STMICROELECTRONICS TS482IQT

TS482
100mW STEREO HEADPHONE AMPLIFIER
■ Operating from Vcc=2V to 5.5V
■ 100mW into 16Ω at 5V
■ 38mW into 16Ω at 3.3V
■ 11.5mW into 16Ω at 2V
■ Switch ON/OFF click reduction circuitry
■ High Power Supply Rejection Ratio: 85dB at
PIN CONNECTIONS (top view)
TS482ID, TS482IDT - SO8
OUT (1)
1
8
VCC
VIN- (1)
2
7
OUT (2)
■ High Signal-to-Noise ratio: 110dB(A) at 5V
■ High Crosstalk immunity: 100dB (F=1kHz)
■ Rail to Rail input and output
■ Unity-Gain Stable
■ Available in SO8, MiniSO8 & DFN8
VIN+ (1)
3
6
VIN- (2)
4
5
VIN+ (2)
DESCRIPTION
OUT (1)
1
8
VCC
VIN- (1)
2
7
OUT (2)
VIN+ (1)
3
6
VIN- (2)
GND
4
5
VIN+ (2)
TS482IST - MiniSO8
TS482IQT - DFN8
It’s delivering up to 100mW per channel (into 16Ω
loads) of continuous average power with 0.1%
THD+N from a 5V power supply.
OUT
The unity gain stable TS482 can be configured by
external gain-setting resistors.
APPLICATIONS
■ Stereo Headphone Amplifier
■ Optical Storage
■ Computer Motherboard
■ PDA, organizers & Notebook computers
■ High end TV, Set Top Box, DVD Players
■ Sound Cards
(1)
1
8
Vcc
VIN - (1)
2
7
OUT (2)
VIN + (1)
3
6
VIN - (2)
GND
4
5
VIN + (2)
TYPICAL APPLICATION SCHEMATIC
Rfeed1
1µF
Right In Cin1
2.2µF
ORDER CODE
2.2µF
TS482ID/DT
TS482IST
TS482IQT
Temperature
Range
Package
Marking
D
S
Q
•
-40, +85°C
•
482I
3.9k
RpolVcc
Cs
100k
8
3.9k
2
1
Rin1
3
+
Cb
TS482
+
5
+
7
Rin2 1µF 6
3.9k
4
100k
Rpol
3.9k
+
+
Part Number
Vcc
+
Left In
Cin2
220µF
Cout1
Cout2
+
The TS482 is a dual audio power amplifier able to
drive a 16 or 32Ω stereo headset down to low voltages.
GND
+
5V
+
+
RL=32Ohms
RL=32Ohms
220µF
Rfeed2
•
MiniSO & DFN only available in Tape & Reel with T suffix,
SO is available in Tube (D) and in Tape & Reel (DT))
June 2003
1/24
TS482
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Vi
Parameter
Supply voltage
Value
1)
Input Voltage
Unit
6
V
-0.3 to VCC +0.3
V
Toper
Operating Free Air Temperature Range
-40 to + 85
°C
Tstg
Storage Temperature
-65 to +150
°C
Maximum Junction Temperature
150
°C
Thermal Resistance Junction to Ambient
SO8
MiniSO8
DFN8
175
215
70
°C/W
Tj
Rthja
Power Dissipation 2)
SO8
Pd
MiniSO8
DFN8
ESD
Human Body Model (pin to pin)
ESD
Machine Model - 220pF - 240pF (pin to pin)
Latch-up Latch-up Immunity (All pins)
Lead Temperature (soldering, 10sec)
0.71
0.58
1.79
2
200
200
250
W
kV
V
mA
°C
see note 3)
Output Short-Circuit Duration
1. All voltages values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.
3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device.
OPERATING CONDITIONS
Symbol
Parameter
Value
Unit
VCC
Supply Voltage
2 to 5.5
V
RL
Load Resistor
>= 16
Ω
CL
Load Capacitor
RL = 16 to 100Ω
RL > 100Ω
400
100
pF
GND to VCC
V
150
190
41
°C/W
VICM
RTHJA
Common Mode Input Voltage Range
Thermal Resistance Junction to Ambient
SO8
MiniSO8
DFN81)
1. When mounted on a 4-layer PCB.
Components
Rin
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also
forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))
Cin
Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Rfeed
Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs
Supply Bypass capacitor which provides power supply filtering
Cb
Bypass capacitor which provides half supply filtering
Cout
Output coupling capacitor which blocks the DC voltage at the load input terminal
This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout))
Rpol
These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers.
Av
2/24
Functional Description
Closed loop gain = -Rfeed / Rin
TS482
ELECTRICAL CHARACTERISTICS
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
ICC
Supply Current
No input signal, no load
VIO
Input Offset Voltage (VICM = VCC/2)
IIB
Input Bias Current (VICM = VCC/2)
PO
Output Power
THD+N
THD+N
THD+N
THD+N
THD + N
PSRR
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
Min.
60
95
Total Harmonic Distortion + Noise (Av=-1) 1)
RL = 32Ω, Pout = 60mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 90mW, 20Hz ≤ F ≤ 20kHz
Power Supply Rejection Ratio (Av=1), inputs floating
F = 100Hz, Vripple = 100mVpp
IO
Max Output Current
THD +N < 1%, RL = 16Ω connected between out and VCC/2
106
VO
Output Swing
VOL : RL = 32Ω
VOH : RL = 32Ω
VOL : RL = 16Ω
VOH : RL = 16Ω
4.45
SNR
Crosstalk
CI
GBP
SR
Signal-to-Noise Ratio (Filter Type A, Av=-1)
(RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Typ.
Max.
5.5
7.2
1
5
mV
200
500
nA
65
67.5
100
107
mA
mW
0.03
0.03
%
85
dB
120
mA
4.2
0.4
4.6
0.55
4.4
95
110
Channel Separation, RL = 32Ω
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω
F = 1kHz
F = 20Hz to 20kHz
Unit
100
80
0.48
V
0.65
dB
dB
100
80
Input Capacitance
1
pF
Gain Bandwidth Product (RL = 32Ω)
1.35
2.2
MHz
Slew Rate, Unity Gain Inverting (RL = 16Ω)
0.45
0.7
V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
3/24
TS482
ELECTRICAL CHARACTERISTICS
VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 2)
Symbol
Parameter
ICC
Supply Current
No input signal, no load
VIO
Input Offset Voltage (VICM = VCC/2)
IIB
Input Bias Current (VICM = VCC/2)
PO
Output Power
THD+N
THD+N
THD+N
THD+N
THD + N
PSRR
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
VO
Output Swing
VOL : RL = 32Ω
VOH : RL = 32Ω
VOL : RL = 16Ω
VOH : RL = 16Ω
CI
GBP
SR
Signal-to-Noise Ratio (Filter Type A, Av=-1)
(RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
64
Typ.
Max.
5.3
7.2
1
5
mV
200
500
nA
27
28
38
42
Unit
mA
mW
0.03
0.03
%
80
dB
75
mA
2.68
0.3
3
0.45
2.85
92
107
2.85
Channel Separation, RL = 32Ω
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω
F = 1kHz
F = 20Hz to 20kHz
100
80
0.38
V
0.52
dB
dB
100
80
Input Capacitance
1
pF
Gain Bandwith Product (RL = 32Ω)
1.2
2
MHz
Slew Rate, Unity Gain Inverting (RL = 16Ω)
0.45
0.7
V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
2. All electrical values are guaranted with correlation measurements at 2V and 5V
4/24
36
Power Supply Rejection Ratio (Av=1), inputs floating
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, RL = 16Ω connected between out and VCC/2
Crosstalk
23
Total Harmonic Distortion + Noise (Av=-1) 1)
RL = 32Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 35mW, 20Hz ≤ F ≤ 20kHz
IO
SNR
Min.
TS482
ELECTRICAL CHARACTERISTICS
VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified) 2)
Symbol
Parameter
ICC
Supply Current
No input signal, no load
VIO
Input Offset Voltage (VICM = VCC/2)
IIB
Input Bias Current (VICM = VCC/2)
PO
Output Power
THD+N
THD+N
THD+N
THD+N
THD + N
PSRR
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
VO
Output Swing
VOL : RL = 32Ω
VOH : RL = 32Ω
VOL : RL = 16Ω
VOH : RL = 16Ω
CI
GBP
SR
17.5
Power Supply Rejection Ratio (Av=1), inputs floating
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, RL = 16Ω connected between out and VCC/2
Crosstalk
12.5
Total Harmonic Distortion + Noise (Av=-1) 1)
RL = 32Ω, Pout = 10mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz
IO
SNR
Min.
Signal-to-Noise Ratio (Filter Type A, Av=-1)
(RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
45
Typ.
Max.
5.1
7.2
1
5
mV
200
500
nA
13.5
14.5
20.5
22
mW
%
75
dB
56
mA
1.97
89
102
Channel Separation, RL = 32Ω
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω
F = 1kHz
F = 20Hz to 20kHz
mA
0.03
0.03
0.25
2.25
0.35
2.15
2.14
Unit
100
80
0.325
V
0.45
dB
dB
100
80
Input Capacitance
1
pF
Gain Bandwidth Product (RL = 32Ω)
1.2
2
MHz
Slew Rate, Unity Gain Inverting (RL = 16Ω)
0.45
0.7
V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
2. All electrical values are guaranted with correlation measurements at 2V and 5V
5/24
TS482
ELECTRICAL CHARACTERISTICS
VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Typ.
Max.
Unit
ICC
Supply Current
No input signal, no load
5
7.2
VIO
Input Offset Voltage (VICM = VCC/2)
1
5
mV
IIB
Input Bias Current (VICM = VCC/2)
200
500
nA
PO
Output Power
THD+N
THD+N
THD+N
THD+N
THD + N
PSRR
=
=
=
=
0.1% Max, F = 1kHz, RL = 32Ω
1% Max, F = 1kHz, RL = 32Ω
0.1% Max, F = 1kHz, RL = 16Ω
1% Max, F = 1kHz, RL = 16Ω
VO
Output Swing
VOL : RL = 32Ω
VOH : RL = 32Ω
VOL : RL = 16Ω
VOH : RL = 16Ω
CI
GBP
SR
9.5
Power Supply Rejection Ratio (Av=1), inputs floating
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, RL = 16Ω connected between out and VCC/2
Crosstalk
7
Total Harmonic Distortion + Noise (Av=-1) 1)
RL = 32Ω, Pout = 6.5mW, 20Hz ≤ F ≤ 20kHz
RL = 16Ω, Pout = 8mW, 20Hz ≤ F ≤ 20kHz
IO
SNR
Signal-to-Noise Ratio (Filter Type A, Av=-1)
(RL = 32Ω, THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
33
8
9
11.5
13
mA
mW
0.02
0.025
%
75
dB
41.5
mA
1.53
0.24
1.73
0.33
1.63
88
101
1.67
Channel Separation, RL = 32Ω
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω
F = 1kHz
F = 20Hz to 20kHz
100
80
0.295
V
0.41
dB
dB
100
80
Input Capacitance
1
pF
Gain Bandwith Product (RL = 32Ω)
1.2
2
MHz
Slew Rate, Unity Gain Inverting (RL = 16Ω)
0.42
0.65
V/µs
1. Fig. 68 to 79 show dispersion of these parameters.
6/24
Min.
TS482
Index of Graphs
Description
Figure
Page
Open Loop Gain
1 to 10
8, 9
Phase and Gain Margin vs Power Supply Voltage
11 to 20
9 to 11
Output Power vs Power Supply Voltage
21 to 23
11
Output Power vs Load Resistance
23 to 27
11, 12
Power Dissipation vs Output Power
28 to 31
12, 13
Power Derating Curves
32
13
Current Consumption vs Power Supply Voltage
33
13
PSRR vs Frequency
34
13
THD + N vs Output Power
35 to 49
13 to 16
THD + N vs Frequency
50 to 54
16
Signal to Noise Ratio vs Power Supply Voltage
55 to 58
17
Equivalent Input Noise voltage vs Frequency
59
17
Output Voltage Swing vs Supply Voltage
60
17
61 to 65
18
66, 67
18, 19
68 to 79
19 to 21
Crosstalk vs Frequency
Lower Cut Off Frequency Curves
Statistical Results on THD+N
7/24
TS482
Phase
80
60
0
Gain (dB)
100
20
1
10
100
Frequency (kHz)
1000
10000
Phase
80
60
40
20
-20
0
-20
-40
0.1
Fig. 3 : Open Loop Gain and Phase vs
Frequency
1
10
100
Frequency (kHz)
1000
10000
Vcc = 5V
RL = 16Ω
Tamb = 25°C
Gain
60
180
80
160
140
Gain
60
Vcc = 2V
RL = 16Ω
Tamb = 25°C
Phase
80
60
0
40
20
20
80
60
40
20
-20
0
-40
0.1
1
10
100
Frequency (kHz)
1000
10000
0
-20
-40
0.1
Fig. 5 : Open Loop Gain and Phase vs
Frequency
1
10
100
Frequency (kHz)
1000
10000
Vcc = 5V
RL = 32Ω
Tamb = 25°C
Gain
60
180
80
160
140
Vcc = 2V
RL = 32Ω
Tamb = 25°C
Gain
60
Phase
80
60
0
40
20
-20
40
8/24
1
10
100
Frequency (kHz)
1000
10000
-20
140
20
100
Phase
80
60
0
40
20
-20
0
-40
0.1
160
120
Gain (dB)
20
100
Phase (Deg)
Gain (dB)
120
40
-20
Fig. 6 : Open Loop Gain and Phase vs
Frequency
180
80
140
100
Phase
0
40
-20
160
120
Gain (dB)
20
100
Phase (Deg)
Gain (dB)
120
40
-20
Fig. 4 : Open Loop Gain and Phase vs
Frequency
180
80
140
100
20
0
-40
0.1
160
120
0
40
-20
Vcc = 2V
RL = 8Ω
Tamb = 25°C
40
Phase (Deg)
Gain (dB)
60
140
120
40
180
Gain
160
Phase (Deg)
60
20
80
180
Vcc = 5V
RL = 8Ω
Tamb = 25°C
Gain
0
-40
0.1
1
10
100
Frequency (kHz)
1000
10000
-20
Phase (Deg)
80
Fig. 2 : Open Loop Gain and Phase vs
Frequency
Phase (Deg)
Fig. 1 : Open Loop Gain and Phase vs
Frequency
TS482
Fig. 8 : Open Loop Gain and Phase vs
Frequency
Fig. 7 : Open Loop Gain and Phase vs
Frequency
180
180
60
Vcc = 5V
RL = 600Ω
Tamb = 25°C
80
160
140
Vcc = 2V
RL = 600Ω
Tamb = 25°C
Gain
60
Phase
60
0
Gain (dB)
20
80
Phase (Deg)
Gain (dB)
100
40
100
20
80
Phase
60
0
40
20
-20
40
20
-20
0
0
-40
0.1
1
10
100
1000
Frequency (kHz)
10000
-40
0.1
-20
1
10
100
Frequency (kHz)
1000
10000
180
Gain
60
Vcc = 5V
RL = 5kΩ
Tamb = 25°C
180
80
160
140
Vcc = 2V
RL = 5kΩ
Tamb = 25°C
Gain
60
20
80
Phase
60
0
40
40
20
80
Phase
60
0
40
20
-20
0
-40
0.1
1
10
100
1000
Frequency (kHz)
10000
-20
0
-40
0.1
1
10
100
Frequency (kHz)
1000
10000
-20
Fig. 12 : Gain Margin vs Power Supply Voltage
Fig. 11 : Phase Margin vs Power Supply
Voltage
50
50
RL=8Ω
Tamb=25°C
RL=8Ω
Tamb=25°C
40
Gain Margin (dB)
40
Phase Margin (Deg)
140
100
20
-20
160
120
Gain (dB)
100
Phase (Deg)
Gain (dB)
120
40
-20
Fig. 10 : Open Loop Gain and Phase vs
Frequency
Fig. 9 : Open Loop Gain and Phase vs
Frequency
80
140
120
120
40
160
Phase (Deg)
Gain
Phase (Deg)
80
30
CL= 0 to 500pF
20
10
0
2.0
30
CL=0 to 500pF
20
10
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
9/24
TS482
Fig. 14 : Gain Margin vs Power Supply Voltage
Fig. 13 : Phase Margin vs Power Supply
Voltage
50
50
40
40
30
Gain Margin (dB)
Phase Margin (Deg)
RL=16Ω
Tamb=25°C
CL= 0 to 500pF
20
10
30
20
CL=0 to 500pF
10
RL=16Ω
Tamb=25°C
0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
0
2.0
5.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
Fig. 16 : Gain Margin vs Power Supply Voltage
Fig. 15 : Phase Margin vs Power Supply
Voltage
50
50
RL=32Ω
Tamb=25°C
40
CL= 0 to 500pF
Gain Margin (dB)
Phase Margin (Deg)
40
30
20
10
30
20
CL=0 to 500pF
10
RL=32Ω
Tamb=25°C
0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
0
2.0
5.0
2.5
70
CL=0pF
50
CL=0pF
Gain Margin (dB)
Phase Margin (Deg)
5.0
20
60
CL=500pF
40
30
20
CL=100pF
CL=200pF
10
CL=500pF
RL=600Ω
Tamb=25°C
0
2.0
10/24
4.5
Fig. 18 : Gain Margin vs Power Supply Voltage
Fig. 17 : Phase Margin vs Power Supply
Voltage
10
3.0
3.5
4.0
Power Supply Voltage (V)
2.5
RL=600Ω
Tamb=25°C
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
TS482
Fig. 20 : Gain Margin vs Power Supply Voltage
Fig. 19 : Phase Margin vs Power Supply
Voltage
70
20
CL=0pF
50
CL=0pF
40
CL=300pF
Gain Margin (dB)
Phase Margin (Deg)
60
CL=500pF
30
20
10
CL=200pF
10
CL=500pF
RL=5kΩ
Tamb=25°C
RL=5kΩ
Tamb=25°C
0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
0
2.0
5.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
Fig. 22 : Output Power vs Power Supply
Voltage
Fig. 21 : Output Power vs Power Supply
Voltage
250
200
Av = -1
RL = 8Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
200
175
Av = -1
RL = 16Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
175
THD+N=1%
150
150
Output power (mW)
225
Output power (mW)
CL=100pF
THD+N=10%
125
100
75
50
125
THD+N=1%
THD+N=10%
100
75
50
THD+N=0.1%
THD+N=0.1%
25
25
0
2.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
0
2.0
5.5
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
Fig. 24 : Output Power vs Load Resistance
Fig. 23 :Output Power vs Power Supply
Voltage
200
75
Av = -1
Vcc = 5V
F = 1kHz
BW < 125kHz
Tamb = 25°C
180
THD+N=1%
THD+N=10%
50
25
THD+N=1%
160
Output power (mW)
Output power (mW)
100
Av = -1
RL = 32Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
THD+N=0.1%
140
120
100
THD+N=10%
80
60
40
THD+N=0.1%
20
0
2.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
0
8
16
24
32
40
48
Load Resistance ( )
56
64
11/24
TS482
Fig. 25 : Output Power vs Load Resistance
Fig. 26 : Output Power vs Load Resistance
50
THD+N=1%
60
Output power (mW)
Av = -1
Vcc = 3.3V
F = 1kHz
BW < 125kHz
Tamb = 25°C
50
40
THD+N=10%
30
20
0
40
30
25
THD+N=10%
20
15
THD+N=0.1%
5
8
16
24
32
40
48
Load Resistance (ohm)
56
0
64
Fig. 27 : Output Power vs Load Resistance
20
THD+N=1%
15
THD+N=10%
10
Power Dissipation (mW)
Av = -1
Vcc = 2V
F = 1kHz
BW < 125kHz
Tamb = 25°C
8
16
24
32
40
48
Load Resistance (ohm)
56
64
Fig. 28 : Power Dissipation vs Output Power
25
Output power (mW)
THD+N=1%
35
10
THD+N=0.1%
10
Av = -1
Vcc = 2.6V
F = 1kHz
BW < 125kHz
Tamb = 25°C
45
Output power (mW)
70
160 Vcc=5V
F=1kHz
140 THD+N<1%
RL=8Ω
120
100
80
60
RL=16Ω
40
5
20
THD+N=0.1%
0
0
8
16
24
32
40
48
Load Resistance (ohm)
56
64
RL=32Ω
0
Vcc=3.3V
60 F=1kHz
THD+N<1%
RL=8Ω
50
40
30
RL=16Ω
20
10
20
30
120
140
RL=8Ω
20
RL=16Ω
10
RL=32Ω
0
0
100
30
RL=32Ω
10
80
Vcc=2.6V
F=1kHz
THD+N<1%
40
Power Dissipation (mW)
Power Dissipation (mW)
60
Fig. 30 : Power Dissipation vs Output Power
70
40
Output Power (mW)
12/24
40
Output Power (mW)
Fig. 29 : Power Dissipation vs Output Power
0
20
50
60
0
5
10
15
20
Output Power (mW)
25
30
TS482
Fig. 31 : Power Dissipation vs Output Power
Fig. 32 : Power Derating vs Ambiant
Temperature
25
Power Dissipation (mW)
Vcc=2V
F=1kHz
20 THD+N<1%
RL=8Ω
15
10
RL=16Ω
5
RL=32Ω
0
0
2
4
6
8
10
12
14
Output Power (mW)
Fig. 33 : Current Consumption vs Power
Supply Voltage
Fig. 34 : Power Supply Rejection Ration vs
Frequency
6
5
80
4
Ta=85°C
Ta=-40°C
3
Ta=25°C
Vcc=3.3V
60
20
1
0
1
2
3
Power Supply Voltage (V)
4
0
20
5
Vcc=2.6V & 2V
Vripple=100mVpp
Vpin3,5=Vcc/2 (forced bias)
RL >= 8Ω
0db=70mVrms
Tamb=25°C
40
2
0
100
1000
10000
Frequency (Hz)
100000
Fig. 36 : THD + N vs Output Power
Fig. 35 : THD + N vs Output Power
10
10
RL = 8Ω
F = 20Hz
Av = -1
BW < 125kHz
1 Tamb = 25°C
RL = 16Ω
F = 20Hz
Av = -1
BW < 125kHz
Tamb = 25°C
1
THD + N (%)
THD + N (%)
Vcc=5V
100
PSRR (dB)
Current Consumption (mA)
No load
Vcc=2V
Vcc=2.6V
Vcc=2V
0.1
Vcc=2.6V
0.1
0.01
Vcc=3.3V
Vcc=5V
Vcc=3.3V
0.01
1
10
Output Power (mW)
100
1E-3
1
Vcc=5V
10
Output Power (mW)
100
13/24
TS482
Fig. 37 : THD + N vs Output Power
Fig. 38 : THD + N vs Output Power
10
10
Vcc=2V
0.1
Vcc=2.6V
Vcc=3.3V
1
Vcc=2.6V
Vcc=3.3V
0.1
Vcc=5V
1E-3
Vcc=5V
10
Output Power (mW)
100
Fig. 39 : THD + N vs Output Power
0.01
0.1
Output Voltage (Vrms)
1
Fig. 40 : THD + N vs Output Power
10
10
RL = 5kΩ
F = 20Hz
1 Av = -1
BW < 125kHz
Tamb = 25°C
Vcc=2V
Vcc=2.6V
THD + N (%)
THD + N (%)
Vcc=2V
0.01
0.01
1E-3
RL = 600Ω
F = 20Hz
1 Av = -1
BW < 125kHz
Tamb = 25°C
THD + N (%)
THD + N (%)
RL = 32Ω
F = 20Hz
Av = -1
1 BW < 125kHz
Tamb = 25°C
Vcc=3.3V
0.1
Vcc=5V
RL = 8Ω
F = 1kHz
Av = -1
BW < 125kHz
1 Tamb = 25°C
Vcc=2V
Vcc=2.6V
0.1
0.01
Vcc=3.3V
Vcc=5V
1E-3
0.01
0.01
0.1
Output Voltage (Vrms)
1
Fig. 41 : THD + N vs Output Power
THD + N (%)
THD + N (%)
100
10
RL = 16Ω
F = 1kHz
Av = -1
BW < 125kHz
Tamb = 25°C
1
Vcc=2V
0.1
Vcc=2.6V
0.01
RL = 32Ω
F = 1kHz
Av = -1
1 BW < 125kHz
Tamb = 25°C
Vcc=2V
0.1
Vcc=2.6V
0.01
Vcc=3.3V
14/24
10
Output Power (mW)
Fig. 42 : THD + N vs Output Power
10
1E-3
1
1
Vcc=5V
10
Output Power (mW)
Vcc=3.3V
100
1E-3
1
Vcc=5V
10
Output Power (mW)
100
TS482
Fig. 43 : THD + N vs Output Power
Fig. 44 : THD + N vs Output Power
10
10
RL = 5kΩ
F = 1kHz
Av = -1
1
BW < 125kHz
Tamb = 25°C
Vcc=2V
Vcc=2.6V
THD + N (%)
THD + N (%)
RL = 600Ω
F = 1kHz
Av = -1
1
BW < 125kHz
Tamb = 25°C
Vcc=3.3V
0.1
Vcc=5V
Vcc=3.3V
Vcc=5V
0.01
1E-3
0.01
0.1
Output Voltage (Vrms)
1E-3
0.01
1
Fig. 45 : THD + N vs Output Power
1
10
RL = 8Ω
F = 20kHz
Av = -1
BW < 125kHz
1 Tamb = 25°C
Vcc=2V
Vcc=2.6V
RL = 16Ω
F = 20kHz
Av = -1
BW < 125kHz
Tamb = 25°C
1
THD + N (%)
THD + N (%)
0.1
Output Voltage (Vrms)
Fig. 46 : THD + N vs Output Power
10
Vcc=2V
Vcc=2.6V
0.1
0.1
Vcc=3.3V
1
Vcc=5V
10
Output Power (mW)
Vcc=3.3V
0.01
100
Fig. 47 : THD + N vs Output Power
THD + N (%)
Vcc=2V
Vcc=2.6V
0.01
Vcc=3.3V
1
Vcc=5V
10
Output Power (mW)
100
10
RL = 32Ω
F = 20kHz
Av = -1
BW < 125kHz
1 Tamb = 25°C
0.1
1
Fig. 48 : THD + N vs Output Power
10
THD + N (%)
Vcc=2.6V
0.1
0.01
0.01
Vcc=2V
Vcc=2V
Vcc=2.6V
Vcc=3.3V
0.1
Vcc=5V
0.01
Vcc=5V
10
Output Power (mW)
RL = 600Ω
F = 20kHz
Av = -1
1 BW < 125kHz
Tamb = 25°C
100
0.01
0.1
Output Voltage (Vrms)
1
15/24
TS482
Fig. 49 : THD + N vs Output Power
Fig. 50 : THD + N vs Frequency
0.1
RL = 5kΩ
F = 20kHz
Av = -1
1 BW < 125kHz
Tamb = 25°C
Vcc=2V
Vcc=2V, Po=10mW
Vcc=2.6V, Po=20mW
Vcc=3.3V, Po=40mW
Vcc=5V, Po=100mW
Vcc=2.6V
THD + N (%)
THD + N (%)
10
Vcc=3.3V
Vcc=5V
0.1
RL=8Ω
Av=-1
Bw < 125kHz
Tamb=25°C
0.01
0.01
0.01
0.1
Output Voltage (Vrms)
1
Fig. 51 : THD + N vs Frequency
20
100
1000
Frequency (Hz)
10000 20k
Fig. 52 : THD + N vs Frequency
0.1
0.1
RL=16Ω
Av=-1
Bw < 125kHz
Tamb=25°C
Vcc=2V, Po=6.5mW
Vcc=2.6V, Po=12mW
THD + N (%)
THD + N (%)
Vcc=2V, Po=8mW
Vcc=2.6V, Po=18mW
Vcc=3.3V, Po=35mW
Vcc=5V, Po=90mW
RL=32Ω
Av=-1
Bw < 125kHz
Tamb=25°C
Vcc=3.3V, Po=16mW
Vcc=5V, Po=60mW
0.01
0.01
20
100
1000
Frequency (Hz)
10000 20k
Fig. 53 : THD + N vs Frequency
20
RL=5kΩ
Av=-1
Bw < 125kHz
Tamb=25°C
THD + N (%)
Vcc=5V, Vo=1.4Vrms
THD + N (%)
10000 20k
0.1
RL=600Ω
Av=-1
Bw < 125kHz
Tamb=25°C
16/24
1000
Frequency (Hz)
Fig. 54 : THD + N vs Frequency
0.1
Vcc=3.3V, Vo=1Vrms
0.01
Vcc=2.6V, Vo=0.75Vrms
Vcc=2V, Vo=0.55Vrms
1E-3
100
20
100
1000
Frequency (Hz)
10000 20k
Vcc=5V, Vo=1.4Vrms
Vcc=3.3V, Vo=1Vrms
Vcc=2.6V, Vo=0.75Vrms
0.01
Vcc=2V, Vo=0.55Vrms
1E-3
20
100
1000
Frequency (Hz)
10000 20k
TS482
Fig. 55 : Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 56 : Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
110
110
104
102
RL=32Ω
100
98
96
RL=8Ω
94
RL=16Ω
92
90
2.0
2.5
Av = -1
THD+N < 0.2%
Tamb = 25°C
108
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
Av = -1
108 THD+N < 0.2%
106 Tamb = 25°C
3.0
106
104
102
RL=600Ω
100
98
RL=5kΩ
96
94
92
3.5
4.0
4.5
90
2.0
5.0
2.5
3.0
Fig. 57 : Signal to Noise Ratio vs Power Supply
Voltage with Weighted Filter Type A
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
4.5
5.0
120
Av = -1
THD+N < 0.2%
Tamb = 25°C
110
RL=32Ω
105
100
RL=8Ω
RL=16Ω
95
90
2.0
2.5
3.0
3.5
4.0
4.5
Av = -1
THD+N < 0.2%
Tamb = 25°C
115
110
105
RL=600Ω
RL=5kΩ
100
95
90
2.0
5.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply (V)
Power Supply (V)
Fig. 59 : Equivalent Input Noise Voltage vs
Frequency
Fig. 60 : Output Voltage Swing vs Power
Supply Voltage
25
5.0
Vcc=5V
Rs=100Ω
Tamb=25°C
4.5
Tamb=25°C
4.0
20
VOH & VOL (V)
Equivalent Input Noise Voltage (nv/ Hz)
4.0
Fig. 58 : Signal to Noise Ratio vs Power Supply
Voltage with Weighted Filter Type A
120
115
3.5
Power Supply (V)
Power Supply (V)
15
3.5
3.0
2.5
RL=32Ω
2.0
RL=16Ω
1.5
RL=8Ω
10
1.0
0.5
5
0.02
0.1
1
Frequency (kHz)
10
0.0
2.0
2.5
3.0
3.5
4.0
Power Supply Voltage (V)
4.5
5.0
17/24
TS482
Fig. 62 : Crosstalk vs Frequency
Fig. 61 : Crosstalk vs Frequency
100
100
80
ChB to ChA
ChA to ChB
60
RL=8Ω
Vcc=5V
Pout=100mW
Av=-1
Bw < 125kHz
Tamb=25°C
40
20
20
100
Crosstalk (dB)
Crosstalk (dB)
80
ChA to ChB
60
RL=16Ω
Vcc=5V
Pout=90mW
Av=-1
Bw < 125kHz
Tamb=25°C
40
20
20
10000 20k
1000
Frequency (Hz)
ChB to ChA
100
10000 20k
1000
Frequency (Hz)
Fig. 64 : Crosstalk vs Frequency
Fig. 63 : Crosstalk vs Frequency
120
100
100
60
RL=32Ω
Vcc=5V
Pout=60mW
Av=-1
Bw < 125kHz
Tamb=25°C
40
20
20
100
1000
Frequency (Hz)
60
RL=600Ω
Vcc=5V
Vout=1.4Vrms
Av=-1
Bw < 125kHz
Tamb=25°C
40
0
20
100
1000
Frequency (Hz)
10000 20k
1000
100
Crosstalk (dB)
ChB to ChA & ChA to Chb
Fig. 66 : Lower Cut Off Frequency vs Output
Capacitor
120
80
ChB to ChA & ChA to Chb
60
RL=5kΩ
Vcc=5V
Vout=1.5Vrms
Av=-1
Bw < 125kHz
Tamb=25°C
40
20
18/24
80
20
10000 20k
Fig. 65 : Crosstalk vs Frequency
0
Crosstalk (dB)
ChB to ChA & ChA to Chb
20
100
1000
Frequency (Hz)
10000 20k
-3dB Cut Off Frequency (Hz)
Crosstalk (dB)
80
RL=8Ω
100
RL=16Ω
RL=32Ω
10
1
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Output Capacitor Cout ( F)
TS482
Fig. 67 : Lower Cut Off Frequency vs Input
Capacitor
Fig. 68 : Typical Distribution of THD+N
40
1000
Vcc=5V
RL=16Ω
Av=-1
Pout=90mW
20Hz≤F≤20kHz
Tamb=25°C
32
Rin=10kΩ
100
Number of Units
-3dB Cut Off Frequency (Hz)
36
Rin=3.9kΩ
Rin=22kΩ
10
28
24
20
16
12
8
4
1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0
2.2
0.012
0.018
0.024
Input Capacitor Cin ( F)
Fig. 69 : Best Case Distribution of THD+N
0.048
28
24
20
16
12
32
28
24
20
16
12
8
8
4
4
0.012
0.018
0.024
0.030
0.036
0.042
Vcc=5V
RL=16Ω
Av=-1
Pout=90mW
20Hz≤F≤20kHz
Tamb=25°C
36
Number of Units
Number of Units
32
0
0.048
0.012
0.018
0.024
THD+N (%)
0.030
0.036
0.042
0.048
THD+N (%)
Fig. 71 : Typical Distribution of THD+N
Fig. 72 : Best Case Distribution of THD+N
40
40
32
28
24
20
16
12
32
28
24
20
16
12
8
8
4
4
0.012
0.018
0.024
0.030
0.036
THD+N (%)
0.042
0.048
Vcc=2V
RL=16Ω
Av=-1
Pout=8mW
20Hz≤F≤20kHz
Tamb=25°C
36
Number of Units
Vcc=2V
RL=16Ω
Av=-1
Pout=8mW
20Hz≤F≤20kHz
Tamb=25°C
36
Number of Units
0.042
40
Vcc=5V
RL=16Ω
Av=-1
Pout=90mW
20Hz≤F≤20kHz
Tamb=25°C
36
0
0.036
Fig. 70 : Worst Case Distribution of THD+N
40
0
0.030
THD+N (%)
0
0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
19/24
TS482
Fig. 73 : Worst Case Distribution of THD+N
Fig. 74 : Typical Distribution of THD+N
40
20
Number of Units
32
28
24
20
16
12
16
14
12
10
8
6
8
4
4
2
0
0.012
0.018
0.024
0.030
0.036
0.042
Vcc=5V
RL=32Ω
Av=-1
Pout=60mW
20Hz≤F≤20kHz
Tamb=25°C
18
Number of Units
Vcc=2V
RL=16Ω
Av=-1
Pout=8mW
20Hz≤F≤20kHz
Tamb=25°C
36
0
0.012
0.048
0.018
0.024
THD+N (%)
Fig. 75 : Best Case Distribution of THD+N
14
12
10
8
6
18
16
Number of Units
Number of Units
16
14
12
0.048
8
6
4
2
2
0.018
0.024
0.030
0.036
0.042
Vcc=5V
RL=32Ω
Av=-1
Pout=60mW
20Hz≤F≤20kHz
Tamb=25°C
10
4
0
0.012
0
0.012
0.048
0.018
0.024
THD+N (%)
0.030
0.036
0.042
0.048
THD+N (%)
Fig. 77 : Typical Distribution of THD+N
Fig. 78 : Best Case Distribution of THD+N
40
40
32
28
24
20
16
12
32
28
24
20
16
12
8
8
4
4
0.012
0.018
0.024
0.030
0.036
THD+N (%)
0.042
0.048
Vcc=2V
RL=32Ω
Av=-1
Pout=6.5mW
20Hz≤F≤20kHz
Tamb=25°C
36
Number of Units
Vcc=2V
RL=32Ω
Av=-1
Pout=6.5mW
20Hz≤F≤20kHz
Tamb=25°C
36
Number of Units
0.042
20
Vcc=5V
RL=32Ω
Av=-1
Pout=60mW
20Hz≤F≤20kHz
Tamb=25°C
18
20/24
0.036
Fig. 76 : Worst Case Distribution of THD+N
20
0
0.030
THD+N (%)
0
0.012
0.018
0.024
0.030
0.036
THD+N (%)
0.042
0.048
TS482
Fig. 79 : Worst Case Distribution of THD+N
40
Vcc=2V
RL=32Ω
Av=-1
Pout=6.5mW
20Hz≤F≤20kHz
Tamb=25°C
36
Number of Units
32
28
24
20
16
12
8
4
0
0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
21/24
TS482
PACKAGE MECHANICAL DATA
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
e
1.27
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
22/24
TS482
PACKAGE MECHANICAL DATA
23/24
TS482
PACKAGE MECHANICAL DATA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
M l
M
Si
S i S d
S i
l d U i d Ki d
U i dS
24/24