TS482 100mW STEREO HEADPHONE AMPLIFIER ■ Operating from Vcc=2V to 5.5V ■ 100mW into 16Ω at 5V ■ 38mW into 16Ω at 3.3V ■ 11.5mW into 16Ω at 2V ■ Switch ON/OFF click reduction circuitry ■ High Power Supply Rejection Ratio: 85dB at PIN CONNECTIONS (top view) TS482ID, TS482IDT - SO8 OUT (1) 1 8 VCC VIN- (1) 2 7 OUT (2) ■ High Signal-to-Noise ratio: 110dB(A) at 5V ■ High Crosstalk immunity: 100dB (F=1kHz) ■ Rail to Rail input and output ■ Unity-Gain Stable ■ Available in SO8, MiniSO8 & DFN8 VIN+ (1) 3 6 VIN- (2) 4 5 VIN+ (2) DESCRIPTION OUT (1) 1 8 VCC VIN- (1) 2 7 OUT (2) VIN+ (1) 3 6 VIN- (2) GND 4 5 VIN+ (2) TS482IST - MiniSO8 TS482IQT - DFN8 It’s delivering up to 100mW per channel (into 16Ω loads) of continuous average power with 0.1% THD+N from a 5V power supply. OUT The unity gain stable TS482 can be configured by external gain-setting resistors. APPLICATIONS ■ Stereo Headphone Amplifier ■ Optical Storage ■ Computer Motherboard ■ PDA, organizers & Notebook computers ■ High end TV, Set Top Box, DVD Players ■ Sound Cards (1) 1 8 Vcc VIN - (1) 2 7 OUT (2) VIN + (1) 3 6 VIN - (2) GND 4 5 VIN + (2) TYPICAL APPLICATION SCHEMATIC Rfeed1 1µF Right In Cin1 2.2µF ORDER CODE 2.2µF TS482ID/DT TS482IST TS482IQT Temperature Range Package Marking D S Q • -40, +85°C • 482I 3.9k RpolVcc Cs 100k 8 3.9k 2 1 Rin1 3 + Cb TS482 + 5 + 7 Rin2 1µF 6 3.9k 4 100k Rpol 3.9k + + Part Number Vcc + Left In Cin2 220µF Cout1 Cout2 + The TS482 is a dual audio power amplifier able to drive a 16 or 32Ω stereo headset down to low voltages. GND + 5V + + RL=32Ohms RL=32Ohms 220µF Rfeed2 • MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT)) June 2003 1/24 TS482 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Parameter Supply voltage Value 1) Input Voltage Unit 6 V -0.3 to VCC +0.3 V Toper Operating Free Air Temperature Range -40 to + 85 °C Tstg Storage Temperature -65 to +150 °C Maximum Junction Temperature 150 °C Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 175 215 70 °C/W Tj Rthja Power Dissipation 2) SO8 Pd MiniSO8 DFN8 ESD Human Body Model (pin to pin) ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) 0.71 0.58 1.79 2 200 200 250 W kV V mA °C see note 3) Output Short-Circuit Duration 1. All voltages values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C. 3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device. OPERATING CONDITIONS Symbol Parameter Value Unit VCC Supply Voltage 2 to 5.5 V RL Load Resistor >= 16 Ω CL Load Capacitor RL = 16 to 100Ω RL > 100Ω 400 100 pF GND to VCC V 150 190 41 °C/W VICM RTHJA Common Mode Input Voltage Range Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN81) 1. When mounted on a 4-layer PCB. Components Rin Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Cin Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin Cs Supply Bypass capacitor which provides power supply filtering Cb Bypass capacitor which provides half supply filtering Cout Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout)) Rpol These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers. Av 2/24 Functional Description Closed loop gain = -Rfeed / Rin TS482 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Parameter ICC Supply Current No input signal, no load VIO Input Offset Voltage (VICM = VCC/2) IIB Input Bias Current (VICM = VCC/2) PO Output Power THD+N THD+N THD+N THD+N THD + N PSRR = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω Min. 60 95 Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32Ω, Pout = 60mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 90mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp IO Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 106 VO Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω 4.45 SNR Crosstalk CI GBP SR Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz) Typ. Max. 5.5 7.2 1 5 mV 200 500 nA 65 67.5 100 107 mA mW 0.03 0.03 % 85 dB 120 mA 4.2 0.4 4.6 0.55 4.4 95 110 Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz Unit 100 80 0.48 V 0.65 dB dB 100 80 Input Capacitance 1 pF Gain Bandwidth Product (RL = 32Ω) 1.35 2.2 MHz Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.45 0.7 V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 3/24 TS482 ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 2) Symbol Parameter ICC Supply Current No input signal, no load VIO Input Offset Voltage (VICM = VCC/2) IIB Input Bias Current (VICM = VCC/2) PO Output Power THD+N THD+N THD+N THD+N THD + N PSRR = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω VO Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω CI GBP SR Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz) 64 Typ. Max. 5.3 7.2 1 5 mV 200 500 nA 27 28 38 42 Unit mA mW 0.03 0.03 % 80 dB 75 mA 2.68 0.3 3 0.45 2.85 92 107 2.85 Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz 100 80 0.38 V 0.52 dB dB 100 80 Input Capacitance 1 pF Gain Bandwith Product (RL = 32Ω) 1.2 2 MHz Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.45 0.7 V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 2. All electrical values are guaranted with correlation measurements at 2V and 5V 4/24 36 Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Crosstalk 23 Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 35mW, 20Hz ≤ F ≤ 20kHz IO SNR Min. TS482 ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified) 2) Symbol Parameter ICC Supply Current No input signal, no load VIO Input Offset Voltage (VICM = VCC/2) IIB Input Bias Current (VICM = VCC/2) PO Output Power THD+N THD+N THD+N THD+N THD + N PSRR = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω VO Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω CI GBP SR 17.5 Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Crosstalk 12.5 Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32Ω, Pout = 10mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz IO SNR Min. Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz) 45 Typ. Max. 5.1 7.2 1 5 mV 200 500 nA 13.5 14.5 20.5 22 mW % 75 dB 56 mA 1.97 89 102 Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz mA 0.03 0.03 0.25 2.25 0.35 2.15 2.14 Unit 100 80 0.325 V 0.45 dB dB 100 80 Input Capacitance 1 pF Gain Bandwidth Product (RL = 32Ω) 1.2 2 MHz Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.45 0.7 V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 2. All electrical values are guaranted with correlation measurements at 2V and 5V 5/24 TS482 ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Typ. Max. Unit ICC Supply Current No input signal, no load 5 7.2 VIO Input Offset Voltage (VICM = VCC/2) 1 5 mV IIB Input Bias Current (VICM = VCC/2) 200 500 nA PO Output Power THD+N THD+N THD+N THD+N THD + N PSRR = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω VO Output Swing VOL : RL = 32Ω VOH : RL = 32Ω VOL : RL = 16Ω VOH : RL = 16Ω CI GBP SR 9.5 Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16Ω connected between out and VCC/2 Crosstalk 7 Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32Ω, Pout = 6.5mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 8mW, 20Hz ≤ F ≤ 20kHz IO SNR Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz) 33 8 9 11.5 13 mA mW 0.02 0.025 % 75 dB 41.5 mA 1.53 0.24 1.73 0.33 1.63 88 101 1.67 Channel Separation, RL = 32Ω F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16Ω F = 1kHz F = 20Hz to 20kHz 100 80 0.295 V 0.41 dB dB 100 80 Input Capacitance 1 pF Gain Bandwith Product (RL = 32Ω) 1.2 2 MHz Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.42 0.65 V/µs 1. Fig. 68 to 79 show dispersion of these parameters. 6/24 Min. TS482 Index of Graphs Description Figure Page Open Loop Gain 1 to 10 8, 9 Phase and Gain Margin vs Power Supply Voltage 11 to 20 9 to 11 Output Power vs Power Supply Voltage 21 to 23 11 Output Power vs Load Resistance 23 to 27 11, 12 Power Dissipation vs Output Power 28 to 31 12, 13 Power Derating Curves 32 13 Current Consumption vs Power Supply Voltage 33 13 PSRR vs Frequency 34 13 THD + N vs Output Power 35 to 49 13 to 16 THD + N vs Frequency 50 to 54 16 Signal to Noise Ratio vs Power Supply Voltage 55 to 58 17 Equivalent Input Noise voltage vs Frequency 59 17 Output Voltage Swing vs Supply Voltage 60 17 61 to 65 18 66, 67 18, 19 68 to 79 19 to 21 Crosstalk vs Frequency Lower Cut Off Frequency Curves Statistical Results on THD+N 7/24 TS482 Phase 80 60 0 Gain (dB) 100 20 1 10 100 Frequency (kHz) 1000 10000 Phase 80 60 40 20 -20 0 -20 -40 0.1 Fig. 3 : Open Loop Gain and Phase vs Frequency 1 10 100 Frequency (kHz) 1000 10000 Vcc = 5V RL = 16Ω Tamb = 25°C Gain 60 180 80 160 140 Gain 60 Vcc = 2V RL = 16Ω Tamb = 25°C Phase 80 60 0 40 20 20 80 60 40 20 -20 0 -40 0.1 1 10 100 Frequency (kHz) 1000 10000 0 -20 -40 0.1 Fig. 5 : Open Loop Gain and Phase vs Frequency 1 10 100 Frequency (kHz) 1000 10000 Vcc = 5V RL = 32Ω Tamb = 25°C Gain 60 180 80 160 140 Vcc = 2V RL = 32Ω Tamb = 25°C Gain 60 Phase 80 60 0 40 20 -20 40 8/24 1 10 100 Frequency (kHz) 1000 10000 -20 140 20 100 Phase 80 60 0 40 20 -20 0 -40 0.1 160 120 Gain (dB) 20 100 Phase (Deg) Gain (dB) 120 40 -20 Fig. 6 : Open Loop Gain and Phase vs Frequency 180 80 140 100 Phase 0 40 -20 160 120 Gain (dB) 20 100 Phase (Deg) Gain (dB) 120 40 -20 Fig. 4 : Open Loop Gain and Phase vs Frequency 180 80 140 100 20 0 -40 0.1 160 120 0 40 -20 Vcc = 2V RL = 8Ω Tamb = 25°C 40 Phase (Deg) Gain (dB) 60 140 120 40 180 Gain 160 Phase (Deg) 60 20 80 180 Vcc = 5V RL = 8Ω Tamb = 25°C Gain 0 -40 0.1 1 10 100 Frequency (kHz) 1000 10000 -20 Phase (Deg) 80 Fig. 2 : Open Loop Gain and Phase vs Frequency Phase (Deg) Fig. 1 : Open Loop Gain and Phase vs Frequency TS482 Fig. 8 : Open Loop Gain and Phase vs Frequency Fig. 7 : Open Loop Gain and Phase vs Frequency 180 180 60 Vcc = 5V RL = 600Ω Tamb = 25°C 80 160 140 Vcc = 2V RL = 600Ω Tamb = 25°C Gain 60 Phase 60 0 Gain (dB) 20 80 Phase (Deg) Gain (dB) 100 40 100 20 80 Phase 60 0 40 20 -20 40 20 -20 0 0 -40 0.1 1 10 100 1000 Frequency (kHz) 10000 -40 0.1 -20 1 10 100 Frequency (kHz) 1000 10000 180 Gain 60 Vcc = 5V RL = 5kΩ Tamb = 25°C 180 80 160 140 Vcc = 2V RL = 5kΩ Tamb = 25°C Gain 60 20 80 Phase 60 0 40 40 20 80 Phase 60 0 40 20 -20 0 -40 0.1 1 10 100 1000 Frequency (kHz) 10000 -20 0 -40 0.1 1 10 100 Frequency (kHz) 1000 10000 -20 Fig. 12 : Gain Margin vs Power Supply Voltage Fig. 11 : Phase Margin vs Power Supply Voltage 50 50 RL=8Ω Tamb=25°C RL=8Ω Tamb=25°C 40 Gain Margin (dB) 40 Phase Margin (Deg) 140 100 20 -20 160 120 Gain (dB) 100 Phase (Deg) Gain (dB) 120 40 -20 Fig. 10 : Open Loop Gain and Phase vs Frequency Fig. 9 : Open Loop Gain and Phase vs Frequency 80 140 120 120 40 160 Phase (Deg) Gain Phase (Deg) 80 30 CL= 0 to 500pF 20 10 0 2.0 30 CL=0 to 500pF 20 10 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 9/24 TS482 Fig. 14 : Gain Margin vs Power Supply Voltage Fig. 13 : Phase Margin vs Power Supply Voltage 50 50 40 40 30 Gain Margin (dB) Phase Margin (Deg) RL=16Ω Tamb=25°C CL= 0 to 500pF 20 10 30 20 CL=0 to 500pF 10 RL=16Ω Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 0 2.0 5.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Fig. 16 : Gain Margin vs Power Supply Voltage Fig. 15 : Phase Margin vs Power Supply Voltage 50 50 RL=32Ω Tamb=25°C 40 CL= 0 to 500pF Gain Margin (dB) Phase Margin (Deg) 40 30 20 10 30 20 CL=0 to 500pF 10 RL=32Ω Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 0 2.0 5.0 2.5 70 CL=0pF 50 CL=0pF Gain Margin (dB) Phase Margin (Deg) 5.0 20 60 CL=500pF 40 30 20 CL=100pF CL=200pF 10 CL=500pF RL=600Ω Tamb=25°C 0 2.0 10/24 4.5 Fig. 18 : Gain Margin vs Power Supply Voltage Fig. 17 : Phase Margin vs Power Supply Voltage 10 3.0 3.5 4.0 Power Supply Voltage (V) 2.5 RL=600Ω Tamb=25°C 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 TS482 Fig. 20 : Gain Margin vs Power Supply Voltage Fig. 19 : Phase Margin vs Power Supply Voltage 70 20 CL=0pF 50 CL=0pF 40 CL=300pF Gain Margin (dB) Phase Margin (Deg) 60 CL=500pF 30 20 10 CL=200pF 10 CL=500pF RL=5kΩ Tamb=25°C RL=5kΩ Tamb=25°C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 0 2.0 5.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Fig. 22 : Output Power vs Power Supply Voltage Fig. 21 : Output Power vs Power Supply Voltage 250 200 Av = -1 RL = 8Ω F = 1kHz BW < 125kHz Tamb = 25°C 200 175 Av = -1 RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C 175 THD+N=1% 150 150 Output power (mW) 225 Output power (mW) CL=100pF THD+N=10% 125 100 75 50 125 THD+N=1% THD+N=10% 100 75 50 THD+N=0.1% THD+N=0.1% 25 25 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 0 2.0 5.5 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Fig. 24 : Output Power vs Load Resistance Fig. 23 :Output Power vs Power Supply Voltage 200 75 Av = -1 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 180 THD+N=1% THD+N=10% 50 25 THD+N=1% 160 Output power (mW) Output power (mW) 100 Av = -1 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=0.1% 140 120 100 THD+N=10% 80 60 40 THD+N=0.1% 20 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 8 16 24 32 40 48 Load Resistance ( ) 56 64 11/24 TS482 Fig. 25 : Output Power vs Load Resistance Fig. 26 : Output Power vs Load Resistance 50 THD+N=1% 60 Output power (mW) Av = -1 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C 50 40 THD+N=10% 30 20 0 40 30 25 THD+N=10% 20 15 THD+N=0.1% 5 8 16 24 32 40 48 Load Resistance (ohm) 56 0 64 Fig. 27 : Output Power vs Load Resistance 20 THD+N=1% 15 THD+N=10% 10 Power Dissipation (mW) Av = -1 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C 8 16 24 32 40 48 Load Resistance (ohm) 56 64 Fig. 28 : Power Dissipation vs Output Power 25 Output power (mW) THD+N=1% 35 10 THD+N=0.1% 10 Av = -1 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25°C 45 Output power (mW) 70 160 Vcc=5V F=1kHz 140 THD+N<1% RL=8Ω 120 100 80 60 RL=16Ω 40 5 20 THD+N=0.1% 0 0 8 16 24 32 40 48 Load Resistance (ohm) 56 64 RL=32Ω 0 Vcc=3.3V 60 F=1kHz THD+N<1% RL=8Ω 50 40 30 RL=16Ω 20 10 20 30 120 140 RL=8Ω 20 RL=16Ω 10 RL=32Ω 0 0 100 30 RL=32Ω 10 80 Vcc=2.6V F=1kHz THD+N<1% 40 Power Dissipation (mW) Power Dissipation (mW) 60 Fig. 30 : Power Dissipation vs Output Power 70 40 Output Power (mW) 12/24 40 Output Power (mW) Fig. 29 : Power Dissipation vs Output Power 0 20 50 60 0 5 10 15 20 Output Power (mW) 25 30 TS482 Fig. 31 : Power Dissipation vs Output Power Fig. 32 : Power Derating vs Ambiant Temperature 25 Power Dissipation (mW) Vcc=2V F=1kHz 20 THD+N<1% RL=8Ω 15 10 RL=16Ω 5 RL=32Ω 0 0 2 4 6 8 10 12 14 Output Power (mW) Fig. 33 : Current Consumption vs Power Supply Voltage Fig. 34 : Power Supply Rejection Ration vs Frequency 6 5 80 4 Ta=85°C Ta=-40°C 3 Ta=25°C Vcc=3.3V 60 20 1 0 1 2 3 Power Supply Voltage (V) 4 0 20 5 Vcc=2.6V & 2V Vripple=100mVpp Vpin3,5=Vcc/2 (forced bias) RL >= 8Ω 0db=70mVrms Tamb=25°C 40 2 0 100 1000 10000 Frequency (Hz) 100000 Fig. 36 : THD + N vs Output Power Fig. 35 : THD + N vs Output Power 10 10 RL = 8Ω F = 20Hz Av = -1 BW < 125kHz 1 Tamb = 25°C RL = 16Ω F = 20Hz Av = -1 BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) Vcc=5V 100 PSRR (dB) Current Consumption (mA) No load Vcc=2V Vcc=2.6V Vcc=2V 0.1 Vcc=2.6V 0.1 0.01 Vcc=3.3V Vcc=5V Vcc=3.3V 0.01 1 10 Output Power (mW) 100 1E-3 1 Vcc=5V 10 Output Power (mW) 100 13/24 TS482 Fig. 37 : THD + N vs Output Power Fig. 38 : THD + N vs Output Power 10 10 Vcc=2V 0.1 Vcc=2.6V Vcc=3.3V 1 Vcc=2.6V Vcc=3.3V 0.1 Vcc=5V 1E-3 Vcc=5V 10 Output Power (mW) 100 Fig. 39 : THD + N vs Output Power 0.01 0.1 Output Voltage (Vrms) 1 Fig. 40 : THD + N vs Output Power 10 10 RL = 5kΩ F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.6V THD + N (%) THD + N (%) Vcc=2V 0.01 0.01 1E-3 RL = 600Ω F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) RL = 32Ω F = 20Hz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=3.3V 0.1 Vcc=5V RL = 8Ω F = 1kHz Av = -1 BW < 125kHz 1 Tamb = 25°C Vcc=2V Vcc=2.6V 0.1 0.01 Vcc=3.3V Vcc=5V 1E-3 0.01 0.01 0.1 Output Voltage (Vrms) 1 Fig. 41 : THD + N vs Output Power THD + N (%) THD + N (%) 100 10 RL = 16Ω F = 1kHz Av = -1 BW < 125kHz Tamb = 25°C 1 Vcc=2V 0.1 Vcc=2.6V 0.01 RL = 32Ω F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=2V 0.1 Vcc=2.6V 0.01 Vcc=3.3V 14/24 10 Output Power (mW) Fig. 42 : THD + N vs Output Power 10 1E-3 1 1 Vcc=5V 10 Output Power (mW) Vcc=3.3V 100 1E-3 1 Vcc=5V 10 Output Power (mW) 100 TS482 Fig. 43 : THD + N vs Output Power Fig. 44 : THD + N vs Output Power 10 10 RL = 5kΩ F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2.6V THD + N (%) THD + N (%) RL = 600Ω F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=3.3V 0.1 Vcc=5V Vcc=3.3V Vcc=5V 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) 1E-3 0.01 1 Fig. 45 : THD + N vs Output Power 1 10 RL = 8Ω F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25°C Vcc=2V Vcc=2.6V RL = 16Ω F = 20kHz Av = -1 BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) 0.1 Output Voltage (Vrms) Fig. 46 : THD + N vs Output Power 10 Vcc=2V Vcc=2.6V 0.1 0.1 Vcc=3.3V 1 Vcc=5V 10 Output Power (mW) Vcc=3.3V 0.01 100 Fig. 47 : THD + N vs Output Power THD + N (%) Vcc=2V Vcc=2.6V 0.01 Vcc=3.3V 1 Vcc=5V 10 Output Power (mW) 100 10 RL = 32Ω F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25°C 0.1 1 Fig. 48 : THD + N vs Output Power 10 THD + N (%) Vcc=2.6V 0.1 0.01 0.01 Vcc=2V Vcc=2V Vcc=2.6V Vcc=3.3V 0.1 Vcc=5V 0.01 Vcc=5V 10 Output Power (mW) RL = 600Ω F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25°C 100 0.01 0.1 Output Voltage (Vrms) 1 15/24 TS482 Fig. 49 : THD + N vs Output Power Fig. 50 : THD + N vs Frequency 0.1 RL = 5kΩ F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25°C Vcc=2V Vcc=2V, Po=10mW Vcc=2.6V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW Vcc=2.6V THD + N (%) THD + N (%) 10 Vcc=3.3V Vcc=5V 0.1 RL=8Ω Av=-1 Bw < 125kHz Tamb=25°C 0.01 0.01 0.01 0.1 Output Voltage (Vrms) 1 Fig. 51 : THD + N vs Frequency 20 100 1000 Frequency (Hz) 10000 20k Fig. 52 : THD + N vs Frequency 0.1 0.1 RL=16Ω Av=-1 Bw < 125kHz Tamb=25°C Vcc=2V, Po=6.5mW Vcc=2.6V, Po=12mW THD + N (%) THD + N (%) Vcc=2V, Po=8mW Vcc=2.6V, Po=18mW Vcc=3.3V, Po=35mW Vcc=5V, Po=90mW RL=32Ω Av=-1 Bw < 125kHz Tamb=25°C Vcc=3.3V, Po=16mW Vcc=5V, Po=60mW 0.01 0.01 20 100 1000 Frequency (Hz) 10000 20k Fig. 53 : THD + N vs Frequency 20 RL=5kΩ Av=-1 Bw < 125kHz Tamb=25°C THD + N (%) Vcc=5V, Vo=1.4Vrms THD + N (%) 10000 20k 0.1 RL=600Ω Av=-1 Bw < 125kHz Tamb=25°C 16/24 1000 Frequency (Hz) Fig. 54 : THD + N vs Frequency 0.1 Vcc=3.3V, Vo=1Vrms 0.01 Vcc=2.6V, Vo=0.75Vrms Vcc=2V, Vo=0.55Vrms 1E-3 100 20 100 1000 Frequency (Hz) 10000 20k Vcc=5V, Vo=1.4Vrms Vcc=3.3V, Vo=1Vrms Vcc=2.6V, Vo=0.75Vrms 0.01 Vcc=2V, Vo=0.55Vrms 1E-3 20 100 1000 Frequency (Hz) 10000 20k TS482 Fig. 55 : Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) Fig. 56 : Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) 110 110 104 102 RL=32Ω 100 98 96 RL=8Ω 94 RL=16Ω 92 90 2.0 2.5 Av = -1 THD+N < 0.2% Tamb = 25°C 108 Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) Av = -1 108 THD+N < 0.2% 106 Tamb = 25°C 3.0 106 104 102 RL=600Ω 100 98 RL=5kΩ 96 94 92 3.5 4.0 4.5 90 2.0 5.0 2.5 3.0 Fig. 57 : Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 4.5 5.0 120 Av = -1 THD+N < 0.2% Tamb = 25°C 110 RL=32Ω 105 100 RL=8Ω RL=16Ω 95 90 2.0 2.5 3.0 3.5 4.0 4.5 Av = -1 THD+N < 0.2% Tamb = 25°C 115 110 105 RL=600Ω RL=5kΩ 100 95 90 2.0 5.0 2.5 3.0 3.5 4.0 4.5 5.0 Power Supply (V) Power Supply (V) Fig. 59 : Equivalent Input Noise Voltage vs Frequency Fig. 60 : Output Voltage Swing vs Power Supply Voltage 25 5.0 Vcc=5V Rs=100Ω Tamb=25°C 4.5 Tamb=25°C 4.0 20 VOH & VOL (V) Equivalent Input Noise Voltage (nv/ Hz) 4.0 Fig. 58 : Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 120 115 3.5 Power Supply (V) Power Supply (V) 15 3.5 3.0 2.5 RL=32Ω 2.0 RL=16Ω 1.5 RL=8Ω 10 1.0 0.5 5 0.02 0.1 1 Frequency (kHz) 10 0.0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 17/24 TS482 Fig. 62 : Crosstalk vs Frequency Fig. 61 : Crosstalk vs Frequency 100 100 80 ChB to ChA ChA to ChB 60 RL=8Ω Vcc=5V Pout=100mW Av=-1 Bw < 125kHz Tamb=25°C 40 20 20 100 Crosstalk (dB) Crosstalk (dB) 80 ChA to ChB 60 RL=16Ω Vcc=5V Pout=90mW Av=-1 Bw < 125kHz Tamb=25°C 40 20 20 10000 20k 1000 Frequency (Hz) ChB to ChA 100 10000 20k 1000 Frequency (Hz) Fig. 64 : Crosstalk vs Frequency Fig. 63 : Crosstalk vs Frequency 120 100 100 60 RL=32Ω Vcc=5V Pout=60mW Av=-1 Bw < 125kHz Tamb=25°C 40 20 20 100 1000 Frequency (Hz) 60 RL=600Ω Vcc=5V Vout=1.4Vrms Av=-1 Bw < 125kHz Tamb=25°C 40 0 20 100 1000 Frequency (Hz) 10000 20k 1000 100 Crosstalk (dB) ChB to ChA & ChA to Chb Fig. 66 : Lower Cut Off Frequency vs Output Capacitor 120 80 ChB to ChA & ChA to Chb 60 RL=5kΩ Vcc=5V Vout=1.5Vrms Av=-1 Bw < 125kHz Tamb=25°C 40 20 18/24 80 20 10000 20k Fig. 65 : Crosstalk vs Frequency 0 Crosstalk (dB) ChB to ChA & ChA to Chb 20 100 1000 Frequency (Hz) 10000 20k -3dB Cut Off Frequency (Hz) Crosstalk (dB) 80 RL=8Ω 100 RL=16Ω RL=32Ω 10 1 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Output Capacitor Cout ( F) TS482 Fig. 67 : Lower Cut Off Frequency vs Input Capacitor Fig. 68 : Typical Distribution of THD+N 40 1000 Vcc=5V RL=16Ω Av=-1 Pout=90mW 20Hz≤F≤20kHz Tamb=25°C 32 Rin=10kΩ 100 Number of Units -3dB Cut Off Frequency (Hz) 36 Rin=3.9kΩ Rin=22kΩ 10 28 24 20 16 12 8 4 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 2.2 0.012 0.018 0.024 Input Capacitor Cin ( F) Fig. 69 : Best Case Distribution of THD+N 0.048 28 24 20 16 12 32 28 24 20 16 12 8 8 4 4 0.012 0.018 0.024 0.030 0.036 0.042 Vcc=5V RL=16Ω Av=-1 Pout=90mW 20Hz≤F≤20kHz Tamb=25°C 36 Number of Units Number of Units 32 0 0.048 0.012 0.018 0.024 THD+N (%) 0.030 0.036 0.042 0.048 THD+N (%) Fig. 71 : Typical Distribution of THD+N Fig. 72 : Best Case Distribution of THD+N 40 40 32 28 24 20 16 12 32 28 24 20 16 12 8 8 4 4 0.012 0.018 0.024 0.030 0.036 THD+N (%) 0.042 0.048 Vcc=2V RL=16Ω Av=-1 Pout=8mW 20Hz≤F≤20kHz Tamb=25°C 36 Number of Units Vcc=2V RL=16Ω Av=-1 Pout=8mW 20Hz≤F≤20kHz Tamb=25°C 36 Number of Units 0.042 40 Vcc=5V RL=16Ω Av=-1 Pout=90mW 20Hz≤F≤20kHz Tamb=25°C 36 0 0.036 Fig. 70 : Worst Case Distribution of THD+N 40 0 0.030 THD+N (%) 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 THD+N (%) 19/24 TS482 Fig. 73 : Worst Case Distribution of THD+N Fig. 74 : Typical Distribution of THD+N 40 20 Number of Units 32 28 24 20 16 12 16 14 12 10 8 6 8 4 4 2 0 0.012 0.018 0.024 0.030 0.036 0.042 Vcc=5V RL=32Ω Av=-1 Pout=60mW 20Hz≤F≤20kHz Tamb=25°C 18 Number of Units Vcc=2V RL=16Ω Av=-1 Pout=8mW 20Hz≤F≤20kHz Tamb=25°C 36 0 0.012 0.048 0.018 0.024 THD+N (%) Fig. 75 : Best Case Distribution of THD+N 14 12 10 8 6 18 16 Number of Units Number of Units 16 14 12 0.048 8 6 4 2 2 0.018 0.024 0.030 0.036 0.042 Vcc=5V RL=32Ω Av=-1 Pout=60mW 20Hz≤F≤20kHz Tamb=25°C 10 4 0 0.012 0 0.012 0.048 0.018 0.024 THD+N (%) 0.030 0.036 0.042 0.048 THD+N (%) Fig. 77 : Typical Distribution of THD+N Fig. 78 : Best Case Distribution of THD+N 40 40 32 28 24 20 16 12 32 28 24 20 16 12 8 8 4 4 0.012 0.018 0.024 0.030 0.036 THD+N (%) 0.042 0.048 Vcc=2V RL=32Ω Av=-1 Pout=6.5mW 20Hz≤F≤20kHz Tamb=25°C 36 Number of Units Vcc=2V RL=32Ω Av=-1 Pout=6.5mW 20Hz≤F≤20kHz Tamb=25°C 36 Number of Units 0.042 20 Vcc=5V RL=32Ω Av=-1 Pout=60mW 20Hz≤F≤20kHz Tamb=25°C 18 20/24 0.036 Fig. 76 : Worst Case Distribution of THD+N 20 0 0.030 THD+N (%) 0 0.012 0.018 0.024 0.030 0.036 THD+N (%) 0.042 0.048 TS482 Fig. 79 : Worst Case Distribution of THD+N 40 Vcc=2V RL=32Ω Av=-1 Pout=6.5mW 20Hz≤F≤20kHz Tamb=25°C 36 Number of Units 32 28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 THD+N (%) 21/24 TS482 PACKAGE MECHANICAL DATA SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 22/24 TS482 PACKAGE MECHANICAL DATA 23/24 TS482 PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia M l M Si S i S d S i l d U i d Ki d U i dS 24/24