RHF484 Rad-hard precision quad operational amplifier Features Ceramic Flat-14W ■ High radiation immunity: 300 kRad TID at high dose rate ■ ELDRS-free up to 100 krad ■ 300 krad low dose rate on-going ■ SEL immune at LET = 120 MeV.cm²/mg at 125°C ■ SET characterized ■ Hermetic package ■ Rail-to-rail input/output ■ 8 MHz gain bandwidth product ■ Low input offset voltage: 60 µV typ ■ Supply current: 2.2 mA typ per amplifier ■ Operating from 4 to 14 V ■ Input bias current: 6 nA typ ■ QLM-V qualified under smd 5962-08222 Pin connections (top view) Applications ■ Space probes and satellites ■ Harsh environment The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package Description The RHF484 is a rail-to-rail precision bipolar quad operational amplifier featuring a low input offset voltage and a wide supply voltage. Table 1. Device summary Reference SMD pin RHF484K1 RHF484K-01V Note: April 2011 Designed to increase tolerance to radiation, the RHF484 is housed in a hermetic 14-pin flat package, making it an ideal product for space applications and harsh environments. 5962F08222 Quality level Temp range Package Lead finish Mass Engineering model -55°C to +125°C Flat-14 W Gold 0.70 g EPPL - Flight model - Contact your ST sales office for information on specific conditions for products in die form. Doc ID 17351 Rev 1 1/18 www.st.com 18 Absolute maximum ratings and operating conditions 1 RHF484 Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings Symbol VCC Parameter Supply voltage (+VCC)-(-VCC) Vid Differential input voltage Vin Input voltage (2)(3) Iin Input current Tstg (1) Storage temperature range Maximum junction temperature Tj Rthja Thermal resistance junction to ambient Flat package, 14 pins Rthjc Thermal resistance junction to case(4) Flat package, 14 pins ESD HBM: human body model(5) TLead Lead temperature (soldering, 10 sec) Value Unit 18 V ±1.2 V -VCC -0.3V to +VCC +0.3V V 45 mA -65 to +150 °C 150 °C TBD °C/W TBD °C/W 2 kV 260 °C 100 kRad 300 kRad 120 MeV.cm2/mg (4) Radiation informations Low dose rate of 0.01 rad.sec-1 Dose High dose rate of 50-300 Heavy ions rad.sec-1 SEL immunity (at 125°C) SET characterized 1. The differential voltage is the voltage difference between the pins +IN and -IN of a channel. 2. All voltage values, except differential voltage are with respect to network ground terminal. 3. The voltage on either input must never exceed +VCC +0.3 V nor 16 V. 4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical. 5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. Table 3. Operating conditions Symbol (+VCC)-(-VCC) Parameter Supply voltage Vicm Common-mode input voltage range Toper Operating free-air temperature range 1. SEL-free, up to 120 MeV.cm²/mg. 2/18 Doc ID 17351 Rev 1 Value Unit 4 to 14 (1) V -VCC to +VCC V -55 to +125 °C RHF484 Electrical characteristics 2 Electrical characteristics Table 4. +VCC = 7 V, -VCC = 7 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND (unless otherwise specified) Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit DC performance Vicm = +7 V Vio Offset voltage Vicm = +0 V Vicm = -7 V DVio Input offset voltage drift -55°C 700 +25°C 500 +125°C 700 -55°C 500 +25°C 60 +125°C 500 -55°C 700 +25°C 500 +125°C 700 No load 1 -55°C Iib Input bias current No load Input offset current temp. drift No load Input offset current No load Vout = 0 V +25°C 6 +25°C 2 SVR pA/°C 15 nA 35 Differential input capacitance between +IN and -IN +25°C 8 Input capacitance between +IN (or -IN) and GND +25°C 2 pF Supply current per amplifier No load 2.9 +25°C 2.2 +125°C CMR nA 35 -55°C ICC 60 100 +125°C Cin µV/°C 100 -55°C Iio µV 100 +125°C DIib 300 No load Common mode rejection ratio -VCC < Vicm < +VCC Supply rejection ratio No load From +VCC = 2 V and -VCC = -2 V to +VCC = 7 V and -VCC = -7 V Doc ID 17351 Rev 1 2.9 mA 2.9 -55°C 72 +25°C 72 +125°C 72 -55°C 80 +25°C 90 +125°C 80 105 dB 120 dB 3/18 Electrical characteristics Table 4. RHF484 +VCC = 7 V, -VCC = 7 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND (unless otherwise specified) (continued) Symbol Parameter Test conditions Temp. Min. -55°C 3.5 Typ. Max. Unit AC performance GBP Gain bandwidth product Vout = 200 mVpp f = 100 kHz RL= 1 kΩ, CL= 100 pF +25°C 6 +125°C 3.5 8 MHz Fu Unity gain frequency RL = 1 kΩ, CL = 100 pF +25°C 5 MHz φm Phase margin RL = 1 kΩ, CL = 100 pF G = +5 +25°C 50 Degrees Large signal voltage gain RL = 10 kΩ Vout = -6.5 V to 6 V 85 dB 3.5 V/µs A VD SR Slew rate RL = 1 kΩ Vout = -4.8 V to 4.8 V Vout = 4.8 V to -4.8 V -55°C 60 +25°C 74 +125°C 60 -55°C 1.7 +25°C 2 +125°C 1.7 en Equivalent input noise voltage No load, f = 1kHz +25°C 7 nV -----------Hz in Equivalent input noise current No load, f = 1 kHz +25°C 0.8 -----------Hz +25°C 0.01 % 13.8 V 13.9 V THD+en Total harmonic distortion + noise Vout = 13 Vpp, RL = 1 kΩ, CL = 100 pF G = -5.1 pA Output characteristics +VCC =14 V, -VCC = 0 V RL = 1 kΩ VOH -55°C 13.5 +25°C 13.6 +125°C 13.5 -55°C 13.6 +25°C 13.8 +125°C 13.6 High level output voltage +VCC =14 V, -VCC = 0 V RL = 10 kΩ -55°C +VCC =14 V, -VCC = 0 V RL = 1 kΩ VOL +25°C 0.12 0.2 +125°C 0.3 -55°C 0.2 V Low level output voltage +VCC =14 V, -VCC = 0 V RL = 10 kΩ +25°C +125°C 4/18 0.3 Doc ID 17351 Rev 1 0.04 0.08 0.2 V RHF484 Table 4. Symbol Electrical characteristics +VCC = 7 V, -VCC = 7 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND (unless otherwise specified) (continued) Parameter Output sink current Test conditions Vout = +VCC No load, Vid = -1 V Iout(1) Output source current Vout = -VCC No load, Vid = +1 V Temp. Min. -55°C 15 +25°C 20 +125°C 15 -55°C 10 +25°C 15 +125°C 10 Typ. Max. Unit 35 mA 30 mA 1. These tests are performed during a very short period of time. Excessive heating can damage the device. In the application, the junction temperature must never exceed 150°C as specified in Table 2. Doc ID 17351 Rev 1 5/18 Electrical characteristics Table 5. RHF484 +VCC = +2 V, -VCC = -2 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND (unless otherwise specified) Symbol Parameter Test conditions Temp. Min. Typ. Max. Unit DC performance Vicm = +2 V Vio Offset voltage Vicm = +0 V Vicm = -2 V DVio Input offset voltage drift -55°C 700 +25°C 500 +125°C 700 -55°C 500 +25°C 60 +125°C 500 -55°C 700 +25°C 500 +125°C 700 No load 1 -55°C Iib Input bias current No load Input offset current temp. drift No load Input offset current No load Vout = 0 V +25°C 11 +25°C 2 6/18 pA/°C 15 nA 35 Differential input capacitance between +IN and -IN +25°C 8 Input capacitance between +IN (or -IN) and GND +25°C 2 pF Supply current per amplifier No load 2.6 +25°C 2 +125°C CMR nA 35 -55°C ICC 60 100 +125°C Cin µV/°C 100 -55°C Iio µV 100 +125°C DIib 300 No load Common mode rejection ratio -VCC < Vicm < +VCC Doc ID 17351 Rev 1 2.6 mA 2.6 -55°C 72 +25°C 72 +125°C 72 95 dB RHF484 Table 5. Electrical characteristics +VCC = +2 V, -VCC = -2 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND (unless otherwise specified) (continued) Symbol Parameter Test conditions Temp. Min. -55°C 3.5 Typ. Max. Unit AC performance GBP Gain bandwidth product Vout = 200 mVpp f = 100 kHz RL= 1 kΩ, CL= 100 pF +25°C 6 +125°C 3.5 8 MHz Fu Unity gain frequency RL= 1 kΩ, CL= 100 pF +25°C 5 MHz φm Phase margin RL = 1 kΩ, CL = 100 pF G = +5 +25°C 50 Degrees Large signal voltage gain RL = 10 kΩ Vout= -1.5 V to 0.5 V 80 dB 3.1 V/µs A VD SR Slew rate RL = 1 kΩ Vout = -1.28 V to 1.28 V Vout = 1.28 V to -1.28 V -55°C 60 +25°C 70 +125°C 60 -55°C 1.7 +25°C 2 +125°C 1.7 en Equivalent input noise voltage No load, f = 1 kHz +25°C 7.5 nV -----------Hz in Equivalent input noise current No load, f = 1 kHz +25°C 0.8 -----------Hz +25°C 0.01 % 3.9 V 3.95 V THD+en Total harmonic distortion + noise Vout = 3 Vpp, RL = 1 kΩ, CL = 100 pF G = -5.1 pA Output characteristics +VCC = 4 V, -VCC = 0 V RL = 1 kΩ VOH -55°C 3.75 +25°C 3.8 +125°C 3.75 -55°C 3.75 +25°C 3.85 +125°C 3.75 High level output voltage +VCC = 4 V, -VCC = 0 V RL = 10 kΩ -55°C +VCC = 4 V, -VCC = 0 V RL = 1 kΩ VOL +25°C 0.2 0.05 0.1 +125°C 0.2 -55°C 0.1 V Low level output voltage +VCC = 4 V, -VCC = 0 V RL = 10 kΩ +25°C +125°C Doc ID 17351 Rev 1 0.03 0.07 V 0.1 7/18 Electrical characteristics Table 5. Symbol RHF484 +VCC = +2 V, -VCC = -2 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND (unless otherwise specified) (continued) Parameter Output sink current Test conditions Vout = +VCC No load Vid = -1 V Iout(1) Output source current Vout = -VCC No load Vid = +1 V Temp. Min. -55°C 15 +25°C 20 +125°C 15 -55°C 10 +25°C 15 +125°C 10 Typ. Max. Unit 35 mA 30 mA 1. These tests are performed during a very short period of time. Excessive heating can damage the device. In the application, the junction temperature must never exceed 150°C as specified in Table 2. 8/18 Doc ID 17351 Rev 1 RHF484 Electrical characteristics Figure 1. Input offset voltage distribution Figure 2. Input bias current vs. supply voltage 30 40 25 Population % 20 Input bias current (nA) Vio distribution T=25°C Vcc=14V, Vicm=7V 15 10 T=125°C 20 T=25°C 0 -20 T=-55°C 5 Vicm=Vcc/2 Follower configuration -40 0 -300 -200 -100 0 100 200 300 4 5 6 Input offset voltage (uV) Figure 3. Input bias current vs. Vicm at VCC = 4 V Figure 4. 1.0 12 13 14 Input bias current vs. Vicm at VCC = 14 V Input bias current (μA) 0.5 T= +125°C 0.0 -0.5 T= -55°C -1.0 -1.5 -2.0 -2.0 Figure 5. -Vcc = -2V +Vcc = +2V T= +25°C -1.5 -1.0 -0.5 0.0 0.5 1.0 Input Common Mode Voltage (V) T= +125°C 0.0 -0.5 -1.0 T= +25°C -1.5 1.5 2.0 Supply current vs. Vicm in follower configuration at VCC = 4 V Figure 6. 4.0 4.5 3.5 4.0 3.0 2.5 T=25°C 2.0 1.5 1.0 0.5 0.0 -2 T=125°C T=-55°C Follower configuration -Vcc=-2V +Vcc=+2V -1 0 1 Input Common Mode Voltage (V) 2 -Vcc = -7V +Vcc = 7V T= -55°C -2.0 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 Input Common Mode Voltage (V) Supply current per channel (mA) Input bias current (μA) 8 9 10 11 Supply voltage (V) 1.0 0.5 Supply current per channel (mA) 7 3.5 5 6 7 Supply current vs. Vicm in follower configuration at VCC = 14 V Follower configuration -Vcc=-7V +Vcc=+7V 3.0 T=25°C 2.5 2.0 1.5 T=-55°C T=125°C 1.0 0.5 0.0 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 Input Common Mode Voltage (V) Doc ID 17351 Rev 1 6 7 9/18 Electrical characteristics Figure 7. RHF484 Supply current vs. supply voltage at Figure 8. Vicm = VCC/2 2.5 1.0 0.5 Vicm=Vcc/2 0.0 0 2 Figure 9. Output Current (mA) T=-55°C T=125°C 1.5 Output Current (mA) 2.0 4 6 8 10 Supply voltage (V) 12 14 50 45 40 35 30 25 20 Sink 15 T=125°C T=25°C T=-55°C Vid = -1V 10 5 0 Vicm=Vcc/2 -5 -10 T=125°C Source -15 Vid = 1V -20 -25 -30 -35 -40 -45 T=25°C T=-55°C -50 4.0 6.0 8.0 10.0 12.0 14.0 Supply voltage (V) Output current vs. output voltage at Figure 10. Output current vs. output voltage at VCC = 4 V VCC = 14 V 50 50 40 40 30 30 20 20 Output Current (mA) Supply current per channel (mA) T=25°C Output current vs. supply voltage at Vicm = VCC/2 Sink 10 T=-55°C T=25°C T=125°C 0 +Vcc=2V -Vcc=-2V -10 -20 -30 Sink T=-55°C 10 T=125°C -Vcc=-7V +Vcc=+7V 0 -10 T=25°C T=125°C -20 T=25°C -30 -40 -50 -2.0 T=-55°C -1.5 -1.0 Source -40 T=25°C -0.5 0.0 0.5 Output Voltage (V) 1.0 1.5 2.0 T=-55°C Source -50 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 Output Voltage (V) 5 6 7 Figure 11. Differential input voltage vs. output Figure 12. Differential input voltage vs. output voltage at VCC = 4 V voltage at VCC = 14 V 0.5 1 0.0 T=125°C T=25°C -Vcc=-2V +Vcc=+2V -0.5 T=-55°C -1.0 -1.5 10/18 Differential input voltage (mV) Differential input voltage (mV) T=125°C -1.0 -0.5 0.0 0.5 Output voltage (V) 1.0 1.5 Doc ID 17351 Rev 1 0 -1 T=25°C -2 -3 -4 -Vcc=-7V +Vcc=+7V T=-55°C -6 -5 -4 -3 -2 -1 0 1 2 Output voltage (V) 3 4 5 6 RHF484 Electrical characteristics Figure 13. Noise vs. frequency at VCC= 4 V and Figure 14. Voltage gain and phase vs. VCC = 14 V frequency at VCC = 4 V, Vicm = 2 V Input equivalent noise density (nV/VHz) 50 180 40 150 Gain 120 30 90 Gain (dB) 10 Phase 60 10 30 0 0 -30 -10 -60 -20 -30 Vcc=4V, Vicm=2V, Tamb=25°C -40 100 1000 Frequency (Hz) -50 4 10 10000 Phase (°) 20 Vcc=14V, Vicm=7V, Tamb=25°C -90 Vcc=4V, Vicm=2V, G= -100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 10 5 10 6 -120 -150 10 7 -180 Frequency (Hz) Figure 15. Voltage gain and phase vs. Figure 16. Voltage gain and phase vs. frequency at VCC = 4 V, Vicm = 3.5 V frequency at VCC = 4 V, Vicm = 0.5 V 50 180 50 40 150 40 30 Phase 0 0 -30 -10 -60 -20 -50 4 10 90 20 Gain (dB) 30 -40 5 10 6 10 60 30 0 0 -30 -10 -60 -20 -30 -120 7 Phase 10 -90 Vcc=4V, Vicm=3.5V, G= -100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 10 120 30 60 10 -30 150 Gain 90 Phase (°) Gain (dB) 20 120 -150 -40 -180 -50 4 10 Phase (°) Gain 180 -90 Vcc=4V, Vicm=0.5V, G= -100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 10 5 Frequency (Hz) 10 6 -120 -150 10 7 -180 Frequency (Hz) Figure 17. Voltage gain and phase vs. Figure 18. Voltage gain and phase vs. frequency at VCC = 14 V, Vicm = 7 V frequency at VCC = 14 V, Vicm = 13.5 V 180 50 40 150 40 Gain 120 30 30 0 0 -30 -10 -60 -20 -40 -50 4 10 10 10 6 -120 10 7 120 90 Phase 60 10 30 0 0 -30 -10 -60 -20 -90 Vcc=14V, Vicm=7V, G= -100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 5 Gain (dB) 10 -30 20 60 Phase (°) Gain (dB) Phase 150 Gain 30 90 20 180 -30 -150 -40 -180 -50 4 10 Frequency (Hz) Phase (°) 50 -90 Vcc=14V, Vicm=13.5V, G= -100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C 10 5 10 6 -120 -150 10 7 -180 Frequency (Hz) Doc ID 17351 Rev 1 11/18 Electrical characteristics RHF484 Figure 19. Voltage gain and phase vs. frequency at VCC = 14 V, Vicm = 0.5 V 50 Figure 20. Positive slew rate at VCC = 4 V 180 5 150 40 Gain 4 120 30 3 10 30 0 0 -30 -10 Phase (°) Gain (dB) 60 -60 -20 -40 -50 4 10 10 5 10 2 1 0 -1 6 10 7 Vcc=4V, Vin=2Vpp, G= -5.1 -2 -90 Vcc=14V, Vicm=0.5V, G= -100 Rl=1kOhms, Cl=100pF, Vrl=Vcc/2 Tamb=25°C -30 Output Voltage (V)) 90 Phase 20 -120 -3 -150 -4 -180 -5 0.0 1.0 Frequency (Hz) 5 10 4 8 3 6 2 1 0 -1 Vcc=4V, Vin=2Vpp, G= -5.1 -2 2 -2 -4 -6 -8 -5 0.0 1.0 2.0 Time (µs) 3.0 4.0 -10 0.0 Figure 23. Negative slew rate at VCC = 14 V 10 8 6 Output Voltage (V)) Vcc=14V, Vin=4Vpp, G= -5.1 0 -4 4 Vcc=14V, Vin=4Vpp, G= -5.1 2 0 -2 -4 -6 -8 12/18 4.0 4 -3 -10 0.0 3.0 Figure 22. Positive slew rate at VCC = 14 V Output Voltage (V)) Output Voltage (V)) Figure 21. Negative slew rate at VCC = 4 V 2.0 Time (µs) 1.0 2.0 3.0 4.0 Time (µs) 5.0 6.0 7.0 Doc ID 17351 Rev 1 1.0 2.0 3.0 4.0 Time (µs) 5.0 6.0 7.0 RHF484 Achieving good stability at low gain 3 Achieving good stability at low gain At low frequencies, the RHF484 can be used in a low gain configuration as shown in Figure 24. At lower frequencies, the stability is not affected by the value of the gain, which can be set close to 1 V/V (0 dB), and is reduced to its simplest expression G1=1+Rfb/Rg. Therefore, an R-C cell is added in the gain network so that the gain is increased (up to 5) at higher frequencies (where the stability of the amplifier could be affected). At higher frequencies, the gain becomes G2=1+Rfb/(Rg//R). Figure 24. Low gain configuration Figure 25. Closed-loop gain $9' 'AIN D" &REQUENCIES WHERETHE OPAMPCAN BEUSED 6## 6IN 5& '2FB2G2 6OUT D"DEC 2, K #,P& D"DEC 6$$ 'AINBANDWIDTH PRODUCT 2FBK # 2 '2FB2G D" 2G ,OGFREQUENCY "ANDWIDTH OFTHE OPAMPAT' ' '22FB# !- !- Rg becomes a complex impedance. The closed-loop gain features a variation in frequency and can be expressed as: G1R + Rfb 1 + jCω × ⎛ -----------------------------⎞ ⎝ ⎠ G1 Gain = G1 ------------------------------------------------------------1 + jCRω where a pole appears at 1/2πRC and a zero at G1/2π(G1R+Rfb)C. The frequency can be plotted as shown in Figure 25. Table 6. External components versus low-frequency gain G1 (V/V) R (Ω) C (nF) Rg (Ω) Rfb (Ω) 1.1 510 1 20k 2k 2 510 1 2k 2k 3 510 1 1k 2k 4 510 1 750 2.4k 5 Not connected Not connected 820 3.3k Doc ID 17351 Rev 1 13/18 Package information 4 RHF484 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 14/18 Doc ID 17351 Rev 1 RHF484 Package information Figure 26. Wide ceramic Flat-14 package mechanical drawing. Note: The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package. Connecting unused pins or metal lid to ground or Vcc will not affect the electrical characteristics. Table 7. Wide ceramic Flat-14 W package mechanical data Dimensions Ref. Millimeters inches Min. Typ. Max. Min. Typ. Max. A 1.93 2.11 2.29 .076 .083 .090 b 0.38 0.43 0.48 .015 .017 .019 c 0.10 0.13 0.18 .004 .005 .007 D 9.71 9.91 10.11 .382 0.390 .398 E 7.27 7.42 7.57 .286 .292 .298 E2 E3 5.4 .213 0.76 e .030 1.27 .050 L 6.3 6.6 .248 .260 Q 0.20 0.28 .008 .011 S1 0.13 .005 Doc ID 17351 Rev 1 15/18 Ordering information RHF484 5 Ordering information Table 8. Order codes Order code RHF484K1 16/18 Temperature range Package -55°C to +125°C Flat-14 W Engineering Samples RHF484K-01V Note: Description Marking RHF484K1 Flight Models 5962F0822201VXC Contact your ST sales office for information on specific conditions for products in die form. Doc ID 17351 Rev 1 RHF484 6 Revision history Revision history Table 9. Document revision history Date Revision 26-Apr-2011 1 Changes Initial release. Doc ID 17351 Rev 1 17/18 RHF484 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 18/18 Doc ID 17351 Rev 1