STMICROELECTRONICS RHF484

RHF484
Rad-hard precision quad operational amplifier
Features
Ceramic Flat-14W
■
High radiation immunity: 300 kRad TID at high
dose rate
■
ELDRS-free up to 100 krad
■
300 krad low dose rate on-going
■
SEL immune at LET = 120 MeV.cm²/mg at
125°C
■
SET characterized
■
Hermetic package
■
Rail-to-rail input/output
■
8 MHz gain bandwidth product
■
Low input offset voltage: 60 µV typ
■
Supply current: 2.2 mA typ per amplifier
■
Operating from 4 to 14 V
■
Input bias current: 6 nA typ
■
QLM-V qualified under smd 5962-08222
Pin connections (top view)
Applications
■
Space probes and satellites
■
Harsh environment
The upper metallic lid is not electrically connected to
any pins, nor to the IC die inside the package
Description
The RHF484 is a rail-to-rail precision bipolar quad
operational amplifier featuring a low input offset
voltage and a wide supply voltage.
Table 1.
Device summary
Reference
SMD pin
RHF484K1
RHF484K-01V
Note:
April 2011
Designed to increase tolerance to radiation, the
RHF484 is housed in a hermetic 14-pin flat
package, making it an ideal product for space
applications and harsh environments.
5962F08222
Quality level
Temp range
Package
Lead
finish
Mass
Engineering
model
-55°C to +125°C
Flat-14 W
Gold
0.70 g
EPPL
-
Flight model
-
Contact your ST sales office for information on specific conditions for products in die form.
Doc ID 17351 Rev 1
1/18
www.st.com
18
Absolute maximum ratings and operating conditions
1
RHF484
Absolute maximum ratings and operating conditions
Table 2.
Absolute maximum ratings
Symbol
VCC
Parameter
Supply voltage (+VCC)-(-VCC)
Vid
Differential input voltage
Vin
Input voltage (2)(3)
Iin
Input current
Tstg
(1)
Storage temperature range
Maximum junction temperature
Tj
Rthja
Thermal resistance junction to ambient
Flat package, 14 pins
Rthjc
Thermal resistance junction to case(4)
Flat package, 14 pins
ESD
HBM: human body model(5)
TLead
Lead temperature (soldering, 10 sec)
Value
Unit
18
V
±1.2
V
-VCC -0.3V to
+VCC +0.3V
V
45
mA
-65 to +150
°C
150
°C
TBD
°C/W
TBD
°C/W
2
kV
260
°C
100
kRad
300
kRad
120
MeV.cm2/mg
(4)
Radiation informations
Low dose rate of 0.01 rad.sec-1
Dose
High dose rate of 50-300
Heavy
ions
rad.sec-1
SEL immunity (at 125°C)
SET characterized
1. The differential voltage is the voltage difference between the pins +IN and -IN of a channel.
2. All voltage values, except differential voltage are with respect to network ground terminal.
3. The voltage on either input must never exceed +VCC +0.3 V nor 16 V.
4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
Table 3.
Operating conditions
Symbol
(+VCC)-(-VCC)
Parameter
Supply voltage
Vicm
Common-mode input voltage range
Toper
Operating free-air temperature range
1. SEL-free, up to 120 MeV.cm²/mg.
2/18
Doc ID 17351 Rev 1
Value
Unit
4 to 14 (1)
V
-VCC to +VCC
V
-55 to +125
°C
RHF484
Electrical characteristics
2
Electrical characteristics
Table 4.
+VCC = 7 V, -VCC = 7 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND
(unless otherwise specified)
Symbol
Parameter
Test conditions
Temp.
Min.
Typ.
Max.
Unit
DC performance
Vicm = +7 V
Vio
Offset voltage
Vicm = +0 V
Vicm = -7 V
DVio
Input offset voltage drift
-55°C
700
+25°C
500
+125°C
700
-55°C
500
+25°C
60
+125°C
500
-55°C
700
+25°C
500
+125°C
700
No load
1
-55°C
Iib
Input bias current
No load
Input offset current temp. drift
No load
Input offset current
No load
Vout = 0 V
+25°C
6
+25°C
2
SVR
pA/°C
15
nA
35
Differential input capacitance
between +IN and -IN
+25°C
8
Input capacitance between
+IN (or -IN) and GND
+25°C
2
pF
Supply current per amplifier
No load
2.9
+25°C
2.2
+125°C
CMR
nA
35
-55°C
ICC
60
100
+125°C
Cin
µV/°C
100
-55°C
Iio
µV
100
+125°C
DIib
300
No load
Common mode rejection ratio
-VCC < Vicm < +VCC
Supply rejection ratio
No load
From +VCC = 2 V and
-VCC = -2 V to +VCC = 7
V and -VCC = -7 V
Doc ID 17351 Rev 1
2.9
mA
2.9
-55°C
72
+25°C
72
+125°C
72
-55°C
80
+25°C
90
+125°C
80
105
dB
120
dB
3/18
Electrical characteristics
Table 4.
RHF484
+VCC = 7 V, -VCC = 7 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND
(unless otherwise specified) (continued)
Symbol
Parameter
Test conditions
Temp.
Min.
-55°C
3.5
Typ.
Max.
Unit
AC performance
GBP
Gain bandwidth product
Vout = 200 mVpp
f = 100 kHz
RL= 1 kΩ,
CL= 100 pF
+25°C
6
+125°C
3.5
8
MHz
Fu
Unity gain frequency
RL = 1 kΩ, CL = 100 pF
+25°C
5
MHz
φm
Phase margin
RL = 1 kΩ, CL = 100 pF
G = +5
+25°C
50
Degrees
Large signal voltage gain
RL = 10 kΩ
Vout = -6.5 V to 6 V
85
dB
3.5
V/µs
A VD
SR
Slew rate
RL = 1 kΩ
Vout = -4.8 V to 4.8 V
Vout = 4.8 V to -4.8 V
-55°C
60
+25°C
74
+125°C
60
-55°C
1.7
+25°C
2
+125°C
1.7
en
Equivalent input noise voltage No load, f = 1kHz
+25°C
7
nV
-----------Hz
in
Equivalent input noise current No load, f = 1 kHz
+25°C
0.8
-----------Hz
+25°C
0.01
%
13.8
V
13.9
V
THD+en
Total harmonic distortion +
noise
Vout = 13 Vpp,
RL = 1 kΩ, CL = 100 pF
G = -5.1
pA
Output characteristics
+VCC =14 V, -VCC = 0 V
RL = 1 kΩ
VOH
-55°C
13.5
+25°C
13.6
+125°C
13.5
-55°C
13.6
+25°C
13.8
+125°C
13.6
High level output voltage
+VCC =14 V, -VCC = 0 V
RL = 10 kΩ
-55°C
+VCC =14 V, -VCC = 0 V
RL = 1 kΩ
VOL
+25°C
0.12
0.2
+125°C
0.3
-55°C
0.2
V
Low level output voltage
+VCC =14 V, -VCC = 0 V
RL = 10 kΩ
+25°C
+125°C
4/18
0.3
Doc ID 17351 Rev 1
0.04
0.08
0.2
V
RHF484
Table 4.
Symbol
Electrical characteristics
+VCC = 7 V, -VCC = 7 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND
(unless otherwise specified) (continued)
Parameter
Output sink current
Test conditions
Vout = +VCC
No load, Vid = -1 V
Iout(1)
Output source current
Vout = -VCC
No load, Vid = +1 V
Temp.
Min.
-55°C
15
+25°C
20
+125°C
15
-55°C
10
+25°C
15
+125°C
10
Typ.
Max.
Unit
35
mA
30
mA
1. These tests are performed during a very short period of time. Excessive heating can damage the device. In the application,
the junction temperature must never exceed 150°C as specified in Table 2.
Doc ID 17351 Rev 1
5/18
Electrical characteristics
Table 5.
RHF484
+VCC = +2 V, -VCC = -2 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND
(unless otherwise specified)
Symbol
Parameter
Test conditions
Temp.
Min.
Typ.
Max.
Unit
DC performance
Vicm = +2 V
Vio
Offset voltage
Vicm = +0 V
Vicm = -2 V
DVio
Input offset voltage drift
-55°C
700
+25°C
500
+125°C
700
-55°C
500
+25°C
60
+125°C
500
-55°C
700
+25°C
500
+125°C
700
No load
1
-55°C
Iib
Input bias current
No load
Input offset current temp. drift
No load
Input offset current
No load
Vout = 0 V
+25°C
11
+25°C
2
6/18
pA/°C
15
nA
35
Differential input capacitance
between +IN and -IN
+25°C
8
Input capacitance between
+IN (or -IN) and GND
+25°C
2
pF
Supply current per amplifier
No load
2.6
+25°C
2
+125°C
CMR
nA
35
-55°C
ICC
60
100
+125°C
Cin
µV/°C
100
-55°C
Iio
µV
100
+125°C
DIib
300
No load
Common mode rejection ratio
-VCC < Vicm < +VCC
Doc ID 17351 Rev 1
2.6
mA
2.6
-55°C
72
+25°C
72
+125°C
72
95
dB
RHF484
Table 5.
Electrical characteristics
+VCC = +2 V, -VCC = -2 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND
(unless otherwise specified) (continued)
Symbol
Parameter
Test conditions
Temp.
Min.
-55°C
3.5
Typ.
Max.
Unit
AC performance
GBP
Gain bandwidth product
Vout = 200 mVpp
f = 100 kHz
RL= 1 kΩ,
CL= 100 pF
+25°C
6
+125°C
3.5
8
MHz
Fu
Unity gain frequency
RL= 1 kΩ, CL= 100 pF
+25°C
5
MHz
φm
Phase margin
RL = 1 kΩ, CL = 100 pF
G = +5
+25°C
50
Degrees
Large signal voltage gain
RL = 10 kΩ
Vout= -1.5 V to 0.5 V
80
dB
3.1
V/µs
A VD
SR
Slew rate
RL = 1 kΩ
Vout = -1.28 V to 1.28 V
Vout = 1.28 V to -1.28 V
-55°C
60
+25°C
70
+125°C
60
-55°C
1.7
+25°C
2
+125°C
1.7
en
Equivalent input noise voltage No load, f = 1 kHz
+25°C
7.5
nV
-----------Hz
in
Equivalent input noise current No load, f = 1 kHz
+25°C
0.8
-----------Hz
+25°C
0.01
%
3.9
V
3.95
V
THD+en
Total harmonic distortion +
noise
Vout = 3 Vpp,
RL = 1 kΩ, CL = 100 pF
G = -5.1
pA
Output characteristics
+VCC = 4 V, -VCC = 0 V
RL = 1 kΩ
VOH
-55°C
3.75
+25°C
3.8
+125°C
3.75
-55°C
3.75
+25°C
3.85
+125°C
3.75
High level output voltage
+VCC = 4 V, -VCC = 0 V
RL = 10 kΩ
-55°C
+VCC = 4 V, -VCC = 0 V
RL = 1 kΩ
VOL
+25°C
0.2
0.05
0.1
+125°C
0.2
-55°C
0.1
V
Low level output voltage
+VCC = 4 V, -VCC = 0 V
RL = 10 kΩ
+25°C
+125°C
Doc ID 17351 Rev 1
0.03
0.07
V
0.1
7/18
Electrical characteristics
Table 5.
Symbol
RHF484
+VCC = +2 V, -VCC = -2 V, Vicm = 0 V, Tamb = 25°C, loads (RL,CL) connected to GND
(unless otherwise specified) (continued)
Parameter
Output sink current
Test conditions
Vout = +VCC
No load
Vid = -1 V
Iout(1)
Output source current
Vout = -VCC
No load
Vid = +1 V
Temp.
Min.
-55°C
15
+25°C
20
+125°C
15
-55°C
10
+25°C
15
+125°C
10
Typ.
Max.
Unit
35
mA
30
mA
1. These tests are performed during a very short period of time. Excessive heating can damage the device. In the application,
the junction temperature must never exceed 150°C as specified in Table 2.
8/18
Doc ID 17351 Rev 1
RHF484
Electrical characteristics
Figure 1.
Input offset voltage distribution
Figure 2.
Input bias current vs. supply voltage
30
40
25
Population %
20
Input bias current (nA)
Vio distribution
T=25°C
Vcc=14V, Vicm=7V
15
10
T=125°C
20
T=25°C
0
-20
T=-55°C
5
Vicm=Vcc/2
Follower configuration
-40
0
-300
-200
-100
0
100
200
300
4
5
6
Input offset voltage (uV)
Figure 3.
Input bias current vs. Vicm at
VCC = 4 V
Figure 4.
1.0
12
13
14
Input bias current vs. Vicm at
VCC = 14 V
Input bias current (μA)
0.5
T= +125°C
0.0
-0.5
T= -55°C
-1.0
-1.5
-2.0
-2.0
Figure 5.
-Vcc = -2V
+Vcc = +2V
T= +25°C
-1.5
-1.0 -0.5
0.0
0.5
1.0
Input Common Mode Voltage (V)
T= +125°C
0.0
-0.5
-1.0
T= +25°C
-1.5
1.5
2.0
Supply current vs. Vicm in follower
configuration at VCC = 4 V
Figure 6.
4.0
4.5
3.5
4.0
3.0
2.5
T=25°C
2.0
1.5
1.0
0.5
0.0
-2
T=125°C
T=-55°C
Follower configuration
-Vcc=-2V
+Vcc=+2V
-1
0
1
Input Common Mode Voltage (V)
2
-Vcc = -7V
+Vcc = 7V
T= -55°C
-2.0
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4
Input Common Mode Voltage (V)
Supply current per channel (mA)
Input bias current (μA)
8
9
10 11
Supply voltage (V)
1.0
0.5
Supply current per channel (mA)
7
3.5
5
6
7
Supply current vs. Vicm in follower
configuration at VCC = 14 V
Follower configuration
-Vcc=-7V
+Vcc=+7V
3.0
T=25°C
2.5
2.0
1.5
T=-55°C
T=125°C
1.0
0.5
0.0
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
Input Common Mode Voltage (V)
Doc ID 17351 Rev 1
6
7
9/18
Electrical characteristics
Figure 7.
RHF484
Supply current vs. supply voltage at Figure 8.
Vicm = VCC/2
2.5
1.0
0.5
Vicm=Vcc/2
0.0
0
2
Figure 9.
Output Current (mA)
T=-55°C
T=125°C
1.5
Output Current (mA)
2.0
4
6
8
10
Supply voltage (V)
12
14
50
45
40
35
30
25
20
Sink
15 T=125°C
T=25°C
T=-55°C
Vid = -1V
10
5
0
Vicm=Vcc/2
-5
-10
T=125°C
Source
-15
Vid = 1V
-20
-25
-30
-35
-40
-45
T=25°C
T=-55°C
-50
4.0
6.0
8.0
10.0
12.0
14.0
Supply voltage (V)
Output current vs. output voltage at Figure 10. Output current vs. output voltage at
VCC = 4 V
VCC = 14 V
50
50
40
40
30
30
20
20
Output Current (mA)
Supply current per channel (mA)
T=25°C
Output current vs. supply voltage at
Vicm = VCC/2
Sink
10
T=-55°C
T=25°C
T=125°C
0
+Vcc=2V
-Vcc=-2V
-10
-20
-30
Sink
T=-55°C
10
T=125°C
-Vcc=-7V
+Vcc=+7V
0
-10
T=25°C
T=125°C
-20
T=25°C
-30
-40
-50
-2.0
T=-55°C
-1.5
-1.0
Source
-40
T=25°C
-0.5 0.0
0.5
Output Voltage (V)
1.0
1.5
2.0
T=-55°C
Source
-50
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4
Output Voltage (V)
5
6
7
Figure 11. Differential input voltage vs. output Figure 12. Differential input voltage vs. output
voltage at VCC = 4 V
voltage at VCC = 14 V
0.5
1
0.0
T=125°C
T=25°C
-Vcc=-2V
+Vcc=+2V
-0.5
T=-55°C
-1.0
-1.5
10/18
Differential input voltage (mV)
Differential input voltage (mV)
T=125°C
-1.0
-0.5
0.0
0.5
Output voltage (V)
1.0
1.5
Doc ID 17351 Rev 1
0
-1
T=25°C
-2
-3
-4
-Vcc=-7V
+Vcc=+7V
T=-55°C
-6 -5 -4 -3 -2 -1 0 1 2
Output voltage (V)
3
4
5
6
RHF484
Electrical characteristics
Figure 13. Noise vs. frequency at VCC= 4 V and Figure 14. Voltage gain and phase vs.
VCC = 14 V
frequency at VCC = 4 V, Vicm = 2 V
Input equivalent noise density (nV/VHz)
50
180
40
150
Gain
120
30
90
Gain (dB)
10
Phase
60
10
30
0
0
-30
-10
-60
-20
-30
Vcc=4V, Vicm=2V, Tamb=25°C
-40
100
1000
Frequency (Hz)
-50
4
10
10000
Phase (°)
20
Vcc=14V, Vicm=7V, Tamb=25°C
-90
Vcc=4V, Vicm=2V, G= -100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
10
5
10
6
-120
-150
10
7
-180
Frequency (Hz)
Figure 15. Voltage gain and phase vs.
Figure 16. Voltage gain and phase vs.
frequency at VCC = 4 V, Vicm = 3.5 V
frequency at VCC = 4 V, Vicm = 0.5 V
50
180
50
40
150
40
30
Phase
0
0
-30
-10
-60
-20
-50
4
10
90
20
Gain (dB)
30
-40
5
10
6
10
60
30
0
0
-30
-10
-60
-20
-30
-120
7
Phase
10
-90
Vcc=4V, Vicm=3.5V, G= -100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
10
120
30
60
10
-30
150
Gain
90
Phase (°)
Gain (dB)
20
120
-150
-40
-180
-50
4
10
Phase (°)
Gain
180
-90
Vcc=4V, Vicm=0.5V, G= -100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
10
5
Frequency (Hz)
10
6
-120
-150
10
7
-180
Frequency (Hz)
Figure 17. Voltage gain and phase vs.
Figure 18. Voltage gain and phase vs.
frequency at VCC = 14 V, Vicm = 7 V
frequency at VCC = 14 V,
Vicm = 13.5 V
180
50
40
150
40
Gain
120
30
30
0
0
-30
-10
-60
-20
-40
-50
4
10
10
10
6
-120
10
7
120
90
Phase
60
10
30
0
0
-30
-10
-60
-20
-90
Vcc=14V, Vicm=7V, G= -100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
5
Gain (dB)
10
-30
20
60
Phase (°)
Gain (dB)
Phase
150
Gain
30
90
20
180
-30
-150
-40
-180
-50
4
10
Frequency (Hz)
Phase (°)
50
-90
Vcc=14V, Vicm=13.5V, G= -100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
10
5
10
6
-120
-150
10
7
-180
Frequency (Hz)
Doc ID 17351 Rev 1
11/18
Electrical characteristics
RHF484
Figure 19. Voltage gain and phase vs.
frequency at VCC = 14 V,
Vicm = 0.5 V
50
Figure 20. Positive slew rate at VCC = 4 V
180
5
150
40
Gain
4
120
30
3
10
30
0
0
-30
-10
Phase (°)
Gain (dB)
60
-60
-20
-40
-50
4
10
10
5
10
2
1
0
-1
6
10
7
Vcc=4V, Vin=2Vpp,
G= -5.1
-2
-90
Vcc=14V, Vicm=0.5V, G= -100
Rl=1kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=25°C
-30
Output Voltage (V))
90
Phase
20
-120
-3
-150
-4
-180
-5
0.0
1.0
Frequency (Hz)
5
10
4
8
3
6
2
1
0
-1
Vcc=4V, Vin=2Vpp,
G= -5.1
-2
2
-2
-4
-6
-8
-5
0.0
1.0
2.0
Time (µs)
3.0
4.0
-10
0.0
Figure 23. Negative slew rate at VCC = 14 V
10
8
6
Output Voltage (V))
Vcc=14V, Vin=4Vpp,
G= -5.1
0
-4
4
Vcc=14V, Vin=4Vpp,
G= -5.1
2
0
-2
-4
-6
-8
12/18
4.0
4
-3
-10
0.0
3.0
Figure 22. Positive slew rate at VCC = 14 V
Output Voltage (V))
Output Voltage (V))
Figure 21. Negative slew rate at VCC = 4 V
2.0
Time (µs)
1.0
2.0
3.0
4.0
Time (µs)
5.0
6.0
7.0
Doc ID 17351 Rev 1
1.0
2.0
3.0
4.0
Time (µs)
5.0
6.0
7.0
RHF484
Achieving good stability at low gain
3
Achieving good stability at low gain
At low frequencies, the RHF484 can be used in a low gain configuration as shown in
Figure 24. At lower frequencies, the stability is not affected by the value of the gain, which
can be set close to 1 V/V (0 dB), and is reduced to its simplest expression G1=1+Rfb/Rg.
Therefore, an R-C cell is added in the gain network so that the gain is increased (up to 5) at
higher frequencies (where the stability of the amplifier could be affected). At higher
frequencies, the gain becomes G2=1+Rfb/(Rg//R).
Figure 24. Low gain configuration
Figure 25. Closed-loop gain
$9'
'AIN
D"
&REQUENCIES
WHERETHE
OPAMPCAN
BEUSED
6##
6IN
5&
'2FB2G2
6OUT
D"DEC
2,
K
#,P&
D"DEC
6$$
'AINBANDWIDTH
PRODUCT
2FBK
#
2
'2FB2G
D"
2G
,OGFREQUENCY
"ANDWIDTH
OFTHE
OPAMPAT'
'
'22FB#
!-
!-
Rg becomes a complex impedance. The closed-loop gain features a variation in frequency
and can be expressed as:
G1R + Rfb
1 + jCω × ⎛ -----------------------------⎞
⎝
⎠
G1
Gain = G1 ------------------------------------------------------------1 + jCRω
where a pole appears at 1/2πRC and a zero at G1/2π(G1R+Rfb)C. The frequency can be
plotted as shown in Figure 25.
Table 6.
External components versus low-frequency gain
G1 (V/V)
R (Ω)
C (nF)
Rg (Ω)
Rfb (Ω)
1.1
510
1
20k
2k
2
510
1
2k
2k
3
510
1
1k
2k
4
510
1
750
2.4k
5
Not connected
Not connected
820
3.3k
Doc ID 17351 Rev 1
13/18
Package information
4
RHF484
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
14/18
Doc ID 17351 Rev 1
RHF484
Package information
Figure 26. Wide ceramic Flat-14 package mechanical drawing.
Note: The upper metallic lid is not electrically connected to any pins, nor to the IC die inside
the package. Connecting unused pins or metal lid to ground or Vcc will not affect the
electrical characteristics.
Table 7.
Wide ceramic Flat-14 W package mechanical data
Dimensions
Ref.
Millimeters
inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
1.93
2.11
2.29
.076
.083
.090
b
0.38
0.43
0.48
.015
.017
.019
c
0.10
0.13
0.18
.004
.005
.007
D
9.71
9.91
10.11
.382
0.390
.398
E
7.27
7.42
7.57
.286
.292
.298
E2
E3
5.4
.213
0.76
e
.030
1.27
.050
L
6.3
6.6
.248
.260
Q
0.20
0.28
.008
.011
S1
0.13
.005
Doc ID 17351 Rev 1
15/18
Ordering information
RHF484
5
Ordering information
Table 8.
Order codes
Order code
RHF484K1
16/18
Temperature range
Package
-55°C to +125°C
Flat-14 W
Engineering Samples
RHF484K-01V
Note:
Description
Marking
RHF484K1
Flight Models
5962F0822201VXC
Contact your ST sales office for information on specific conditions for products in die form.
Doc ID 17351 Rev 1
RHF484
6
Revision history
Revision history
Table 9.
Document revision history
Date
Revision
26-Apr-2011
1
Changes
Initial release.
Doc ID 17351 Rev 1
17/18
RHF484
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
18/18
Doc ID 17351 Rev 1