TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 D D D D DW PACKAGE (TOP VIEW) Low rDS(on): 0.25 Ω Typ (Full H-Bridge) 0.15 Ω Typ (Triple Half H-Bridge) Pulsed Current: 6 A Per Channel (Full H-Bridge) 8 A Per Channel (Triple Half H-Bridge) Matched Sense Transistor for Class A-B Linear Operation Fast Commutation Speed OUTPUT1 GATE2C GATE1B GATE3B GND OUTPUT3 SOURCE OUTPUT5 GND GATE4B GATE2B GATE5B description 1 24 2 23 3 22 4 21 5 20 6 19 7 18 8 17 9 16 10 15 GATE3A GATE1A GATE4A VDD1 VDD3 OUTPUT4 VDD3 GATE5A VDD2 GATE2A SENSE OUTPUT2 The TPIC1504 is a monolithic power DMOS array 11 14 that consists of ten electrically isolated N-channel 12 13 enhancement-mode power DMOS transistors, four of which are configured as a full H-bridge and six as a triple half H-bridge. The lower stage of the full H-bridge is provided with an integrated sense-FET to allow biasing of the bridge in class A-B operation. The TPIC1504 is offered in a 24-pin wide-body surface-mount (DW) package and is characterized for operation over the case temperature range of – 40°C to 125°C. schematic VDD1 VDD2 21 16 Q2A Q1A 23 GATE1A D1 D2 Q1B 3 GATE1B 13 OUTPUT2 Q4A 22 GATE4A Q3A 24 GATE3A 15 GATE2A 1 OUTPUT1 6 OUTPUT3 Q2B 11 GATE2B 19 OUTPUT4 D3 Q4B 10 GATE4B Q3B 4 GATE3B Q5A 17 GATE5A 8 OUTPUT5 Q5B 12 GATE5B 14 SENSE 2 VDD3 18, 20 7 SOURCE Q2C GATE2C 6V 5, 9 GND NOTES: A. Terminals 5 and 9 must be externally connected. B. Terminals 18 and 20 must bef externally connected. C. No output may be taken greater than 0.5 V below GND. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1996, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 absolute maximum ratings, TC = 25°C (unless otherwise noted)† Supply-to-GND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Source-to-GND voltage (Q3A, Q4A, Q5A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Output-to-GND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Sense-to-GND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Gate-to-source voltage range, VGS (Q1A, Q1B, Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) . . . . . ± 20 V Gate-to-source voltage, VGS (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.7 V to 6 V Continuous gate-to-source zener-diode current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA Pulsed gate-to-source zener-diode current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Continuous drain current, each output (Q1A, Q1B, Q2A, Q2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 A Continuous drain current, each output (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A Continuous drain current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA Continuous source-to-drain diode current (Q1A, Q1B, Q2A, Q2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 A Continuous source-to-drain diode current (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) . . . . . . . . . . . . . . . . . . . . . . . 2 A Continuous source-to-drain diode current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA Pulsed drain current, each output, Imax (Q1A, Q1B, Q2A, Q2B) (see Note 1 and Figure 24) . . . . . . . . . . 6 A Pulsed drain current, each output, Imax (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) (see Note 1 and Figure 25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 A Pulsed drain current, each output, Imax (Q2C) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA Continuous total power dissipation, TC = 70°C (see Note 2 and Figures 24 and 25) . . . . . . . . . . . . . . 2.86 W Operating virtual junction temperature range, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 150°C Operating case temperature range, TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. Pulse duration = 10 ms, duty cycle = 2% 2. Package mounted in intimate contact with infinite heatsink. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 electrical characteristics, Q1A, Q1B, Q2A, Q2B, TC = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS ID = 250 µA, ID = 1 mA, See Figure 5 V(BR)DSX Drain-to-source breakdown voltage VGS = 0 VDS = VGS, VGS(th) Gate-to-source threshold voltage VGS(th)match Gate-to-source threshold voltage matching V(BR) Reverse drain-to-GND breakdown voltage V(BR)GS Gate-to-source threshold breakdown voltage, Q2C IGS = 100 µA V(BR)SG Source-to-gate breakdown voltage, Q2C V(DS)on Drain-to-source on-state voltage ISG = 100 µA ID = 1.5 A, See Notes 3 and 4 VF Forward on-state voltage, GND-to-VDD1, GND-to-VDD2 ID = 1.5 A (D1, D2) See Notes 3 and 4 VF(SD) Forward on-state voltage, source-to-drain IS = 1.5 A, VGS = 0, See Notes 3 and 4 and Figure 19 IDSS Zero gate voltage drain current Zero-gate-voltage VDS = 16 V,, VGS = 0 TC = 25°C TC = 125°C IGSSF Forward gate current, drain short-circuited to source VGS = 16 V, IGSSR Reverse gate current, drain short-circuited to source Ilk lkg rDS(on) DS( ) ID = 1 mA, VDS = VGS Drain-to-GND current = 250 µA (D1, D2) MIN TYP MAX 20 1.5 UNIT V 1.9 2.2 V 40 mV 20 V 6 V 0.5 V VGS = 10 V, 0.375 0.45 1.7 0.85 V V 1.2 V 0.05 1 0.5 10 VDS = 0 10 100 nA VSG = 0.5 V, VDS = 0 10 100 nA Leakage g current,, VDD1-to-GND,, VDD2-to-GND,, gate shorted to source VDGND = 16 V TC = 25°C TC = 125°C 0.05 1 0.5 10 VGS = 10 V, ID = 1.5 A,, See Notes 3 and 4 and Figure 9 TC = 25°C 0.25 0.3 Static drain-to-source drain to source on-state on state resistance TC = 125°C 0.4 0.475 VDS = 14 V, ID = 750 mA, See Notes 3 and 4 and Figure 13 gfs Forward transconductance Ciss Short-circuit input capacitance, common source Coss Short-circuit output capacitance, common source Crss Short-circuit reverse transfer capacitance, common source αs Sense-FET drain current ratio µA µA Ω 0.8 1.2 S 99 VDS = 14 V, f = 1 MHz, VGS = 0, See Figure 17 81 pF F 59 VDS = 6 V, ID(Q2C) = 40 µA 100 150 200 NOTES: 3. Technique should limit TJ – TC to 10°C maximum. 4. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. source-to-drain diode characteristics, Q1A, Q2A, TC = 25°C PARAMETER trr Reverse-recovery time QRR Total diode charge TEST CONDITIONS IS = 750 mA, VDS = 14 V V, See Figures 1 and 23 POST OFFICE BOX 655303 VGS = 0, di/dt = 100 A/µs A/µs, • DALLAS, TEXAS 75265 MIN TYP MAX UNIT 18 ns 13 nC 3 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 resistive-load switching characteristics, Q1A, Q1B, Q2A, Q2B, TC = 25°C PARAMETER TEST CONDITIONS MIN TYP td(on) td(off) Turn-on delay time tr tf Rise time Qg Total gate charge Qgs(th) Threshold gate-to-source charge Qgd Gate-to-drain charge LD LS Internal drain inductance 7 Internal source inductance 7 Rg Internal gate resistance MAX UNIT 11 Turn-off delay time VDD = 14 V,, tdis = 10 ns, RL = 18.7 Ω,, See Figure 3 16 ten = 10 ns,, ns 3 Fall time 4 VDS = 14 V, ID = 750 mA, See Figure 4 and Figure 21 VGS = 10 V, 1.8 2.5 0.3 0.4 0.5 0.6 nC nH Ω 10 electrical characteristics, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, TC = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS ID = 250 µA, ID = 1 mA, See Figure 6 V(BR)DSX Drain-to-source breakdown voltage VGS(th) Gate-to-source threshold voltage V(BR) Reverse drain-to-GND breakdown voltage Drain-to-GND current = 250 µA (D3) V(DS)on Drain-to-source on-state voltage ID = 2 A, VGS = 10 V, See Notes 3 and 4 VF Forward on-state voltage, GND-to-VDD3 VF(SD) Forward on-state voltage, source-to-drain IDSS Zero gate voltage drain current Zero-gate-voltage VDS = 16 V,, VGS = 0 TC = 25°C TC = 125°C IGSSF Forward gate current, drain short-circuited to source VGS = 16 V, IGSSR Reverse gate current, drain short-circuited to source Ilk lkg rDS( DS(on)) VGS = 0 VDS = VGS, MIN TYP 1.5 V 1.9 2.2 20 V V 0.3 ID = 2 A (D3), See Notes 3 and 4 IS = 2 A, VGS = 0 See Notes 3 and 4 and Figure 20 UNIT 0.35 1.5 V V 0.85 1.2 0.05 1 0.5 10 VDS = 0 10 100 nA VSG = 16 V, VDS = 0 10 100 nA Leakage g current,, VDD3-to-GND,, gate shorted to source VDGND = 16 V TC = 25°C TC = 125°C 0.05 1 0.5 10 TC = 25°C 0.15 0.175 Static drain-to-source drain to source on-state on state resistance VGS = 10 V, ID = 2 A, See Notes 3 and 4 and Figure 10 Forward transconductance Ciss Short-circuit input capacitance, common source Coss Short-circuit output capacitance, common source Crss Short-circuit reverse transfer capacitance, common source V µA µA Ω TC = 125°C VDS = 14 V, ID = 1 A, See Notes 3 and 4 and Figure 14 gfs 0.24 1 1.7 0.275 S 160 VDS = 14 V, f = 1 MHz MHz, VGS = 0, See Figure 18 220 110 NOTES: 3: Technique should limit TJ – TC to 10°C maximum. 4: These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. 4 MAX 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 pF TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 source-to-drain diode characteristics, Q3A, Q4A, Q5A, TC = 25°C PARAMETER trr Reverse-recovery time QRR Total diode charge TEST CONDITIONS IS = 1 A, VDS = 14 V V, See Figures 2 and 23 MIN VGS = 0, di/dt = 100 A/µs A/µs, TYP MAX UNIT 34 ns 30 nC resistive-load switching characteristics, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, TC = 25°C PARAMETER TEST CONDITIONS MIN TYP td(on) td(off) Turn-on delay time tr tf Rise time Qg Total gate charge Qgs(th) Threshold gate-to-source charge Qgd Gate-to-drain charge LD LS Internal drain inductance 7 Internal source inductance 7 Rg Internal gate resistance MAX UNIT 30 Turn-off delay time VDD = 14 V,, tdis = 10 ns, RL = 14 Ω,, See Figure 3 34 ten = 10 ns,, ns 15 Fall time 21 VDS = 14 V V, ID = 1 A, A See Figure 4 and Figure 22 VGS = 10 V, V 3.2 4.5 0.5 0.6 0.9 1.1 nC nH Ω 10 thermal resistance PARAMETER TEST CONDITIONS MIN TYP RθJA Junction-to-ambient thermal resistance See Notes 5 and 8 90 RθJB Junction-to-board thermal resistance See Notes 6 and 8 52 RθJP Junction-to-pin thermal resistance See Notes 7 and 8 28 NOTES: 5. 6. 7. 8. MAX UNIT °C/W Package mounted on a FR4 printed-circuit board with no heatsink. Package mounted on a 24 in2, 4-layer FR4 printed-circuit board. Package mounted in intimate contact with infinite heatsink. All outputs with equal power POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 PARAMETER MEASUREMENT INFORMATION 1 Reverse di/dt = 100 A/µs I S – Source-to-Drain Diode Current – A 0.5 0 25% of IRM† – 0.5 Shaded Area = QRR –1 IRM† – 1.5 trr(SD) –2 VDS = 14 V VGS = 0 TJ = 25°C Q1A and Q2A – 2.5 –3 0 10 20 30 40 50 60 Time – ns 70 80 90 100 † IRM = maximum recovery current Figure 1. Reverse-Recovery-Current Waveform of Source-to-Drain Diodes 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 PARAMETER MEASUREMENT INFORMATION 2 VDS = 14 V VGS = 0 TJ = 25°C Q3A, Q4A, and Q5A I S – Source-to-Drain Diode Current – A 1.5 1 Reverse di/dt = 100 A/µs 0.5 0 – 0.5 –1 IRM† Shaded Area = QRR – 1.5 trr(SD) –2 0 10 20 30 40 50 60 Time – ns 70 80 90 100 † IRM = maximum recovery current Figure 2. Reverse-Recovery-Current Waveform of Source-to-Drain Diodes VDD = 14 V RL Pulse Generator ten VDS 10 V VGS VGS 0V DUT Rgen tdis 50 Ω 50 Ω td(off) td(on) CL 30 pF (see Note A) tr tf VDD VDS VDS(on) VOLTAGE WAVEFORMS TEST CIRCUIT NOTE A: CL includes probe and jig capacitance. Figure 3. Resistive-Switching Test Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 PARAMETER MEASUREMENT INFORMATION Current Regulator 12-V Battery 0.2 µF Qg Same Type as DUT 50 kΩ 10 V 0.3 µF Qgs(th) VDD = 14 V VDS VGS DUT IG = 10 µA 0 Qgd Gate Voltage Time IG CurrentSampling Resistor ID CurrentSampling Resistor VOLTAGE WAVEFORM TEST CIRCUIT Figure 4. Gate-Charge Test Circuit and Voltage Waveform TYPICAL CHARACTERISTICS 2.5 VDS = VGS Q1A, Q1B, Q2A, Q2B ID = 10 mA 2 ID = 100 µA 1.5 ID = 1 mA 1 0.5 0 – 40 – 20 0 20 40 60 80 100 120 140 160 GATE-TO-SOURCE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE VGS(th) – Gate-to-Source Threshold Voltage – V VGS(th) – Gate-to-Source Threshold Voltage – V GATE-TO-SOURCE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 2.5 2 ID = 10 mA 1.5 ID = 100 µA ID = 1 mA 1 0.5 0 – 40 – 20 TJ – Junction Temperature – °C 0 20 40 60 Figure 6 POST OFFICE BOX 655303 80 100 120 140 160 TJ – Junction Temperature – °C Figure 5 8 VDS = VGS Q3A, Q3B, Q4A, Q4B, Q5A, Q5B • DALLAS, TEXAS 75265 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 TYPICAL CHARACTERISTICS STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs JUNCTION TEMPERATURE 0.483 ID =1.5 A Q1A, Q1B, Q2A, Q2B r DS(on) – Static Drain-to-Source On-State Resistance – Ω 0.414 VGS = 10 V 0.345 0.276 VGS = 15 V 0.207 VGS = 12 V 0.138 0.069 0 – 40 – 20 0 20 40 60 80 100 120 140 160 TJ – Junction Temperature – °C Figure 7 STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs JUNCTION TEMPERATURE 0.275 On-State Resistance – Ω r DS(on) – Static Drain-to-Source 0.248 ID = 2 A Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 0.221 VGS = 10 V 0.193 0.166 VGS = 15 V 0.138 VGS = 12 V 0.110 0.083 0.055 0.028 0 – 40 – 20 0 20 40 60 80 100 120 140 160 TJ – Junction Temperature – °C Figure 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 TYPICAL CHARACTERISTICS STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT 1 1 TJ = 25°C Q3A, Q3B, Q4A Q4B, Q5A, Q5B VGS = 10 V VGS = 15 V VGS = 12 V 0.1 0.01 0.01 0.1 1 ID – Drain Current – A On-State Resistance – Ω r DS(on) – Static Drain-to-Source On-State Resistance – Ω r DS(on) – Static Drain-to-Source TJ = 25°C Q1A, Q1B, Q2A, Q2B VGS = 12 V VGS = 10 V 0.1 VGS = 15 V 0.01 0.01 10 10 0.1 1 ID – Drain Current – A Figure 10 Figure 9 DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE 8 6 ∆VGS = 1 V (unless otherwise noted) TJ = 25°C Q1A, Q1B, Q2A, Q2B 4 ∆VGS = 1 V (unless otherwise noted) TJ = 25°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 7 I D – Drain Current – A I D – Drain Current – A 5 100 VGS = 5 V 3 2 6 VGS = 5 V 5 4 VGS = 4 V 3 2 1 VGS = 3 V VGS = 3 V 1 0 0 0 1 7 8 9 2 3 4 5 6 VDS – Drain-to-Source Voltage – V 10 0 1 Figure 12 Figure 11 10 7 8 9 2 3 4 5 6 VDS – Drain-to-Source Voltage – V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 TYPICAL CHARACTERISTICS DISTRIBUTION OF FORWARD TRANSCONDUCTANCE DISTRIBUTION OF FORWARD TRANSCONDUCTANCE 30 50 Total Number of Units = 100 VDS = 14 V TJ = 25°C ID = 750 mA Q1A, Q1B, Q2A, Q2B 40 Percentage of Units – % Percentage of Units – % 40 20 Total Number of Units = 100 VDS = 14 V TJ = 25°C ID = 1 A Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 30 20 10 gfs – Forward Transconductance – S 1.76 1.75 1.74 1.73 1.72 1.17 1.7 1.69 1.68 0 1.195 1.19 1.185 1.18 1.175 1.17 1.165 1.16 1.155 1.15 1.145 0 1.14 10 gfs – Forward Transconductance – S Figure 13 Figure 14 DRAIN CURRENT vs GATE-TO-SOURCE VOLTAGE DRAIN CURRENT vs GATE-TO-SOURCE VOLTAGE 6 8 Q1A, Q1B, Q2A, Q2B 5 TJ = – 40°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 7 TJ = 25°C TJ = – 40°C TJ = 25°C I D – Drain Current – A I D – Drain Current – A 6 4 TJ = 75°C 3 TJ = 125°C 2 TJ = 75°C 5 TJ = 125°C 4 TJ = 150°C 3 2 1 1 0 0 0 1 2 3 4 5 6 7 8 0 1 VGS – Gate-to-Source Voltage – V 2 3 4 5 6 7 VGS – Gate-to-Source Voltage – V Figure 16 Figure 15 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 TYPICAL CHARACTERISTICS CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE 240 CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE 550 VGS = 0 f = 1 MHz TJ = 25°C Q1A, Q1B, Q2A, Q2B 220 200 450 Capacitance – pF 180 Capacitance – pF VGS = 0 f = 1 MHz TJ = 25°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 500 160 140 120 Ciss 100 400 350 300 250 Coss 200 Ciss Coss 150 80 Crss 60 Crss 100 40 50 0 2 4 6 8 10 12 14 16 18 20 0 2 VDS – Drain-to-Source Voltage – V SOURCE-TO-DRAIN DIODE CURRENT vs SOURCE-TO-DRAIN VOLTAGE I SD – Source-to-Drain Diode Current – A I SD – Source-to-Drain Diode Current – A 10 VGS = 0 Q1A, Q1B, Q2A, Q2B TJ = – 40°C TJ = 25°C 0.1 0.1 10 12 14 16 18 20 1 VSD – Source-to-Drain Voltage – V 10 VGS = 0 Q3A, Q3B, Q4A, Q4B, Q5A, Q5B TJ = 150°C TJ = 25°C TJ = – 40°C 1 0.1 0.1 Figure 19 12 8 SOURCE-TO-DRAIN DIODE CURRENT vs SOURCE-TO-DRAIN VOLTAGE 10 1 6 Figure 18 Figure 17 TJ = 150°C 4 VDS – Drain-to-Source Voltage – V 1 VSD – Source-to-Drain Voltage – V Figure 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 TYPICAL CHARACTERISTICS 16 14 14 12 12 10 10 VDD = 10 V 8 8 VDD = 12 V 6 6 4 4 VDD = 14 V 2 2 VDD = 12 V 0 0.25 0.5 0.75 16 ID = 1 A TJ = 25°C See Figure 4 Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 12 10 14 12 10 VDD = 10 V VDD = 14 V 8 8 VDD = 12 V 6 4 6 4 VDD = 10 V VDD = 12 V 2 2 VDD = 14 V 0 1 1.25 1.5 1.75 2 0 0 0 2.25 2.5 0 0.5 1 1.5 2 2.5 3 3.5 Qg – Gate Charge – nC Qg – Gate Charge – nC Figure 21 Figure 22 4 4.5 5 REVERSE RECOVERY TIME vs REVERSE di/dt 60 TJ = 25°C See Figures 1 and 2 trr – Reverse Recovery Time – ns VDS – Drain-to-Source Voltage – V 14 16 VDS – Drain-to-Source Voltage – V ID = 0.75 A TJ = 25°C Q1A, Q1B, Q2A, Q2B See Figure 4 VGS – Gate-to-Source Voltage – V 16 DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE vs GATE CHARGE VGS – Gate-to-Source Voltage – V DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE vs GATE CHARGE 50 IS = 1 A Q3A, Q4A, Q5A 40 30 20 IS = 750 mA Q1A, Q2A 10 0 0 50 100 150 200 250 Reverse di/dt – A/µs Figure 23 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 THERMAL INFORMATION MAXIMUM DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE I D – Maximum Drain Current – A 10 TC = 25°C Q1A, Q1B, Q2A, Q2B 500 µs† 1 ms† 10 ms¶ 1 θJC§ ÁÁ ÁÁ θJA‡ DC Conditions 0.1 0.1 1 10 100 VDS – Drain-to-Source Voltage – V Figure 24 MAXIMUM DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE I D – Maximum Drain Current – A 10 TC = 25°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 500 µs† 1 ms† 10 ms¶ 1 ÁÁ ÁÁ 0.1 0.1 θJC§ θJA‡ DC Conditions 1 10 VDS – Drain-to-Source Voltage – V Figure 25 † Less than 10% duty cycle ‡ Device mounted on a 24-in2, 4-layer FR4 printed-circuit board. § Device mounted in intimate contact with infinite heat sink. ¶ Less than 2% duty cycle 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 TPIC1504 QUAD AND HEX POWER DMOS ARRAY SLIS057 – OCTOBER 1996 THERMAL INFORMATION DW PACKAGE† JUNCTION-TO-BOARD THERMAL RESISTANCE vs PULSE DURATION 100 DC Conditions RθJB – Junction-to-Board Thermal Resistance – °C/W d = 0.5 d = 0.2 10 d = 0.1 d = 0.05 d = 0.02 d = 0.01 1 Single Pulse tc tw ID 0 0.1 0.0001 0.001 0.01 0.1 1 10 100 tw – Pulse Duration – s † Device is mounted on 24-in2, 4-layer FR4 printed circuit board with no heat sink. NOTE A: ZθB(t) = r(t) RθJB tw = pulse duration tc = cycle time d = duty cycle = tw/tc Figure 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated