STMICROELECTRONICS TSV6292IST

TSV629x, TSV629xA
Micropower, wide bandwidth CMOS operational amplifiers
Features
■
Rail-to-rail input and output
■
Low power consumption: 29 µA typ, 36 µA max
■
Low supply voltage: 1.5 – 5.5 V
■
High gain bandwidth product: 1.3 MHz typ
■
Stable when used in gain configuration
■
Low power shutdown mode: 5 nA typ
■
Good accuracy: 800 µV max (A version)
■
Low input bias current: 1 pA typ
■
Micropackages: MiniSO-8, SOT23-8,
MiniSO-10, TSSOP14, TSSOP16
■
EMI hardened operational amplifiers
■
High tolerance to ESD: 4 kV HBM
■
Extended temperature range: -40 to +125° C
SOT23-8
SO-8
MiniSO-8/10
Applications
■
Battery-powered applications
■
Portable devices
■
Signal conditioning
■
Active filtering
■
Medical instrumentation
TSSOP-14
TSSOP-16
Description
The TSV6292, TSV6293, TSV6294 and TSV6295
dual and quad operational amplifiers offer a high
bandwidth of 1.3 MHz while consuming only
29 µA. They must be used in a gain configuration
(equal or above +4 or -3).
The TSV629x series features low voltage, low
power operation and rail-to-rail input and output.
The devices also offer an ultra-low input bias
current and low input offset voltage.
These features make the TSV629x family ideal
for sensor interfaces, battery supplied and
portable applications, as well as active filtering.
Table 1.
Device summary
Dual version
Reference
Quad version
Without
With
Without
With
standby standby standby standby
TSV629x
TSV6292
TSV6293
TSV6294
TSV6295
TSV629xA
TSV6292A
TSV6293A
TSV6294A
TSV6295A
The TSV6293 (dual) and TSV6295 (quad) have
two shutdown pins for reduced power
consumption.
March 2010
Doc ID 16882 Rev 2
1/25
www.st.com
25
Contents
TSV629x, TSV629xA
Contents
1
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
4.1
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3
Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4
Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5
Shutdown function (TSV6293, TSV6295) . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6
Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7
PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.8
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1
SOT23-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3
MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4
MiniSO-10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5
TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.6
TSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
1
Package pin connections
Package pin connections
Figure 1.
Pin connections for each package (top view)
Out1
1
In1-
2
_
In1+
3
+
VCC-
4
Out1
1
In1-
2
_
In2-
In1+
3
+
In2+
VCC-
4
SHDN1
5
8
VCC+
7
Out2
_
6
+
5
TSV6292IDT/IST/ILT
10 VCC+
SO8/Mini-SO8/SOT23-8
1
In1-
2
_
_
13 In4-
In1+
3
+
+
12 In4+
VCC+
4
In2+
5
In2-
6
Out2
7
+
_
In3-
8
Out3
8
In2-
+
7
In2+
6
SHDN2
16 Out4
1
In1-
2
_
_
15 In4-
In1+
3
+
+
14 In4+
VCC+
4
In2+
5
In2-
6
Out2
7
10 Out3
SHDN1/2
8
9
10 In3+
9
_
Out1
11 VCC+
_
Out2
TSV6293IST
MiniSO-10
14 Out4
Out1
9
TSV6294IPT
13 VCC+
_
+
_
12 In3+
11 In3-
SHDN3/4
TSV6295IPT
TSSOP16
TSSOP14
Doc ID 16882 Rev 2
3/25
Absolute maximum ratings and operating conditions
2
TSV629x, TSV629xA
Absolute maximum ratings and operating conditions
Table 2.
Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vin
Iin
SHDN
Parameter
(1)
Supply voltage
Differential input voltage
Input voltage
(3)
Input current
(4)
(2)
(3)
Shutdown voltage
Value
Unit
6
V
±VCC
V
VCC- - 0.2 to VCC++ 0.2
V
10
mA
VCC- - 0.2 to VCC++ 0.2
V
-65 to +150
°C
Tstg
Storage temperature
Rthja
Thermal resistance junction to ambient(5)(6)
SOT23-8
MiniSO-8
SO-8
Mini-SO10
TSSOP14
TSSOP16
105
190
125
113
100
95
Maximum junction temperature
150
°C
4
kV
200
V
1.5
kV
200
mA
Tj
HBM: human body
ESD
MM: machine
model(7)
model(8)
CDM: charged device
model(9)
Latch-up immunity
°C/W
1. All voltage values, except differential voltages are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. VCC-Vin must not exceed 6 V, Vin must not exceed 6V.
4. Input current must be limited by a resistor in series with the inputs.
5. Short-circuits can cause excessive heating and destructive dissipation.
6. Rth are typical values.
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for
all couples of pin combinations with other pins floating.
8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
combinations with other pins floating.
9. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to ground.
Table 3.
Operating conditions
Symbol
4/25
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Doc ID 16882 Rev 2
Value
Unit
1.5 to 5.5
V
VCC- - 0.1 to VCC+ + 0.1
V
-40 to +125
°C
TSV629x, TSV629xA
Electrical characteristics
3
Electrical characteristics
Table 4.
Electrical characteristics at VCC+ = +1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C,
and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
TSV629x
TSV629xA
TSV6293AIST - MiniSO-10
4
0.8
1
mV
TSV629x -Tmin < Top < Tmax
TSV629xA - Tmin < Top < Tmax
TSV6293AIST - Tmin < Top < Tmax
6
2
2.2
DC performance
Vio
DVio
Iio
Iib
CMR
Offset voltage
Input offset voltage drift
Input offset current
(Vout = VCC/2)
Input bias current
(Vout = VCC/2)
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
Tmin < Top < Tmax
Tmin < Top < Tmax
0 V to 1.8 V, Vout = 0.9 V
53
Tmin < Top < Tmax
51
RL= 10 kΩ, Vout= 0.5 V to 1.3 V
78
Tmin < Top < Tmax
73
35
50
Avd
Large signal voltage gain
VOH
High level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
VOL
Low level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
Isink
Iout
Isource
ICC
Supply current (per operator)
μV/°C
2
10
pA
1
100
pA
1
10
(1)
pA
1
100
pA
74
6
Tmin < Top < Tmax
4
Vout = 0 V
6
Tmin < Top < Tmax
4
dB
dB
95
dB
dB
5
4
Vout = 1.8 V
No load, Vout=VCC/2
1
(1)
mV
35
50
mV
12
mA
10
25
Tmin < Top < Tmax
31
µA
33
µA
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.1
MHz
Gain
Minimum gain for stability
Phase margin = 60°, Rf = 10kΩ,
RL = 10 kΩ, CL = 20 pF, Top = 25° C
+4
-3
V/V
Slew rate
RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V
to 1.3V
0.33
V/μs
SR
1. Guaranteed by design.
Doc ID 16882 Rev 2
5/25
Electrical characteristics
Table 5.
TSV629x, TSV629xA
Shutdown characteristics VCC = 1.8 V (TSV6293, TSV6295)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
2.5
50
nA
Tmin < Top < 85° C
200
nA
Tmin < Top < 125° C
1.5
µA
DC performance
SHDN = VCCICC
Supply current in shutdown
mode (all operators)
ton
Amplifier turn-on time
RL = 5 k, Vout = VCC- to VCC- + 0.2 V
200
ns
toff
Amplifier turn-off time
RL = 5 k, Vout = VCC+ - 0.5 V to
VCC+ - 0.7 V
20
ns
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
pA
IIL
SHDN current low
SHDN = VCC-
10
pA
Output leakage in shutdown
mode
SHDN = VCC-
50
pA
Tmin < Top < 125° C
1
nA
IOLeak
6/25
1.35
V
0.6
Doc ID 16882 Rev 2
V
TSV629x, TSV629xA
Table 6.
Electrical characteristics
VCC+ = +3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2
(unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
DVio
TSV629x
TSV629xA
TSV6293AIST - MiniSO-10
4
0.8
1
TSV629x -Tmin < Top < Tmax
TSV629xA - Tmin < Top < Tmax
TSV6293AIST - Tmin < Top < Tmax
6
2
2.2
Offset voltage
mV
Input offset voltage drift
Input offset current
Iio
Iib
CMR
Tmin < Top < Tmax
1
10(1)
pA
1
100
pA
1
10(1)
pA
1
100
pA
Input bias current
Tmin < Top < Tmax
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
0 V to 3.3 V, Vout = 1.65 V
57
Tmin < Top < Tmax
53
RL=10 kΩ, Vout= 0.5 V to 2.8 V
81
Tmin < Top < Tmax
76
35
50
Avd
Large signal voltage gain
VOH
High level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
VOL
Low level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
Isink
Iout
Isource
ICC
μV/°C
2
Supply current (per operator)
23
Tmin < Top < Tmax
20
Vo = 0 V
23
Tmin < Top < Tmax
20
dB
dB
98
dB
dB
5
4
Vo = 5 V
No load, Vout= 2.5 V
79
mV
35
50
mV
45
mA
38
mA
26
Tmin < Top < Tmax
33
µA
35
µA
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.2
MHz
Gain
Minimum gain for stability
Phase margin = 60°, Rf = 10kΩ,
RL = 10 kΩ, CL = 20 pF, Top = 25° C
+4
-3
V/V
Slew rate
RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V
to 2.8 V
0.4
V/μs
SR
1. Guaranteed by design.
Doc ID 16882 Rev 2
7/25
Electrical characteristics
Table 7.
TSV629x, TSV629xA
VCC+ = +5 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2
(unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
DVio
Iio
Iib
CMR
TSV629x
TSV629xA
TSV6293AIST - MiniSO-10
4
0.8
1
TSV629x - Tmin < Top < Tmax
TSV629xA - Tmin < Top < Tmax
TSV629xA - Tmin < Top < Tmax
6
2
2.2
Offset voltage
mV
Input offset voltage drift
Tmin < Top < Tmax
Tmin < Top < Tmax
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
0 V to 5 V, Vout = 2.5 V
60
Tmin < Top < Tmax
55
RL=10 kΩ, Vout = 0.5 V to 4.5 V
85
Tmin < Top < Tmax
80
Supply voltage rejection ratio VCC = 1.8 to 5 V
20 log (ΔVCC/ΔVio)
Tmin < Top < Tmax
75
SVR
1
100
pA
1
10(1)
pA
1
100
pA
80
dB
98
dB
102
dB
73
VRF = 100 mVrms, f = 400 MHz
61
EMI rejection ratio
VRF = 100 mVrms, f = 900 MHz
85
EMIRR = -20 log (VRFpeak/ΔVio)
VRF = 100 mVrms, f = 1800 MHz
92
VRF = 100 mVrms, f = 2400 MHz
83
VOH
High level output voltage
VOL
Low level output voltage
dB
RL = 10 kΩ
35
Tmin < Top < Tmax
50
7
mV
RL = 10 kΩ
6
Iout
Isource
Supply current (per operator)
50
Vo = 5 V
40
Tmin < Top < Tmax
35
Vo = 0 V
40
Tmin < Top < Tmax
35
No load, Vout = 2.5 V
Tmin < Top < Tmax
Doc ID 16882 Rev 2
35
mV
Tmin < Top < Tmax
Isink
8/25
pA
Input bias current
Large signal voltage gain
ICC
1
10(1)
Input offset current
Avd
EMIRR
μV/°C
2
69
mA
74
mA
29
36
µA
38
µA
TSV629x, TSV629xA
Table 7.
Electrical characteristics
VCC+ = +5 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2
(unless otherwise specified) (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.3
MHz
Gain
Minimum gain for stability
Phase margin = 60°, Rf = 10kΩ,
RL = 10 kΩ, CL = 20 pF, Top = 25° C
+4
-3
V/V
SR
Slew rate
RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V
to 4.5 V
0.5
V/μs
en
Equivalent input noise
voltage
f = 1 kHz
77
nV
-----------Hz
Total harmonic distortion +
noise
Av = -10, fin = 1 kHz, RL= 100 kΩ,
Vicm = Vcc/2, Vout = 1 Vrms,
BW = 22 kHz
0.03
%
THD+N
1. Guaranteed by design.
Table 8.
Shutdown characteristics at VCC = 5 V (TSV6293, TSV6295)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
5
50
nA
Tmin < Top < 85° C
200
nA
Tmin < Top < 125° C
1.5
µA
DC performance
SHDN = VIL
ICC
Supply current in shutdown
mode (all operators)
ton
Amplifier turn-on time
RL = 5 kΩ, Vout = VCC- to VCC- + 0.2 V
200
ns
toff
Amplifier turn-off time
RL = 5 kΩ, Vout = VCC+ - 0.5 V to
VCC + - 0.7 V
20
ns
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
pA
IIL
SHDN current low
SHDN = VCC-
10
pA
50
pA
1
nA
IOLeak
2
V
0.8
Output leakage in shutdown SHDN = VCCmode
Tmin < Top < 125° C
Doc ID 16882 Rev 2
V
9/25
Electrical characteristics
TSV629x, TSV629xA
Figure 2.
Supply current vs. supply voltage
at Vicm = VCC/2
Figure 3.
Output current vs. output voltage at
VCC = 1.5 V
Figure 4.
Output current vs. output voltage at Figure 5.
VCC = 5 V
Closed loop frequency response,
gain = -10 at VCC = 1.5 V & VCC = 5 V
20
VCC=5V
Gain (dB)
15
VCC=1.5V
10
Closed loop gain=-10
CLoad=100pF, Vicm=VCC/2,
Iout giving minimum stability
on a typical part
at T=25 C, RLoad=10kΩ
5
0
10000
100000
1000000
Frequency (Hz)
Figure 6.
Closed loop frequency response,
gain = -3, VCC = 1.5 V
Figure 7.
Closed loop frequency response,
gain = -3, VCC = 5 V
12
12
RLoad=10kΩ
RLoad=10kΩ
10
10
6
4
RLoad=100kΩ to VCC/2
RLoad=10kΩ for Iout giving
minimum stability
on a typical part
6
2
100000
1000000
0
10000
100000
Frequency (Hz)
Frequency (Hz)
10/25
RLoad=100kΩ to VCC/2
RLoad=10kΩ for Iout giving
minimum stability
on a typical part
4
2
0
10000
RLoad=100kΩ
8
Gain (dB)
Gain (dB)
8
RLoad=100kΩ
Doc ID 16882 Rev 2
1000000
TSV629x, TSV629xA
Figure 8.
Electrical characteristics
Positive slew rate vs. supply
voltage in closed loop
Figure 9.
Negative slew rate vs. supply
voltage in closed loop
RLoad=10kΩ, CLoad=100pF, ACL=−10
Vin: from VCC+−0.5V to 0.5V
SR calculated from 10% to 90%
Vicm=VCC/2
Slew rate (V/ s)
Slew rate (V/ s)
T=125°C
T=25°C
T=−40°C
T=125°C
T=−40°C
RLoad=10kΩ, CLoad=100pF, ACL=−10
Vin: from 0.5V to VCC+−0.5V
SR calculated from 10% to 90%
Vicm=VCC/2
T=25°C
Supply voltage (V)
Supply voltage (V)
Amplitude (V)
Slew rate (V/ s)
Figure 10. Slew rate vs. supply voltage in open Figure 11. Slew rate timing in open loop
loop
Open loop configuration, T = 25 C
RLoad=10kΩ, CLoad=100pF,
Vin=1VPP, Vicm=VCC/2
SR calculated from 0.5V to VCC-0.5V
Open loop,RLoad=10kΩ
CLoad=100pF, Vicm=VCC/2
T=25°C, VCC=5V, Vin = 1VPP
Supply voltage (V)
Time (µs)
Amplitude (V)
RLoad=10kΩ, CLoad=100pF,
Vicm=VCC/2, ACL=−10
T=25°C, VCC=5V
Vout
Vin
Figure 13. Noise at VCC = 5 V
Input equivalent noise density (nV/VHz)
Figure 12. Slew rate timing in closed loop
Time (µs)
Vicm=2.5V
Vicm=4.5V
VCC=5V
T=25°C
Frequency (Hz)
Doc ID 16882 Rev 2
11/25
Electrical characteristics
TSV629x, TSV629xA
Figure 15. Distortion + noise vs. output
voltage at VCC = 5 V
THD + N (%)
THD + N (%)
Figure 14. Distortion + noise vs. output
voltage at VCC = 1.8 V
Ω
Ω
Ω
Ω
Ouput voltage (Vrms)
Output voltage (Vrms)
THD + N (%)
THD + N (%)
Figure 16. Distortion + noise vs. frequency at Figure 17. Distortion + noise vs. frequency at
VCC = 1.8 V
VCC = 5 V
Ω
Ω
Ω
Ω
Frequency (Hz)
Frequency (Hz)
Figure 18. EMIRR vs. frequency at Vcc = 5 V,
T = 25° C
120
EMIRR Vpeak (dB)
100
80
60
40
20
0
1
10
12/25
2
10
3
10
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Application information
4
Application information
4.1
Operating voltages
The TSV629x can operate from 1.5 to 5.5 V. The devices’ parameters are fully specified for
1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full VCC
range and several characterization curves show the TSV629x characteristics at 1.5 V.
Additionally, the main specifications are guaranteed in extended temperature ranges from
-40° C to +125° C.
4.2
Rail-to-rail input
The TSV629x are built with two complementary PMOS and NMOS input differential pairs.
The devices have a rail-to-rail input, and the input common mode range is extended from
VCC- - 0.1 V to VCC+ + 0.1 V. The transition between the two pairs appears at VCC+ - 0.7 V.
In the transition region, the performance of CMR, SVR, Vio (Figure 19 and Figure 20) and
THD is slightly degraded.
Figure 19. Input offset voltage vs input
common mode at VCC = 1.5 V
Figure 20. Input offset voltage vs input
common mode at VCC = 5 V
The devices are guaranteed without phase reversal.
4.3
Rail-to-rail output
The operational amplifiers’ output level can go close to the rails: 35 mV maximum above and
below the rail when connected to a 10 kΩ resistive load to VCC/2.
Doc ID 16882 Rev 2
13/25
Application information
4.4
TSV629x, TSV629xA
Optimization of DC and AC parameters
These devices use an innovative approach to reduce the spread of the main DC and AC
parameters. An internal adjustment achieves a very narrow spread of current consumption
(29 µA typical, min/max at ±17%). Parameters linked to the current consumption value, such
as GBP, SR and Avd benefit from this narrow dispersion.
4.5
Shutdown function (TSV6293, TSV6295)
The operational amplifier is enabled when the SHDN pin is pulled high. To disable the
amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier
output is in a high impedance state. The SHDN pin must never be left floating but tied to
VCC+ or VCC-. The turn-on and turn-off times are calculated for an output variation of
±200 mV (Figure 21 and Figure 22 show the test configurations).
Figure 21. Test configuration for turn-on time
(Vout pulled down)
+ VCC
Figure 22. Test configuration for turn-off time
(Vout pulled down)
+ VCC
VCC - 0.5 V
2 KΩ
GND
2 KΩ
GND
+
VCC - 0.5 V
+
DUT
DUT
-
-
GND
GND
Figure 23. Turn-on time, VCC = 5 V,
Vout pulled down, T = 25° C
Figure 24. Turn-off time, VCC = 5 V,
Vout pulled down, T = 25° C
Shutdown pulse
Voltage (V)
Vout
Output voltage (V)
Vcc = 5V
T = 25°C
Vcc = 5V
T = 25°C
RL connected to GND
Shutdown pulse
Time (μs)
Time (μs)
14/25
Vout
Doc ID 16882 Rev 2
TSV629x, TSV629xA
4.6
Application information
Driving resistive and capacitive loads
These products are micropower, low-voltage operational amplifiers optimized to drive rather
large resistive loads, above 5 kΩ. For lower resistive loads, the THD level may significantly
increase.
The amplifiers have a relatively low internal compensation capacitor, making them very fast
while consuming very little. They are ideal when used in a non-inverting configuration or in
an inverting configuration in the following conditions:
●
●
IGainI ≥ 3 in an inverting configuration (CL = 20 pF, RL = 100 kΩ) or IgainI ≥ 10
(CL = 100 pF, RL = 100 kΩ)
Gain ≥ +4 in a non-inverting configuration (CL = 20 pF, RL = 100kΩ) or gain ≥ +11
(CL = 100 pF, RL= 100 kΩ)
As these operational amplifiers are not unity gain stable, the TSV62x (29 µA, 420 kHz) or
TSV63x (60 µA, 880 kHz) – which are unity gain stable – might be a solution for your
application.
Table 9.
Related products
Part #
4.7
Icc (µA) at 5V
GBP (MHz)
Minimum gain for
stability
(CLoad = 100 pF)
SR (V/µs)
TSV622-3-4-5
29
0.42
0.14
1
TSV6292-3-4-5
29
1.3
0.5
+11
TSV632-3-4-5
60
0.88
0.34
1
TSV6392-3-4-5
60
2.4
1.1
+11
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
4.8
Macromodel
Two accurate macromodels (with or without shutdown feature) of the TSV629x are available
on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy
and complexity (that is, time simulation) of the TSV629x operational amplifiers. It emulates
the nominal performances of a typical device within the specified operating conditions
mentioned in the datasheet. It also helps to validate a design approach and to select the
right operational amplifier, but it does not replace on-board measurements.
Doc ID 16882 Rev 2
15/25
Package information
5
TSV629x, TSV629xA
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
16/25
Doc ID 16882 Rev 2
TSV629x, TSV629xA
5.1
Package information
SOT23-8 package information
Figure 25. SOT23-8 package mechanical drawing
Table 10.
SOT23-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
Inches
Max.
Min.
Typ.
Max.
A
1.45
0.057
A1
0.15
0.006
A2
0.90
1.30
0.035
0.051
b
0.22
0.38
0.009
0.015
c
0.08
0.22
0.003
0.009
D
2.80
3
0.110
0.118
E
2.60
3
0.102
0.118
E1
1.50
1.75
0.059
0.069
e
0.65
0.026
e1
1.95
0.077
L
0.30
0.60
<
0°
8°
Doc ID 16882 Rev 2
0.012
0.024
17/25
Package information
5.2
TSV629x, TSV629xA
SO-8 package information
Figure 26. SO-8 package mechanical drawing
Table 11.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
18/25
Inches
1.04
0
0.040
8°
0.10
Doc ID 16882 Rev 2
1°
8°
0.004
TSV629x, TSV629xA
5.3
Package information
MiniSO-8 package information
Figure 27. MiniSO-8 package mechanical drawing
Table 12.
MiniSO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.1
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
L
0.85
0.65
0.40
0.60
0.006
0.033
0.026
0.80
0.016
0.024
L1
0.95
0.037
L2
0.25
0.010
k
ccc
0°
0.037
8°
0.10
Doc ID 16882 Rev 2
0°
0.031
8°
0.004
19/25
Package information
5.4
TSV629x, TSV629xA
MiniSO-10 package information
Figure 28. MiniSO-10 package mechanical drawing
Table 13.
MiniSO-10 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.10
Max.
0.043
A1
0.05
0.10
0.15
0.002
0.004
0.006
A2
0.78
0.86
0.94
0.031
0.034
0.037
b
0.25
0.33
0.40
0.010
0.013
0.016
c
0.15
0.23
0.30
0.006
0.009
0.012
D
2.90
3.00
3.10
0.114
0.118
0.122
E
4.75
4.90
5.05
0.187
0.193
0.199
E1
2.90
3.00
3.10
0.114
0.118
0.122
e
L
0.50
0.40
L1
k
aaa
20/25
Inches
0.55
0.020
0.70
0.016
0.95
0°
3°
0.022
0.028
0.037
6°
0.10
Doc ID 16882 Rev 2
0°
3°
6°
0.004
TSV629x, TSV629xA
5.5
Package information
TSSOP14 package information
Figure 29. TSSOP14 package mechanical drawing
Table 14.
TSSOP14 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.176
e
L
0.65
0.45
L1
k
aaa
1.00
0.60
0.0256
0.75
0.018
1.00
0°
0.024
0.030
0.039
8°
0.10
Doc ID 16882 Rev 2
0°
8°
0.004
21/25
Package information
5.6
TSV629x, TSV629xA
TSSOP16 package information
Figure 30. TSSOP16 package mechanical drawing
b
Table 15.
TSSOP16 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0°
L
0.45
aaa
1.00
0.65
k
L1
22/25
Inches
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
1.00
8°
0.024
0.030
0.039
0.10
Doc ID 16882 Rev 2
0.004
TSV629x, TSV629xA
6
Ordering information
Ordering information
Table 16.
Order codes
Part number
Temperature
range
Package
Packing
SO-8
Tube and tape & reel
TSV6292ID/DT
V6292I
TSV6292AID/DT
V6292AI
TSV6292IST
K114
MiniSO-8
Tape & reel
TSV6292AIST
K144
TSV6292ILT
TSV6293IST
Marking
SOT23-8
Tape & reel
MiniSO-10
Tape & reel
-40° C to +125° C
K114
K134
TSV6293AIST
K135
TSV6294IPT
V6294
TSSOP-14
Tape & reel
TSV6294AIPT
V6294A
TSV6295IPT
V6295
TSSOP-16
TSV6295AIPT
Tape & reel
V6295A
Doc ID 16882 Rev 2
23/25
Revision history
7
TSV629x, TSV629xA
Revision history
Table 17.
24/25
Document revision history
Date
Revision
Changes
14-Jan-2010
1
Initial release.
01-Mar-2010
2
Corrected error in Table 16: Order codes: TSV6295 offered in
TSSOP-16 package.
Doc ID 16882 Rev 2
TSV629x, TSV629xA
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 16882 Rev 2
25/25