TSU101, TSU102, TSU104 Nanopower, rail-to-rail input and output, 5 V CMOS operational amplifiers Datasheet - production data • Application performances guaranteed over industrial temperature range • Fast desaturation 6&768 627768 Applications • Ultra long life battery-powered applications • Power metering ')1[768 • UV and photo sensors 0LQL62768 • Electrochemical and gas sensors • Pyroelectric passive infrared (PIR) detection • Battery current sensing • Medical instrumentation • RFID readers 4)1[768 Description 76623768 Features • Submicro ampere current consumption: 580 nA typ per channel at 25 °C at VCC = 1.8 V • Low supply voltage: 1.5 V - 5.5 V • Unity gain stable • Rail-to-rail input and output • Gain bandwidth product: 8 kHz typ • Low input bias current: 5 pA max at 25 °C The TSU101, TSU102, and TSU104 operational amplifiers offer an ultra low-power consumption of 580 nA typical and 750 nA maximum per channel when supplied by 1.8 V. Combined with a supply voltage range of 1.5 V to 5.5 V, these features allow the TSU10x series to be efficiently supplied by a coin type Lithium battery or a regulated voltage in low-power applications. The 8 kHz gain bandwidth of these devices make them ideal for sensor signal conditioning, battery supplied, and portable applications. • High tolerance to ESD: 2 kV HBM • Industrial temperature range: -40 °C to +85 °C Benefits • 42 years of typical equivalent lifetime (for TSU101) if supplied by a 220 mAh coin type Lithium battery • Tolerance to power supply transient drops • Accurate signal conditioning of high impedance sensors July 2013 This is information on a product in full production. DocID024317 Rev 2 1/33 www.st.com Contents TSU101, TSU102, TSU104 Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 4.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Schematic optimization aiming for nanopower . . . . . . . . . . . . . . . . . . . . . 19 4.6 PCB layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.7 Using the TSU10x series with sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.8 Fast desaturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.9 Using the TSU10x series in comparator mode . . . . . . . . . . . . . . . . . . . . . 22 4.10 ESD structure of TSU10x series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1 SC70-5 (or SOT323-5) package mechanical data . . . . . . . . . . . . . . . . . . 25 5.2 SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.5 QFN16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.6 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2/33 DocID024317 Rev 2 TSU101, TSU102, TSU104 1 Package pin connections Package pin connections Figure 1. Pin connections for each package (top view) ,1 9&& 287 9&& ,1 9&& ,1 9&& ,1 287 SC70-5/SOT23-5 (TSU101) SC70-5/SOT23-5 (TSU101R) 287 9&& 287 9&& ,1 287 ,1 287 ,1 ,1 ,1 ,1 9&& ,1 9&& ,1 DFN8 2x2 (TSU102) QFN16 3x3 (TSU104) DocID024317 Rev 2 MiniSO8 (TSU102) Out1 1 14 Out4 In1- 2 13 In4- In1+ 3 12 In4+ Vcc+ 4 11 Vcc- In2+ 5 10 In3+ In2- 6 9 In3- Out2 7 8 Out3 TSSOP14 (TSU104) 3/33 33 Absolute maximum ratings and operating conditions 2 TSU101, TSU102, TSU104 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol Vcc Vid Vin Iin Tstg Parameter Value (1) Supply voltage Unit 6 (2) Differential input voltage ±Vcc V (3) Vcc- - 0.2 to Vcc+ + 0.2 (4) 10 mA -65 to +150 °C Input voltage Input current Storage temperature (5)(6) Rthja Tj Thermal resistance junction to ambient SC70-5 SOT23-5 DFN8 2x2 MiniSO8 QFN16 3x3 TSSOP14 205 250 117 190 45 100 Maximum junction temperature 150 HBM: human body MM: machine ESD model(7) model(8) °C/W °C 2000 200 V model(9) CDM: charged device All other packages except SC70-5 SC70-5 1000 900 Latch-up immunity(10) 200 mA 1. All voltage values, except the differential voltage are with respect to the network ground terminal. 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. 3. (Vcc+ - Vin) must not exceed 6 V, (Vin - Vcc-) must not exceed 6 V. 4. The input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Related to ESDA/JEDEC JS-001 Apr. 2010 8. Related to JEDEC JESD22-A115C Nov.2010 9. Related to JEDEC JESD22-C101-E Dec. 2009 10. Related to JEDEC JESD78C Sept. 2010 Table 2. Operating conditions Symbol 4/33 Parameter Vcc Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 1.5 to 5.5 DocID024317 Rev 2 Vcc- - 0.1 to Vcc+ + 0.1 -40 to +85 Unit V °C TSU101, TSU102, TSU104 3 Electrical characteristics Electrical characteristics Table 3. Electrical characteristics at Vcc+ = 1.8 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 ° C, and RL = 1 MΩ connected to Vcc/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. -3 0.1 3 Unit DC performance Vio ΔVio/ΔT Input offset voltage -40 °C < T< 85 °C Input offset voltage drift -40 °C < T< 85 °C ΔVio Long-term input offset voltage drift T = 25 °C(1) Iio Input offset current (2) Iib CMR Avd VOH VOL Input bias current Common mode rejection ratio 20 log (ΔVicm/ΔVio) Large signal voltage gain High level output voltage (drop from VCC+) Low level output voltage Iout Output source current Supply current (per channel) 3.4 5 1 -40 °C < T< 85 °C -40 °C < T< 85 °C 5 5 pA 30 Vicm = 0 to 0.6 V, Vout = VCC/2 65 -40 °C < T< 85 °C 65 Vicm = 0 to 1.8 V, Vout = VCC/2 55 -40°C < T< 85 °C 55 Vout = 0.3 V to (VCC+ - 0.3 V) RL = 100 kΩ 95 -40 °C < T< 85 °C 95 85 74 dB 115 RL = 100 kΩ 40 -40 °C < T< 85 °C 40 RL = 100 kΩ 40 -40 °C < T< 85 °C 40 Vout = VCC , VID = -200 mV 4 -40 °C < T< 85 °C 4 Vout = 0 V, VID = + 200 mV 4 -40 °C < T< 85 °C 4 No load, Vout = VCC/2 μV/°C μV month 30 1 mV --------------------------- 0.18 (2) Output sink current ICC -3.4 mV 5 mA 5 580 -40 °C < T< 85 °C 750 800 nA AC performance Gain bandwidth product 8 Fu Unity gain frequency 8 Φm Phase margin Gm Gain margin GBP RL = 1 MΩ, CL = 60 pF DocID024317 Rev 2 kHz 60 degrees 10 dB 5/33 33 Electrical characteristics TSU101, TSU102, TSU104 Table 3. Electrical characteristics at Vcc+ = 1.8 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 ° C, and RL = 1 MΩ connected to Vcc/2 (unless otherwise specified) (continued) Symbol Parameter SR Slew rate (10 % to 90 %) en Equivalent input noise voltage ∫ en Low-frequency peak-topeak input noise in Equivalent input noise current trec Overload recovery time Conditions RL = 1 MΩ, CL = 60 pF Vout = 0.3 V to (VCC+ - 0.3 V) Min. Typ. 3 f = 100 Hz 265 f = 1 kHz 265 Bandwidth: f = 0.1 to 10 Hz f = 100 Hz 9 0.64 f = 1 kHz 4.4 100 mV from rail in comparator RL = 100 kΩ, VID = ±VCC -40 °C < T< 85 °C 30 Max. Unit V/ms nV -----------Hz µVpp fA -----------Hz µs 1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. 2. Guaranteed by design. 6/33 DocID024317 Rev 2 TSU101, TSU102, TSU104 Electrical characteristics Table 4. Electrical characteristics at Vcc+ = 3.3 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 ° C, and RL = 1 MΩ connected to Vcc/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. -3 0.1 3 Unit DC performance Vio ΔVio/ΔT Input offset voltage -40 °C < T< 85 °C Input offset voltage drift -40 °C < T< 85 °C ΔVio Long-term input offset voltage drift T = 25 °C(1) Iio Input offset current(2) Iib CMR Avd VOH VOL Input bias current(2) Common mode rejection ratio 20 log (ΔVicm/ΔVio) Large signal voltage gain High level output voltage (drop from VCC+) Low level output voltage Output sink current Iout Output source current ICC Supply current (per channel) -3.4 3.4 5 -40 °C < T< 85 °C μV month 5 30 1 -40 °C < T< 85 °C 5 pA 30 Vicm = 0 to 2.1 V, Vout = VCC/2 70 -40 °C < T< 85 °C 70 Vicm = 0 to 3.3 V, Vout = VCC/2 60 -40 °C < T< 85 °C 60 Vout = 0.3 V to (VCC+ - 0.3 V) RL= 100 kΩ 105 -40 °C < T< 85 °C 105 92 77 dB 120 RL = 100 kΩ 40 -40 °C < T< 85 °C 40 RL = 100 kΩ 40 -40 °C < T< 85 °C 40 Vout = VCC , VID= -200 mV 6 -40 °C < T< 85 °C 6 Vout = 0 V, VID = + 200 mV 8 -40 °C < T< 85 °C 8 No load, Vout = VCC/2 μV/°C --------------------------- 0.36 1 mV mV 9 mA 11 600 -40 °C < T< 85 °C 800 850 nA AC performance GBP Gain bandwidth product 8 Fu Unity gain frequency 8 Φm Phase margin Gm Gain margin SR Slew rate (10 % to 90 %) RL = 1 MΩ, CL = 60 pF RL = 1 MΩ, CL = 60 pF, Vout = 0.3 V to (VCC+ - 0.3 V) DocID024317 Rev 2 kHz 60 degrees 11 dB 3 V/ms 7/33 33 Electrical characteristics TSU101, TSU102, TSU104 Table 4. Electrical characteristics at Vcc+ = 3.3 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 ° C, and RL = 1 MΩ connected to Vcc/2 (unless otherwise specified) (continued) Symbol en ∫ en Parameter Equivalent input noise voltage Low-frequency peak-topeak input noise in Equivalent input noise current trec Overload recovery time Conditions Min. Typ. f = 100 Hz 260 f = 1 kHz 255 Bandwidth: f = 0.1 to 10 Hz 8.6 f = 100 Hz 0.55 f = 1 kHz 3.8 100 mV from rail in comparator RL = 100 kΩ, VID= ±VCC -40 °C < T< 85 °C 30 Max. Unit nV -----------Hz µVpp fA -----------Hz µs 1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. 2. Guaranteed by design. 8/33 DocID024317 Rev 2 TSU101, TSU102, TSU104 Electrical characteristics Table 5. Electrical characteristics at Vcc+ = 5 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 ° C, and RL = 1 MΩ connected to Vcc/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. -3 0.1 3 Unit DC performance Vio ΔVio/ΔT Input offset voltage -40 °C < T< 85 °C Input offset voltage drift -40 °C < T< 85 °C ΔVio Long-term input offset voltage drift T = 25 °C(1) Iio Input offset current(2) Iib CMR SVR Avd VOH VOL Input bias current (2) Common mode rejection ratio 20 log (ΔVicm/ΔVio) Supply voltage rejection ratio Large signal voltage gain High level output voltage (drop from VCC+) Low level output voltage Output sink current Iout Output source current ICC Supply current (per channel) -3.4 3.4 5 -40 °C < T< 85 °C μV month 5 30 1 -40 °C < T< 85 °C 5 pA 30 Vicm = 0 to 3.8 V, Vout = VCC/2 70 -40 °C < T< 85 °C 70 Vicm = 0 to 5 V, Vout = VCC/2 65 -40 °C < T< 85 °C 65 VCC = 1.5 to 5.5 V, Vicm = 0 V 70 -40 °C < T< 85 °C 70 Vout = 0.3 V to (Vcc+ - 0.3 V) RL= 100 kΩ 110 -40°C < T< 85 °C 110 90 82 dB 90 130 RL = 100 kΩ 40 -40 °C < T< 85 °C 40 RL = 100 kΩ 40 -40 °C < T< 85 °C 40 Vout = VCC , VID = -200 mV 6 -40 °C < T< 85 °C 6 Vout = 0 V, VID = + 200 mV 8 -40 °C < T< 85 °C 8 No load, Vout = VCC/2 μV/°C --------------------------- 1.1 1 mV mV 9 mA 11 650 -40 °C < T< 85 °C 850 nA 950 AC performance GBP Gain bandwidth product Fu Unity gain frequency Φm Phase margin Gm Gain margin 9 RL = 1 MΩ, CL = 60 pF DocID024317 Rev 2 8.6 kHz 60 degrees 12 dB 9/33 33 Electrical characteristics TSU101, TSU102, TSU104 Table 5. Electrical characteristics at Vcc+ = 5 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 ° C, and RL = 1 MΩ connected to Vcc/2 (unless otherwise specified) (continued) Symbol Parameter SR Slew rate (10 % to 90 %) en Equivalent input noise voltage ∫ en Low-frequency peak-to-peak input noise in Equivalent input noise current trec Overload recovery time EMIRR Conditions RL = 1 MΩ, CL = 60 pF, Vout = 0.3 V to (VCC+ - 0.3 V) Min. Typ. 3 f = 100 Hz 240 f = 1 kHz 225 Bandwidth: f = 0.1 to 10 Hz 8.1 f = 100 Hz 0.18 f = 1 kHz 3.5 100 mV from rail in comparator RL = 100 kΩ, VID= ±VCC -40 °C < T< 85 °C 30 Vin = -10 dBm, f = 400 MHz 73 Vin = -10 dBm, f = 900 MHz Electromagnetic (3) interference rejection ratio Vin = -10 dBm, f = 1.8 GHz 88 Vin = -10 dBm, f = 2.4 GHz 80 Max. Unit V/ms nV -----------Hz µVpp fA -----------Hz µs dB 80 1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. 2. Guaranteed by design. 3. Based on evaluations performed only in conductive mode. 10/33 DocID024317 Rev 2 TSU101, TSU102, TSU104 Electrical characteristics Figure 2. Supply current vs. supply voltage Figure 3. Supply current vs. input common mode voltage 1.0 1.0 0.9 Vicm=Vout=Vcc/2 T=85°C 0.8 0.7 Supply Current (µA) Supply Current (µA) 0.8 0.9 0.6 0.5 0.4 T=25°C 0.3 T=-40°C 0.2 0.6 0.5 T=25°C 0.4 T=-40°C 0.3 0.2 0.1 0.1 0.0 1.5 2.0 2.5 3.0 3.5 4.0 Supply voltage (V) 4.5 5.0 0.0 5.5 Figure 4. Supply current in saturation mode 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 Input common mode voltage (V) 50 0.9 Temperature 85°C/65°C/45°C/25°C/-5°C/-40°C 0.8 Vio distribution at T=25°C Vcc=3.3V, Vicm=1.65V 45 40 0.7 35 Population % 0.6 0.5 0.4 0.3 Vcc=3.3V Follower configuration 0.2 30 25 20 15 10 0.1 5 3275 3300 3250 Input voltage (mV) 3200 3225 3150 3175 3100 3125 150 175 100 125 50 75 25 0.0 0 Vcc=3.3V, Vout=Vcc/2 Figure 5. Input offset voltage distribution 1.0 Icc (μA) T=85°C 0.7 0 -3 -2 -1 0 1 2 3 Input offset voltage (mV) 1.0 5 0.9 4 0.8 3 0.7 0.6 T=25°C Vcc=3.3V 0.5 0.4 0.3 T=85°C 0.2 0.1 0.0 T=-40°C 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 Common mode voltage (V) Input offset voltage (mV) Input offset voltage (mV) Figure 6. Input offset voltage vs. common mode Figure 7. Input offset voltage vs. temperature at voltage 3.3 V supply voltage Limit for TSU10x 2 1 0 -1 -2 Vcc=3.3V, Vicm=1.65V -3 -4 -5 -60 DocID024317 Rev 2 -40 -20 0 20 40 Temperature (°C) 60 80 100 11/33 33 Electrical characteristics TSU101, TSU102, TSU104 Figure 8. Input offset voltage temperature coefficient distribution Figure 9. Input bias current vs. temperature at mid VICM 20 30 Δ Vio/ΔT distribution 15 between T=-40°C and 85°C for Vcc=3.3V, Vicm=1.65V Input bias current (pA) 25 Population % 20 15 10 Vcc=3.3V 10 Vcc=5V 5 0 -5 Vcc=1.8V Vicm=Vcc/2 -10 5 -15 0 -5 -4 -3 -2 -1 0 1 2 3 4 -20 -40 5 Δ Vio/Δ T (µV/°C) -20 0 20 40 Temperature (°C) 60 80 20 20 15 15 10 Vicm=0V Input bias current (pA) Input bias current (pA) Figure 10. Input bias current vs. temperature at Figure 11. Input bias current vs. temperature at low VICM high VICM Vcc=1.8V 5 0 -5 Vcc=3.3V -10 -15 -20 -40 0 20 40 Temperature (°C) 60 -10 -20 0 20 40 Temperature (°C) 60 80 Source Vid=0.2V 2.4 T=25°C T=85°C 0.6 Sink Vid=-0.2V T=25°C 2.1 Vcc=3.3V Vicm=0.1V 1.8 T=85°C 1.5 1.2 0.9 Sink Vid=-0.2V 0.6 0.3 T=-40°C 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Output Current (mA) 12/33 Vcc=1.8V Vicm=Vcc 2.7 Output Voltage (V) Output Voltage (V) Vcc=1.8V Vicm=0.1V 0.8 0.2 -5 3.0 Source Vid=0.2V 1.2 0.4 0 3.3 1.6 1.0 5 Figure 13. Output characteristics at 3.3 V supply voltage 1.8 1.4 10 -20 -40 80 Figure 12. Output characteristics at 1.8 V supply voltage Vcc=3.3V -15 Vcc=5V -20 Vcc=5V 0.0 T=-40°C 0 DocID024317 Rev 2 1 2 3 4 5 6 7 Output Current (mA) 8 9 10 TSU101, TSU102, TSU104 Electrical characteristics Figure 15. Output voltage vs. input voltage close to the rails 1 2 3 4 5 6 7 Output Current (mA) 8 9 10 Input voltage (mV) Figure 16. Output saturation with a sine wave on input Figure 17. Desaturation time 3 3.300 3.275 2 3.200 Follower configuration, T=25°C Vcc=3.3V, Vin from rail to 300mV from rail 3.175 3.150 Vrl=Vrail, f=10Hz, Rl=10MΩ , Cl=16pF 0.125 0.100 0.075 Signal Amplitude (V) Vout 3.225 Signal Amplitude (V) Gain=+11, 100kΩ /1MΩ , Vin=3Vpp, T=25°C Vin 3.250 Vout 0.050 0.025 0.000 -5 0 -1 Vcc=3.3V, Vicm=Vrl=1.65V Rl=10MΩ , Cl=16pF Vin 0 5 -3 10 15 20 25 30 35 40 45 50 55 60 Time (ms) Slew Rate (V/ms) 1 Follower configuration, T=25°C Vcc=3.3V, Vicm=Vrl=1.65V Rl=10MΩ , Cl=16pF 0 -1 -2 25 50 75 100 Time (ms) 125 0 1 2 3 Time (ms) 4 5 Figure 19. Slew rate vs. supply voltage 2 Signal Amplitude (V) 1 -2 Figure 18. Phase reversal free 0 3275 3300 0 Vcc=3.3V Follower configuration 3250 0 0.5 0.0 T=-40°C Sink Vid=-0.2V 1.0 3200 3225 1.5 175 150 125 100 75 50 25 0 3150 3175 T=85°C 2.0 3125 Vcc=5V Vicm=0.1V 2.5 3100 3.0 150 175 Output voltage (mV) Output Voltage (V) T=25°C 3.5 Temperature 85°C/65°C/45°C/25°C/-5°C/-40°C 125 Source Vid=0.2V 4.0 3300 3275 3250 3225 3200 3175 3150 3125 3100 75 100 4.5 50 5.0 25 Figure 14. Output characteristics at 5 V supply voltage 150 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 1.5 DocID024317 Rev 2 T=-40°C Vicm=Vrl=Vcc/2 Rl=1MΩ , Cl=60pF Vin from 0.5V to Vcc-0.5V SR calculated from 10% to 90% T=25°C T=85°C 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 13/33 33 Electrical characteristics TSU101, TSU102, TSU104 Figure 20. Output swing vs. input signal frequency Figure 21. Triangulation of a sine wave 4.0 3 Follower configuration, Vin=3Vpp, F=1kHz 3.5 2 Signal Amplitude (V) Output swing (V) 3.0 2.5 2.0 Follower configuration Vcc=3.3V, Vin=3.3Vpp Vicm=Vrl=1.65V Rl=10MΩ , Cl=16pF T=25°C 1.5 1.0 0.0 10 100 1000 Frequency (Hz) Follower configuration, T=25°C 1 0 -1 Vcc=3.3V Vicm=Vrl=1.65V Rl=10MΩ , Cl=16pF -2 1 2 3 4 5 6 Time (ms) 7 8 9 10 Figure 24. Overshoot vs. capacitive load at 3.3 V supply voltage Vcc=3.3V, Vicm=Vrl=1.65V Follower configuration 50mVpp step Rl=10MΩ , T=25°C Phase margin (deg) Overshoot (%) 20 18 15 13 10 8 5 3 0 14/33 0 50 100 150 Capacitive load (pF) 200 0 1 2 Time (ms) 3 4 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 0.0 Follower configuration, T=25°C Vcc=3.3V Vicm=Vrl=1.65V Rl=10MΩ , Cl=16pF 0.1 0.2 0.3 0.4 0.5 0.6 Time (ms) 0.7 0.8 0.9 1.0 Figure 25. Phase margin vs. capacitive load at 3.3 V supply voltage 30 23 Vcc=3.3V, Vicm=Vrl=1.65V Rl=10MΩ , Cl=16pF, T=25°C Figure 23. Small signal response at 3.3 V supply voltage Signal Amplitude (mV) Signal Amplitude (V) 2 25 -1 -3 10000 Figure 22. Large signal response at 3.3 V supply voltage 28 0 -2 0.5 0 1 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Vcc=3.3V, Vicm=Vrl=1.65V Gain 101 : Rg=10kΩ , Rf=1MΩ Rl=10MΩ T=25°C 0 DocID024317 Rev 2 50 100 150 Capacitive load (pF) 200 250 TSU101, TSU102, TSU104 Electrical characteristics Figure 26. Bode diagram for different feedback Figure 27. Bode diagram at 1.8 V supply voltage values 20 45 Feedback : 1MΩ Vcc=3.3V, Vicm=1.65V, T=25°C Gain=1 Rl=10MΩ , Cl=16pF, Vrl=Vcc/2 Gain (dB) 5 Feedback : 1MΩ //47pF -10 60 30 0 -30 Phase T=25°C -15 -15 -20 -45 1000 -60 -90 Vcc=1.8V, Vicm=0.9V G=101 (10kΩ /1MΩ ) Rl=10MΩ , Cl=60pF, Vrl=Vcc/2 -30 100 0 T=85°C Feedback : 100kΩ 10 120 90 0 -5 T=-40°C 15 Gain (dB) 10 150 Gain 30 Phase (°) 15 180 10000 10 100 Frequency (Hz) -120 -150 -180 1000 10000 Frequency (Hz) Figure 28. Bode diagram at 3.3 V supply voltage Figure 29. Bode diagram at 5 V supply voltage 45 180 Gain 30 180 150 T=-40°C 150 Gain 30 120 T=-40°C 90 90 15 0 T=85°C -30 Phase T=25°C -15 -60 Gain (dB) 0 Phase (°) Gain (dB) 15 60 30 60 30 0 Vcc=3.3V, Vicm=1.65V G=101 (10kΩ /1MΩ ) Rl=10MΩ , Cl=60pF, Vrl=Vcc/2 -45 10 100 -30 Phase T=25°C -15 -60 -90 Vcc=5V, Vicm=2.5V G=101 (10kΩ /1MΩ ) Rl=10MΩ , Cl=60pF, Vrl=Vcc/2 -30 -120 -150 -120 -150 -45 -180 1000 0 T=85°C -90 -30 120 Phase (°) 45 -180 10 10000 100 1000 10000 Frequency (Hz) Frequency (Hz) Figure 30. Gain bandwidth product vs. input common mode voltage Figure 31. Gain vs. input common mode voltage 10 100 9 8 6 Riso (kΩ) GBP (kHz) 7 Vcc=3.3V, Vicm=Vrl Gain 101 : Rg=10kΩ , Rf=1MΩ Rl=10MΩ , Cl=60pF T=25°C Measured at 20dB 5 4 3 Recommended resistor to place between the output of the op-amp and the capacitive load Vcc=3.3V, Vicm=1.65V Follower configuration 2 1 0 0.0 0.5 1.0 1.5 2.0 Vicm (V) 2.5 3.0 10 -2 10 DocID024317 Rev 2 10 -1 0 1 10 10 Capacitive load (nF) 10 2 3 10 15/33 33 Electrical characteristics TSU101, TSU102, TSU104 Figure 32. Noise at 1.8 V supply voltage in follower configuration Figure 33. Noise at 3.3 V supply voltage in follower configuration 10000 Output voltage noise density (nV/VHz) Vcc=1.8V Follower configuration T=25°C 1000 100 10 10 Vicm=0.9V Vicm=1.5V 100 1000 Frequency (Hz) 10000 Output voltage noise density (nV/VHz) 10000 Vcc=3.3V Follower configuration T=25°C 1000 100 Noise Amplitude (uV) Output voltage noise density (nV/VHz) Vicm=2.5V Vicm=4.7V 100 1000 Frequency (Hz) 10000 0 -5 -10 -20 100000 Vcc=3V, Vicm=1.65V Bandpass filter : 0.1Hz to 10Hz T=25°C 140 120 120 100 80 60 0 10 Vcc=5V Vicm=2.5V Vin=2Vpp T=25°C 0 1k 10k 2 3 4 5 6 Time (s) 7 8 9 10 Ch1 - Ch2 Ch1 - Ch3 Ch1 - Ch4 100 80 60 40 20 100 1 Figure 37. Channel separation on TSU104 140 Channel separation (dB) Channel separation (dB) 5 -15 20 100000 10 1000 40 10000 15 Vcc=5V Follower configuration T=25°C 10 10 1000 Frequency (Hz) 20 Figure 36. Channel separation on TSU102 0 10 Frequency (Hz) 16/33 100 Figure 35. Noise amplitude on 0.1 to 10 Hz frequency range 10000 100 Vicm=3V 10 10 100000 Figure 34. Noise at 5 V supply voltage in follower configuration Vicm=1.65V Vcc=5V Vicm=2.5V Vin=2Vpp T=25°C 100 Frequency (Hz) DocID024317 Rev 2 1k 10k TSU101, TSU102, TSU104 Application information 4 Application information 4.1 Operating voltages The TSU101, TSU102, and TSU104 series of amplifiers can operate from 1.5 V to 5.5 V. Their parameters are fully specified at 1.8 V, 3.3 V, and 5 V supply voltages and are very stable in the full VCC range. Additionally, main specifications are guaranteed on the industrial temperature range from -40 to +85 ° C. 4.2 Rail-to-rail input The TSU101, TSU102, and TSU104 series is built with two complementary PMOS and NMOS input differential pairs. Thus, these devices have a rail-to-rail input, and the input common mode range is extended from VCC- - 0.1 V to VCC+ + 0.1 V. The devices have been designed to prevent phase reversal behavior. 4.3 Input offset voltage drift over temperature The maximum input voltage drift over the temperature variation is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effects of temperature variations. The maximum input voltage drift over temperature is computed in Equation 1. Equation 1 ΔV io V io ( T ) – V io ( 25° C ) ------------ = max -------------------------------------------------ΔT T – 25° C with T = -40 °C and 85 °C. The datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 2. DocID024317 Rev 2 17/33 33 Application information 4.4 TSU101, TSU102, TSU104 Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: • Voltage acceleration, by changing the applied voltage • Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 A FV = e β ⋅ ( VS – VU ) Where: AFV is the voltage acceleration factor β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 A FT = e Ea ⎛ 1 1 ------ ⋅ ------ – ------⎞ ⎝ T U T S⎠ k Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eVk-1) TU is the temperature of the die when VU is used (° K) TS is the temperature of the die under temperature stress (° K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 A F = A FT × A FV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. 18/33 DocID024317 Rev 2 TSU101, TSU102, TSU104 Application information Equation 5 Months = A F × 1000 h × 12 months ⁄ ( 24 h × 365.25 days ) To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 V CC = maxV op with V icm = V CC ⁄ 2 The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 V io drift ΔV io = -----------------------------( months ) where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. 4.5 Schematic optimization aiming for nanopower To benefit from the full performance of the TSU10 series, the impedances must be maximized so that current consumption is not lost where it is not required. For example, an aluminum electrolytic capacitance can have significantly high leakage. This leakage may be greater than the current consumption of the op-amp. For this reason, ceramic type capacitors are preferred. For the same reason, big resistor values should be used in the feedback loop. However, there are three main limitations to be considered when choosing a resistor. 1. When the TSU10x series is used with a sensor: the resistance connected between the sensor and the input must remain much higher than the impedance of the sensor itself. 2. Noise generated: a100 kΩ resistor generates 40 even more noise. 3. Leakage on the PCB: leakage can be generated by moisture. This can be improved by using a specific coating process on the PCB. DocID024317 Rev 2 nV -----------Hz , a bigger resistor value generates 19/33 33 Application information 4.6 TSU101, TSU102, TSU104 PCB layout considerations For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. Minimizing the leakage from sensitive high impedance nodes on the inputs of the TSU10x series can be performed with a guarding technique. The technique consists of surrounding high impedance tracks by a low impedance track (the ring). The ring is at the same electrical potential as the high impedance node. Therefore, even if some parasitic impedance exists between the tracks, no leakage current can flow through them as they are at the same potential (see Figure 38). Figure 38. Guarding on the PCB 20/33 DocID024317 Rev 2 TSU101, TSU102, TSU104 4.7 Application information Using the TSU10x series with sensors The TSU10x series has MOS inputs, thus input bias currents can be guaranteed down to 5 pA maximum at ambient temperature. This is an important parameter when the operational amplifier is used in combination with high impedance sensors. The TSU101, TSU102, and TSU104 series is perfectly suited for trans-impedance configuration as shown in Figure 39. This configuration allows a current to be converted into a voltage value with a gain set by the user. It is an ideal choice for portable electrochemical gas sensing or photo/UV sensing applications. The TSU10x series, using trans-impedance configuration, is able to provide a voltage value based on the physical parameter sensed by the sensor. Electrochemical gas sensors The output current of electrochemical gas sensors is generally in the range of tens of nA to hundreds of μA. As the input bias current of the TSU101, TSU102, and TSU104 is very low (see Figure 9, Figure 10, and Figure 11) compared to these current values, the TSU10x series is well adapted for use with the electrochemical sensors of two or three electrodes. Figure 40 shows a potentiostat (electronic hardware required to control a three electrode cell) schematic using the TSU101, TSU102, and TSU104. In such a configuration, the devices minimize leakage in the reference electrode compared to the current being measured on the working electrode. Figure 39. Trans-impedance amplifier schematic 5 , 768 6HQVRU HOHFWURFKHPLFDO SKRWRGLRGH89 9UHI 5, 9UHI DocID024317 Rev 2 *$06&% 21/33 33 Application information TSU101, TSU102, TSU104 Figure 40. Potentiostat schematic using the TSU101 (or TSU102) 768 768 9UHI 9UHI 4.8 *$06&% Fast desaturation When the TSU101, TSU102, and TSU104 operational amplifiers go into saturation mode, they take a short period of time to recover, typically thirty microseconds. When recovering after saturation, the TSU10x series does not exhibit any voltage peaks that could generate issues (such as false alarms) in the application (see Figure 17). This is because the internal gain of the amplifier decreases smoothly when the output signal gets close to the VCC+ or VCC- supply rails (see Figure 15 and Figure 16). Thus, to maintain signal integrity, the user should take care that the output signal stays at 100 mV from the supply rails. With a trans-impedance schematic, a voltage reference can be used to keep the signal away from the supply rails. 4.9 Using the TSU10x series in comparator mode The TSU10x series can be used as a comparator. In this case, the output stage of the device always operates in saturation mode. In addition, Figure 4 shows the current consumption is not bigger and even decreases smoothly close to the rails. The TSU101, TSU102, and TSU104 are obviously operational amplifiers and are therefore optimized to be used in linear mode. We recommend to use the TS88 series of nanopower comparators if the primary function is to perform a signal comparison only. 22/33 DocID024317 Rev 2 TSU101, TSU102, TSU104 4.10 Application information ESD structure of TSU10x series The TSU101, TSU102, and TSU104 are protected against electrostatic discharge (ESD) with dedicated diodes (see Figure 41). These diodes must be considered at application level especially when signals applied on the input pins go beyond the power supply rails (VCC+ or VCC-). Figure 41. ESD structure 768 *$06&% Current through the diodes must be limited to a maximum of 10 mA as stated in Table 1. A serial resistor or a Schottky diode can be used on the inputs to improve protection but the 10 mA limit of input current must be strictly observed. DocID024317 Rev 2 23/33 33 Package information 5 TSU101, TSU102, TSU104 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 24/33 DocID024317 Rev 2 TSU101, TSU102, TSU104 5.1 Package information SC70-5 (or SOT323-5) package mechanical data Figure 42. SC70-5 (or SOT323-5) package mechanical drawing SIDE VIEW DIMENSIONS IN MM GAUGE PLANE COPLANAR LEADS SEATING PLANE TOP VIEW Table 6. SC70-5 (or SOT323-5) package mechanical data Dimensions Ref Millimeters Min A Typ 0.80 A1 Inches Max Min 1.10 0.315 Typ 0.043 0.10 A2 0.80 b 0.90 Max 0.004 1.00 0.315 0.035 0.15 0.30 0.006 0.012 c 0.10 0.22 0.004 0.009 D 1.80 2.00 2.20 0.071 0.079 0.087 E 1.80 2.10 2.40 0.071 0.083 0.094 E1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 L 0.26 < 0° 0.36 0.46 0.010 8° 0° DocID024317 Rev 2 0.014 0.039 0.018 8° 25/33 33 Package information 5.2 TSU101, TSU102, TSU104 SOT23-5 package mechanical data Figure 43. SOT23-5 package mechanical drawing Table 7. SOT23-5 package mechanical data Dimensions Ref A Millimeters Min Typ Max Min Typ Max 0.90 1.20 1.45 0.035 0.047 0.057 A1 26/33 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.013 0.015 0.019 C 0.09 0.15 0.20 0.003 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.013 0.023 K 0° 10 ° 0° DocID024317 Rev 2 10 ° TSU101, TSU102, TSU104 DFN8 2x2 package information Figure 44. DFN8 2x2 package mechanical drawing ' $ % & [ ( 3,1,1'(;$5($ & [ 7239,(: $ & $ & 6($7,1* 3/$1( 6,'(9,(: & H ESOFV 3,1,1'(;$5($ & $ % 3LQ,' / 5.3 Package information %277209,(: *$06&% Table 8. DFN8 2x2 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 D 2.00 0.079 E 2.00 0.079 e 0.50 0.020 L 0.045 0.55 0.65 N 0.018 0.022 0.026 8 DocID024317 Rev 2 27/33 33 Package information 5.4 TSU101, TSU102, TSU104 MiniSO8 package information Figure 45. MiniSO8 package mechanical drawing Table 9. MiniSO8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k 28/33 Inches 8° 0.10 DocID024317 Rev 2 0° 0.031 8° 0.004 TSU101, TSU102, TSU104 5.5 Package information QFN16 package information Figure 46. QFN16 package mechanical drawing Table 10. QFN16 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. 0.80 0.90 1.00 0.032 0.035 0.039 A1 0.02 0.05 0.001 0.002 A3 0.2 A b 0.18 D D2 0.30 0.007 3.00 1.00 E E2 0.23 0.008 1.15 1.15 1.25 0.039 0.045 1.25 0.039 0.045 0.5 0.02 K 0.2 0.008 0.30 r 0.09 0.40 0.049 0.118 e L 0.012 0.118 3.00 1.00 0.009 0.50 0.012 0.016 0.049 0.020 0.006 DocID024317 Rev 2 29/33 33 Package information TSU101, TSU102, TSU104 Figure 47. QFN16 3x3 footprint recommendation Table 11. Footprint data Ref Millimeters Inches 4.00 0.158 C 0.50 0.020 D 0.30 0.012 E 1.00 0.039 F 0.70 0.028 G 0.66 0.026 A B 30/33 DocID024317 Rev 2 TSU101, TSU102, TSU104 5.6 Package information TSSOP14 package information Figure 48. TSSOP14 package mechanical drawing Table 12. TSSOP14 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L 0.65 0.45 L1 k aaa 1.00 0.60 0.0256 0.75 0.018 1.00 0° 0.024 0.030 0.039 8° 0.10 DocID024317 Rev 2 0° 8° 0.004 31/33 33 Ordering information 6 TSU101, TSU102, TSU104 Ordering information Table 13. Order codes Order code Temperature range Packing Marking TSU101ICT SC70-5 K22 TSU101ILT SOT23-5 K160 SC70-5 K24 TSU101RICT TSU101RILT TSU102IQ2T -40 ° C to +85 ° C TSU102IST TSU104IQ4T TSU104IPT 7 Package SOT23-5 DFN8 2x2 Tape and reel K169 K24 MiniSO8 K160 QFN16 3x3 K160 TSSOP14 TSU104I Revision history Table 14. Document revision history Date Revision 16-Apr-2013 1 Initial release 2 Added the TSU102 and TSU104 devices and updated the datasheet accordingly. Added the silhouettes, pin connections, and package information for DFN8 2x2, MiniSO8, QFN16 3x3, and TSSOP14. Added Figure 36 and Figure 37. 02-Jul-2013 32/33 Changes DocID024317 Rev 2 TSU101, TSU102, TSU104 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID024317 Rev 2 33/33 33