 Figure 28. PINS 22, 24 Figure 31. PIN 1 VS 20µA 20µA SDA 44K BOUT(L) BOUT(R) 16/19 D96AU423 D96AU429 TDA7439 Figure 32. SDIP30 Mechanical Data & Package Dimensions mm DIM. MIN. inch TYP. MAX. A MIN. TYP. 5.08 MAX. 0.20 A1 0.51 A2 3.05 3.81 4.57 0.12 0.15 0.18 B 0.36 0.46 0.56 0.014 0.018 0.022 B1 0.76 0.99 1.40 0.030 0.039 0.055 C 0.20 0.25 0.36 0.008 0.01 0.014 D 27.43 27.94 28.45 1.08 1.10 1.12 E 10.16 10.41 11.05 0.400 0.410 0.435 E1 8.38 8.64 9.40 0.330 0.340 0.370 0.020 e 1.778 0.070 e1 10.16 0.400 L 2.54 M S 3.30 3.81 0.10 0°(min.), 15°(max.) 0.31 OUTLINE AND MECHANICAL DATA 0.13 0.15 SDIP30 (0.400") 0.012 17/19 TDA7439 Table 14. Revision History Date Revision January 2004 9 First Issue in EDOCS DMS June 2004 10 Changed the Style-sheet in compliance to the new “Corporate Technical Pubblications Design Guide” 18/19 Description of Changes TDA7439 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 19/19