IXYS VUO155

VUO 120
VUO 155
IdAVM = 121/157 A
VRRM = 1200-1600 V
Three Phase
Rectifier Bridge
VRRM Type
W5
V
1200 VUO 120-12 NO1 1600 VUO 120-16 NO1
1200 VUO 155-12 NO1 1600 VUO 155-16 NO1
A6
E6
K6
Therm.
V
M1/O1
VRRM Type
option
W6
M10/O10
VRRM
IdAVM
Test Conditions
Maximum Ratings
VUO 120
1200/1600
Features
VUO155
1200/1600 V
TC = 75°C, sinusoidal 120°
121
157
A
IFSM
TVJ = 45°C,
TVJ = 150°C,
t = 10 ms, VR = 0 V
t = 10 ms, VR = 0 V
650
580
850
760
A
A
I2t
TVJ = 45°C,
TVJ = 150°C,
t = 10 ms, VR = 0 V
t = 10 ms, VR = 0V
2110
1680
3610
2880
A
A
Ptot
TC = 25°C per diode
150
190
W
●
●
TVJ
TVJM
Tstg
-40...+150
150
-40...+125
°C
°C
°C
3000
3600
V~
V~
50/60 Hz
IISOL ≤ 1 mA
t = 1 min
t=1s
Md
Mounting torque
(M5)
(10-32 unf)
2-2.5
18-22
Nm
lb.in.
dS
dA
a
Creep distance on surface
Strike distance in air
Maximum allowable acceleration
12.7
9.4
50
mm
mm
m/s2
Weight
typ.
80
g
Symbol
Test Conditions
IR
VR = VRRM,
VR = VRRM,
TVJ = 25°C
TVJ = 150°C
VF
IF = 150 A,
TVJ = 25°C
VF0
VISOL
mA
mA
VUO 120
VUO 155
1.59
1.49
V
V
For power-loss calculations only
VUO 120
rT
TVJ = 150°C
VUO 155
VUO 120
VUO 155
0.80
0.75
6.1
4.6
V
V
mΩ
mΩ
RthJC
per diode
VUO 120
VUO 155
1.0 K/W
0.8 K/W
VUO 120
1.3 K/W
1.1 K/W
VUO 155
R25 (option)
Siemens S 891/2,2/+9
IXYS reserves the right to change limits, test conditions and dimensions
© 2002 IXYS All rights reserved
●
●
Applications
●
Input Rectifier for Drive Inverters
Advantages
●
●
●
Easy to mount with two screws
Suitable for wave soldering
High temperature and power cycling
capability
Dimensions in mm (1 mm = 0.0394")
Characteristic Values
(TVJ = 25°C, unless otherwise specified)
min. typ. max.
0.3
5
RthJH
●
Soldering connections for PCB
mounting
Isolation voltage 3600 V~
Convenient package outline
UL registered E 72873
Case and potting UL94 V-0
2.2
kΩ
211
Symbol
1-3
VUO 120
150
A
700
A
104
50 Hz, 80% VRRM
600
IFSM
120
IF
I2t
500
90
VR = 0 V
2
As
TVJ = 45°C
400
TVJ = 150°C
TVJ = 25°C
60
300
TVJ = 45°C
200
30
TVJ = 150°C
100
0
0.0
0.5
1.5 V 2.0
1.0
VF
TVJ = 150°C
103
0
0.001
0.01
0.1
1
s
1
2
3
t
Fig. 1 Forward current versus voltage
drop per diode
Fig. 3 I2t versus time per diode
Fig. 2 Surge overload current
140
A
150
RthKA:
W
0.7
1
1.4
2
3
5
Ptot
100
4 5 6 7 ms
8 910
t
120
KW
KW
KW
KW
KW
KW
100
Id(AV)M
80
60
50
40
20
0
0
0
Fig. 4
20
40
60
80
100 120 A 0
Id(AV)M
20
40
60
80 100 120 140 °C
0
Tamb
Power dissipation versus direct output current and ambient temperature, sine 120°
20 40 60 80 100 120 140 °C
TC
Fig. 5 Max. forward current versus
case temperature
1.2
K/W
1.0
0.8
Constants for ZthJC calculation:
0.6
0.4
0.2
0.0
0.01
i
Rthi (K/W)
ti (s)
1
2
3
4
0.003521
0.1479
0.5599
0.2887
0.01
0.05
0.14
0.5
VUO 120
0.1
1
s
10
t
Fig. 6 Transient thermal impedance junction to case
© 2002 IXYS All rights reserved
2-3
VUO 155
150
A
104
700
50 Hz, 80% VRRM
A
600
IFSM
120
IF
I2t
500
90
VR = 0 V
A2s
TVJ = 45°C
400
TVJ = 150°C
TVJ = 25°C
TVJ = 45°C
300
60
TVJ = 150°C
200
30
TVJ = 150°C
100
0
0.0
0.5
1.5 V 2.0
1.0
VF
103
0
0.001
0.01
0.1
1
s
1
2
3
t
Fig. 1 Forward current versus voltage
drop per diode
Fig. 3 I2t versus time per diode
Fig. 2 Surge overload current
180
A
160
RthKA:
W
150
0.7
1
1.4
2
3
5
Ptot
100
4 5 6 7 ms
8 910
t
KW
KW
KW
KW
KW
KW
140
Id(AV)M
120
100
80
60
50
40
20
0
0
0
Fig. 4
20
40
60
80
100 120 140 A 0
Id(AV)M
20
40
60
80 100 120 140 °C
0
Tamb
Power dissipation versus direct output current and ambient temperature, sine 120°
20 40 60 80 100 120 140 °C
TC
Fig. 5 Max. forward current versus
case temperature
1.0
K/W
0.8
0.6
Constants for ZthJC calculation:
0.4
0.2
0.0
0.01
i
Rthi (K/W)
ti (s)
1
2
3
4
0.002817
0.1183
0.4479
0.231
0.01
0.05
0.14
0.5
VUO 155
0.1
1
s
10
t
Fig. 6 Transient thermal impedance junction to case
© 2002 IXYS All rights reserved
3-3