VUO 120 VUO 155 IdAVM = 121/157 A VRRM = 1200-1600 V Three Phase Rectifier Bridge VRRM Type W5 V 1200 VUO 120-12 NO1 1600 VUO 120-16 NO1 1200 VUO 155-12 NO1 1600 VUO 155-16 NO1 A6 E6 K6 Therm. V M1/O1 VRRM Type option W6 M10/O10 VRRM IdAVM Test Conditions Maximum Ratings VUO 120 1200/1600 Features VUO155 1200/1600 V TC = 75°C, sinusoidal 120° 121 157 A IFSM TVJ = 45°C, TVJ = 150°C, t = 10 ms, VR = 0 V t = 10 ms, VR = 0 V 650 580 850 760 A A I2t TVJ = 45°C, TVJ = 150°C, t = 10 ms, VR = 0 V t = 10 ms, VR = 0V 2110 1680 3610 2880 A A Ptot TC = 25°C per diode 150 190 W ● ● TVJ TVJM Tstg -40...+150 150 -40...+125 °C °C °C 3000 3600 V~ V~ 50/60 Hz IISOL ≤ 1 mA t = 1 min t=1s Md Mounting torque (M5) (10-32 unf) 2-2.5 18-22 Nm lb.in. dS dA a Creep distance on surface Strike distance in air Maximum allowable acceleration 12.7 9.4 50 mm mm m/s2 Weight typ. 80 g Symbol Test Conditions IR VR = VRRM, VR = VRRM, TVJ = 25°C TVJ = 150°C VF IF = 150 A, TVJ = 25°C VF0 VISOL mA mA VUO 120 VUO 155 1.59 1.49 V V For power-loss calculations only VUO 120 rT TVJ = 150°C VUO 155 VUO 120 VUO 155 0.80 0.75 6.1 4.6 V V mΩ mΩ RthJC per diode VUO 120 VUO 155 1.0 K/W 0.8 K/W VUO 120 1.3 K/W 1.1 K/W VUO 155 R25 (option) Siemens S 891/2,2/+9 IXYS reserves the right to change limits, test conditions and dimensions © 2002 IXYS All rights reserved ● ● Applications ● Input Rectifier for Drive Inverters Advantages ● ● ● Easy to mount with two screws Suitable for wave soldering High temperature and power cycling capability Dimensions in mm (1 mm = 0.0394") Characteristic Values (TVJ = 25°C, unless otherwise specified) min. typ. max. 0.3 5 RthJH ● Soldering connections for PCB mounting Isolation voltage 3600 V~ Convenient package outline UL registered E 72873 Case and potting UL94 V-0 2.2 kΩ 211 Symbol 1-3 VUO 120 150 A 700 A 104 50 Hz, 80% VRRM 600 IFSM 120 IF I2t 500 90 VR = 0 V 2 As TVJ = 45°C 400 TVJ = 150°C TVJ = 25°C 60 300 TVJ = 45°C 200 30 TVJ = 150°C 100 0 0.0 0.5 1.5 V 2.0 1.0 VF TVJ = 150°C 103 0 0.001 0.01 0.1 1 s 1 2 3 t Fig. 1 Forward current versus voltage drop per diode Fig. 3 I2t versus time per diode Fig. 2 Surge overload current 140 A 150 RthKA: W 0.7 1 1.4 2 3 5 Ptot 100 4 5 6 7 ms 8 910 t 120 KW KW KW KW KW KW 100 Id(AV)M 80 60 50 40 20 0 0 0 Fig. 4 20 40 60 80 100 120 A 0 Id(AV)M 20 40 60 80 100 120 140 °C 0 Tamb Power dissipation versus direct output current and ambient temperature, sine 120° 20 40 60 80 100 120 140 °C TC Fig. 5 Max. forward current versus case temperature 1.2 K/W 1.0 0.8 Constants for ZthJC calculation: 0.6 0.4 0.2 0.0 0.01 i Rthi (K/W) ti (s) 1 2 3 4 0.003521 0.1479 0.5599 0.2887 0.01 0.05 0.14 0.5 VUO 120 0.1 1 s 10 t Fig. 6 Transient thermal impedance junction to case © 2002 IXYS All rights reserved 2-3 VUO 155 150 A 104 700 50 Hz, 80% VRRM A 600 IFSM 120 IF I2t 500 90 VR = 0 V A2s TVJ = 45°C 400 TVJ = 150°C TVJ = 25°C TVJ = 45°C 300 60 TVJ = 150°C 200 30 TVJ = 150°C 100 0 0.0 0.5 1.5 V 2.0 1.0 VF 103 0 0.001 0.01 0.1 1 s 1 2 3 t Fig. 1 Forward current versus voltage drop per diode Fig. 3 I2t versus time per diode Fig. 2 Surge overload current 180 A 160 RthKA: W 150 0.7 1 1.4 2 3 5 Ptot 100 4 5 6 7 ms 8 910 t KW KW KW KW KW KW 140 Id(AV)M 120 100 80 60 50 40 20 0 0 0 Fig. 4 20 40 60 80 100 120 140 A 0 Id(AV)M 20 40 60 80 100 120 140 °C 0 Tamb Power dissipation versus direct output current and ambient temperature, sine 120° 20 40 60 80 100 120 140 °C TC Fig. 5 Max. forward current versus case temperature 1.0 K/W 0.8 0.6 Constants for ZthJC calculation: 0.4 0.2 0.0 0.01 i Rthi (K/W) ti (s) 1 2 3 4 0.002817 0.1183 0.4479 0.231 0.01 0.05 0.14 0.5 VUO 155 0.1 1 s 10 t Fig. 6 Transient thermal impedance junction to case © 2002 IXYS All rights reserved 3-3