AVAGO AMMC-6220

AMMC - 6220
6 - 20 GHz Low Noise Amplifier
Data Sheet
Chip Size: 1700 x 800 µm (67 x 31.5 mils)
Chip Size Tolerance: ± 10 µm (±0.4 mils)
Chip Thickness: 100 ± 10 µm (4 ± 0.4 mils)
Pad Dimensions: 100 x 100 µm (4 ± 0.4 mils)
Description
Features
Avago Technologies’ AMMC-6220 is a high gain, lownoise amplifier that operates from 6 GHz to 20 GHz. This
LNA provides a wide-band solution for system design
since it covers several bands, thus, reduces part inventory. The device has input / output match to 50 Ohm, is
unconditionally stable and can be used as either primary
or sub-sequential low noise gain stage. By eliminating
the complex tuning and assembly processes typically
required by hybrid (discrete-FET) amplifiers, the AMMC6220 is a cost-effective alternative in the 6 - 20 GHz communications receivers. The backside of the chip is both RF
and DC ground. This helps simplify the assembly process
and reduces assembly related performance variations
and costs. It is fabricated in a PHEMT process to provide
exceptional noise and gain performance. For improved
reliability and moisture protection, the die is passivated
at the active areas.
• Wide frequency range: 6 - 20 GHz
• High gain: 23 dB
• Low 50 Ω Noise Figure: 2.0 dB
• 50 Ω Input and Output Match
• Single 3V Supply Bias
Applications
• Microwave Radio systems
• Satellite VSAT, DBS Up/Down Link
• LMDS & Pt-Pt mmW Long Haul
• Broadband Wireless Access (including 802.16 and 802.20 WiMax) • WLL and MMDS loops
AMMC-6220 Absolute Maximum Ratings[1]
Symbol
Parameters/Conditions
Units
Vd
Positive Drain Voltage
V
Min.
7
Vg
Gate Supply Voltage
V
NA
Id
Drain Current
mA
100
Pin
CW Input Power
dBm
15
Tch
Operating Channel Temp.
°C
+150
Tstg
Storage Case Temp.
°C
Tmax
Maximum Assembly Temp (60 sec max)
°C
-65
Max.
+150
+300
Note:
1. Operation in excess of any one of these conditions may result in permanent damage to this device
Note: These devices are ESD sensitive. The following precautions are strongly recommended. Ensure
that an ESD approved carrier is used when dice are transported from one destination to another.
Personal grounding is to be worn at all times when handling these devices
AMMC-6220 DC Specifications/Physical Properties [1]
Symbol
Parameters and Test Conditions
Units
Id
Drain Supply Current
(under any RF power drive and temperature)
(Vd=3.0 V)
Vg
qch-b
Min.
Typ.
Max.
mA
55
70
Gate Supply Operating Voltage
(Id(Q) = 800 (mA))
V
NA
Thermal Resistance[2]
(Backside temperature, Tb = 25°C)
°C/W
25
Notes:
1. Ambient operational temperature TA=25°C unless otherwise noted.
2. Channel-to-backside Thermal Resistance (qch-b) = 26°C/W at Tchannel (Tc) = 34°C as measured using infrared microscopy. Thermal Resistance at
backside temperature (Tb) = 25°C calculated from measured data.
AMMC-6220 RF Specifications [3, 4, 5] (TA= 25°C, Vd=3.0 V, Id(Q)=55 mA, Zo=50 Ω)
Symbol
Parameters and Test Conditions
Units
Minimum
Typical
Maximum
Sigma
Gain
Small-signal Gain[6]
dB
21
23
NF
Noise Figure into 50 W
dB
7-10 GHz = 2.1
10-16 GHz = 1.8
16-20 GHz = 2.0
P-1dB
Output Power at 1dB Gain Compression
dBm
+9
0.87
OIP3
Third Order Intercept Point;
Df=100MHz; Pin=-35dBm
dBm
+19
1.20
RLin
Input Return Loss[6]
dB
-12
-10
0.31
RLout
Output Return Loss[6]
dB
-16
-10
0.68
Isol
Reverse Isolation[6]
dB
-45
0.30
8 GHz = 2.4
12 GHz = 2.2
18 GHz = 2.4
0.10
0.50
Notes:
3. Small/Large -signal data measured in wafer form TA = 25°C.
4. 100% on-wafer RF test is done at frequency = 8, 12, and 18 GHz.
5. Specifications are derived from measurements in a 50 Ω test environment. Aspects of the amplifier performance may be improved over a
more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching.
6. As derived from measured s-parameters
USL
LSL
Gain at 12 GHz
1.
Noise Figure at 12 GHz
1.8
1.9
USL
-11. -11.
-11
-10. -10. -10.1
-9.8
-9.
Return Loss at 12 GHz
Typical distribution of Small Signal Gain, Noise Figure, and Return Loss. Based on 1500 part sampled over several
production lots.
AMMC-6220 Typical Performances
(TA = 25°C, Vd =3.0 V, ID = 55 mA, Zin = Zout = 50 Ω unless otherwise stated)
NOTE: These measurements are in a 50 Ω test environment. Aspects of the amplifier performance may be improved
over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching.Figure
1. Typical Gain
0
0
-10
0
Input Return Loss(dB)
-
1
Isolation (dB)
Gain (dB)
-0
10
-0
-0
-10
-1
-0
0
-0
8
10
1
1
1
18
0
-0
8
10
1
1
Frequency (GHz)
Frequency (GHz)
Figure 1. Typical Gain
1
18
0
Figure 2. Typical Isolation
0
8
10
1
1
Frequency (GHz)
1
18
0
Figure 3 Typical Input Return Loss
.0
0
0
1
1
10
10
-0
.
OP1dB (dBm)
-10
.0
1.
1.0
OIP (dBm)
.0
Noise Figure [dB]
Output Return Loss (dB)
.
0.
-0
8
10
1
1
1
Frequency (GHz)
18
0
Figure 4. Typical Output Return Loss
0.0
0
8
10
1
1
1
Frequency [GHz]
18
0
-10
0
-0
10
1
1
1
Frequency [GHz]
0
0
18
0
0
8
Figure 6. Typical Output P-1dB and 3rd Order
Intercept Pt.
Figure 5. Typical Noise Figure into a 50 W load.
0
degC
-0degC
+8degC
degC
-0degC
+8degC
1
10
-0
-10
-0
-1
degC
-0degC
+8degC
-0
-0
0
8
10
1
1
1
18
0
Frequency (GHz)
Figure 7. Typical Gain (s21) over temperature
S11 (dB)
S1 (dB)
S1 (dB)
-
8
10
1
1
1
18
0
Frequency (GHz)
Figure 8. Typical Isolation (s12) over temperature
-0
8
10
1 1 1
Frequency (GHz)
18
0
Figure 9. Typical Input Return Loss (s11) over
temperature
AMMC-6220 Typical Performances
(TA = 25°C, Vd =3.0 V, ID = 55 mA, Zin = Zout = 50Ω unless otherwise stated)
NOTE: These measurements are in a 50 Ω test environment. Aspects of the amplifier performance may be improved
over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching.
0
-0degC
-
degC
-0degC
degC
+8degC
.
+8degC
-0degC
+degC
+8degC
0
8
-1
Idd (mA)
.
NF (dB)
S (dB)
-10
1.
-0
1
-
-0
0.
8
10
1
1
1
Frequency (GHz)
18
0
Figure 10. Typical Output Return Loss over Temperature
0
0
8
10
1
1
1
Frequency (GHz)
18
0
0
0
Figure 11. Typical Noise Figure over Temperature
V
V
V
Vdd (V)
.
Figure 12. Typical Total Idd over Temperature
0
V
V
V
-10
.
V
V
V
-
S1 (dB)
-0
8
10
1
1
Frequency (GHz)
1
18
0
Figure 13. Typical Gain over Vdd (supply voltage.)
0
8
10
1
1
Frequency (GHz)
1
18
0
Figure 14. Typical Isolation over Vdd (supply
voltage)
.00
V
V
V
-
NF (dB)
-0
1.00
8
10
1
1
Frequency (GHz)
1
18
Figure 16. Typical Output Return Loss over Vdd
(supply voltage)
0
10
1
1
Frequency (GHz)
1
18
0
0.0
8
8
1.0
0.00
10
-
-0
1
.00
-1
-
-0
Figure 15. Typical Input Return Loss over Vdd
(supply voltage)
V
V
V
.0
-10
S (dB)
-1
-0
-10
-0
10
0
-0
OP1dB (dBm)
S1 (dB)
1
S11 (dB)
-0
0
8
10
1
1
1
Frequency (GHz)
18
0
Figure 17. Typical Noise Figure over Vdd (supply
voltage.)
0
V
V
V
8
10
1
1
1
Frequency (GHz)
18
Figure 18. Typical OP-1dB over Vdd (supply voltage.)
0
AMMC-6220 Typical Scattering Parameters[1]
(Tc=25°C, VD1=VD2= 3 V, Zin = Zout = 50 Ω)
S11
S21
S12
Freq
GHz
dB
Mag
Phase
dB
Mag
Phase
4.000
-0.146
0.983
103.687
9.033
2.829
-128.237
4.500
-1.392
0.852
74.728
21.862
12.391
5.000
-0.823
0.910
37.284
23.130
5.500
-1.961
0.798
-3.456
6.000
-5.151
0.553
-33.435
6.500
-7.415
0.426
7.000
-10.150
7.500
Mag
Phase
-48.748 0.004 -115.810
-4.132
0.621
171.001
118.600
-41.044 0.009
103.896
-13.516
0.211
141.837
14.338
39.967
-44.986 0.006
29.720
-16.564
0.149
168.028
23.710
15.328
-15.875
-46.775 0.005
-28.575
-17.481
0.134
-175.481
23.699
15.310
-59.866
-50.848 0.003
-45.938
-17.158
0.139
-166.821
-53.353
23.622
15.174
-95.795
-51.753 0.003
-76.787
-16.707
0.146
-164.516
0.311
-65.197
23.557
15.060
-126.279
-52.284 0.002 -109.752
-16.549
0.149
-165.262
-11.146
0.277
-71.056
23.641
15.207
-153.658
-52.173 0.002 -108.492
-16.750
0.145
-165.145
8.000
-11.953
0.253
-76.086
23.761
15.419
-179.298
-51.490 0.003 -134.195
-16.835
0.144
-165.958
8.500
-11.917
0.254
-79.875
23.793
15.475
156.812
-50.677 0.003 -149.675
-17.025
0.141
-166.708
9.000
-11.731
0.259
-85.876
23.908
15.681
133.712
-50.500 0.003 -159.105
-17.310
0.136
-167.942
9.500
-11.478
0.267
-93.111
24.000
15.849
111.612
-50.296 0.003 -171.408
-17.862
0.128
-168.952
10.000
-11.328
0.271
-100.430
24.071
15.979
90.667
-48.911 0.004 -176.724
-18.509
0.119
-168.793
10.500
-11.278
0.273
-107.107
23.989
15.829
70.398
-49.083 0.004
174.601
-19.271
0.109
-166.105
11.000
-11.184
0.276
-114.292
23.915
15.695
50.874
-48.773 0.004
155.804
-19.908
0.101
-161.607
11.500
-11.267
0.273
-119.551
23.867
15.607
31.947
-47.506 0.004
155.799
-20.309
0.097
-153.779
12.000
-11.033
0.281
-125.024
23.786
15.464
14.018
-47.811 0.004
150.219
-20.177
0.098
-146.759
12.500
-10.820
0.288
-130.580
23.724
15.354
-3.874
-46.361 0.005
124.708
-19.456
0.106
-141.031
13.000
-10.768
0.289
-136.143
23.620
15.170
-20.953
-46.149 0.005
119.468
-18.642
0.117
-137.531
13.500
-10.685
0.292
-140.774
23.568
15.081
-37.794
-45.536 0.005
120.694
-17.844
0.128
-136.674
14.000
-10.672
0.293
-147.067
23.459
14.891
-54.252
-44.238 0.006
108.871
-17.088
0.140
-136.397
14.500
-10.611
0.295
-151.974
23.351
14.707
-70.766
-44.824 0.006
98.487
-16.419
0.151
-137.700
15.000
-10.629
0.294
-157.342
23.287
14.600
-86.927
-43.591 0.007
85.314
-15.782
0.163
-140.788
15.500
-10.792
0.289
-164.023
23.184
14.428
-102.737
-42.101 0.008
81.787
-15.469
0.168
-145.110
16.000
-11.118
0.278
-169.248
23.119
14.320
-119.061
-41.806 0.008
64.948
-15.429
0.169
-150.386
16.500
-11.744
0.259
-173.681
22.973
14.082
-135.063
-40.650 0.009
63.398
-15.606
0.166
-156.073
17.000
-12.571
0.235
-176.840
22.847
13.879
-151.033
-41.699 0.008
48.516
-16.000
0.158
-160.598
17.500
-13.207
0.219
-179.413
22.728
13.689
-166.718
-40.813 0.009
43.851
-16.795
0.145
-166.616
18.000
-14.063
0.198
-176.351
22.548
13.409
176.850
-40.203 0.010
34.195
-17.791
0.129
-173.574
18.500
-14.853
0.181
-172.040
22.336
13.086
160.709
-39.642 0.010
21.429
-19.662
0.104
178.090
19.000
-14.720
0.184
-161.713
22.122
12.767
144.491
-39.641 0.010
20.910
-22.604
0.074
169.680
19.500
-13.710
0.206
-153.813
21.797
12.298
128.151
-39.632 0.010
8.070
-28.897
0.036
148.784
20.000
-12.221
0.245
-148.391
21.451
11.819
111.521
-38.926 0.011
-7.980
-35.137
0.018
31.294
20.500
-10.382
0.303
-147.276
20.983
11.198
95.148
-39.251 0.011
-13.094
-23.741
0.065
-15.174
21.000
-8.701
0.367
-150.640
20.472
10.558
78.624
-38.616 0.012
-25.399
-18.636
0.117
-26.892
21.500
-7.194
0.437
-156.785
19.879
9.862
62.593
-38.726 0.012
-35.505
-15.322
0.171
-36.809
22.000
-5.883
0.508
-163.716
19.198
9.118
47.073
-38.915 0.011
-38.784
-12.780
0.230
-45.747
Mag
S22
dB
Note: Data obtained from on-wafer measurements
dB
Phase
AMMC-6220: Typical Scattering Parameters[1]
(Tc=25°C, VD1=VD2= 5 V, Zin = Zout = 50 Ω)
dB
S11
mag
S12
mag
dB
S22
mag
phase
phase
phase
4.0
-0.673
0.925
103.544
8.514
2.665
4.5
-1.492
0.842
74.318
21.395
11.742
-130.371 -50.551
0.003
117.926
-43.657
0.007
-109.410
-3.600
0.661
170.277
103.138
-10.722
0.291
137.294
5.0
-0.635
0.929
37.411
22.845
13.875
43.305
-45.849
0.005
43.526
-13.626
0.208
140.892
5.5
-2.032
0.791
-3.432
23.951
15.759
-11.567
-48.892
0.004
-22.501
-17.072
0.140
136.619
6.0
-4.747
0.579
-34.664
24.262
16.335
-56.971
-49.740
0.003
-50.634
-20.223
0.097
138.857
6.5
-7.598
0.417
-55.144
24.334
16.471
-94.487
-51.629
0.003
-90.737
-23.311
0.068
145.708
7.0
7.5
-10.093
0.313
-66.567
-11.669
0.261
-72.043
24.292
16.392
-126.702 -54.247
0.002
-108.004 -26.096
0.050
152.950
24.333
16.468
-155.390 -52.202
0.002
-121.340 -29.853
0.032
167.732
8.0
-12.300
0.243
-74.699
24.406
16.606
178.048
-51.151
0.003
-137.135 -33.106
0.022
-157.216
8.5
-12.080
0.249
-78.056
24.422
16.639
153.532
-52.505
0.002
-155.276 -31.608
0.026
-119.404
9.0
-11.733
0.259
-84.004
24.477
16.744
129.984
-51.516
0.003
-155.878 -28.205
0.039
-97.950
9.5
-11.303
0.272
-91.544
24.511
16.810
107.486
-52.868
0.002
-177.492 -25.326
0.054
-87.835
10.0
-11.062
0.280
-99.362
24.549
16.883
86.003
-51.015
0.003
175.740
-22.836
0.072
-83.845
10.5
-10.806
0.288
-106.223
24.467
16.724
65.381
-50.416
0.003
169.269
-20.540
0.094
-82.739
11.0
-10.685
0.292
-113.824
24.397
16.590
45.507
-50.539
0.003
161.489
-18.620
0.117
-83.562
11.5
-10.652
0.293
-120.486
24.282
16.372
26.125
-49.084
0.004
140.732
-17.073
0.140
-86.634
12.0
-10.584
0.296
-126.927
24.165
16.152
7.602
-49.630
0.003
129.430
-15.819
0.162
-91.173
12.5
-10.383
0.303
-133.049
24.037
15.916
-10.789
-49.737
0.003
117.272
-14.698
0.184
-95.581
13.0
-10.495
0.299
-139.396
23.885
15.641
-28.235
-47.563
0.004
112.685
-13.888
0.202
-100.779
13.5
-10.452
0.300
-144.569
23.757
15.412
-45.463
-47.315
0.004
114.739
-13.275
0.217
-106.161
14.0
-10.610
0.295
-150.864
23.582
15.104
-62.199
-48.035
0.004
101.112
-12.824
0.228
-111.602
14.5
-10.688
0.292
-155.580
23.400
14.792
-79.220
-47.535
0.004
89.549
-12.509
0.237
-116.032
15.0
-10.967
0.283
-161.115
23.239
14.519
-95.555
-46.791
0.005
88.406
-12.349
0.241
-121.314
15.5
-11.235
0.274
-166.831
23.018
14.154
-111.710 -45.741
0.005
82.235
-12.368
0.241
-126.026
16.0
-11.633
0.262
-170.420
22.817
13.831
-128.090 -45.071
0.006
65.758
-12.610
0.234
-130.007
16.5
-12.194
0.246
-173.577
22.522
13.369
-144.087 -46.403
0.005
65.253
-12.974
0.225
-132.934
17.0
-13.128
0.221
-174.413
22.241
12.944
-159.749 -44.636
0.006
52.243
-13.422
0.213
-134.003
17.5
-13.449
0.213
-173.665
21.974
12.552
-175.168 -44.918
0.006
40.428
-13.851
0.203
-134.954
18.0
-13.681
0.207
-169.464
21.613
12.041
169.124
-44.953
0.006
41.677
-14.243
0.194
-134.370
18.5
-13.952
0.201
-166.852
21.241
11.536
154.065
-44.297
0.006
28.636
-14.790
0.182
-132.741
19.0
-13.377
0.214
-162.360
20.881
11.067
139.077
-44.325
0.006
18.417
-15.145
0.175
-128.824
19.5
-12.587
0.235
-158.579
20.458
10.541
124.370
-44.648
0.006
17.829
-15.378
0.170
-124.591
20.0
-11.593
0.263
-155.670
20.070
10.080
109.618
-44.290
0.006
7.552
-15.265
0.172
-118.577
20.5
-10.402
0.302
-156.118
19.610
9.561
95.315
-43.949
0.006
4.072
-14.896
0.180
-112.117
21.0
-9.292
0.343
-158.544
19.157
9.075
81.210
-44.129
0.006
2.016
-14.201
0.195
-108.617
21.5
-8.122
0.393
-161.368
18.767
8.677
66.820
-43.714
0.007
-6.903
-13.518
0.211
-105.366
22.0
-7.019
0.446
-165.866
18.255
8.180
53.298
-43.878
0.006
-4.490
-12.580
0.235
-102.937
Freq
GHz
dB
Note: Data obtained from on-wafer measurements
S21
mag
phase
dB
Biasing and Operation
The AMMC-6220 is normally biased with a single positive
drain supply connected to both VD1 and VD2 bond pads
through the 2 bypass capacitors as shown in Figure 20.
The recommended supply voltage is 3 V. It is important
to have 2 separate 100pF bypass capacitors, and these
two capacitors should be placed as close to the die as
possible.
The AMMC-6220 does not require a negative gate voltage to bias any of the three stages. No ground wires are
needed because all ground connections are made with
plated through-holes to the backside of the device.
Refer the Absolute Maximum Ratings table for allowed
DC and thermal conditions
Assembly Techniques
The backside of the MMIC chip is RF ground. For microstrip applications the chip should be attached directly
to the ground plane (e.g. circuit carrier or heatsink) using
electrically conductive epoxy[1,2]
For best performance, the topside of the MMIC should
be brought up to the same height as the circuit surrounding it. This can be accomplished by mounting a
gold plate metal shim (same length and width as the
MMIC) under the chip which is of correct thickness to
make the chip and adjacent circuit the same height.
The amount of epoxy used for the chip and/or shim
attachment should be just enough to provide a thin
fillet around the bottom perimeter of the chip or shim.
The ground plan should be free of any residue that may
jeopardize electrical or mechanical attachment.
The location of the RF bond pads is shown in Figure
12. Note that all the RF input and output ports are in a
Ground-Signal-Ground configuration.
RF connections should be kept as short as reasonable
to minimize performance degradation due to undesirable series inductance. A single bond wire is normally
sufficient for signal connections, however double bonding with 0.7 mil gold wire or use of gold mesh is recommended for best performance, especially near the high
end of the frequency band.
Thermosonic wedge bonding is preferred method for
wire attachment to the bond pads. Gold mesh can be
attached using a 2 mil round tracking tool and a tool
force of approximately 22 grams and a ultrasonic power
of roughly 55 dB for a duration of 76 ± 8 mS. The guided
wedge at an untrasonic power level of 64 dB can be
used for 0.7 mil wire. The recommended wire bond
stage temperature is 150 ± 2 °C.
Caution should be taken to not exceed the Absolute
Maximum Rating for assembly temperature and time.
The chip is 100um thick and should be handled with
care. This MMIC has exposed air bridges on the top
surface and should be handled by the edges or with a
custom collet (do not pick up the die with a vacuum on
die center).
This MMIC is also static sensitive and ESD precautions
should be taken.
Notes:
1. Ablebond 84-1 LM1 silver epoxy is recommended.
2. Eutectic attach is not recommended and may jeopardize reliability
of the device.
Vcc
Out
In
Figure 19. AMMC-6220 Schematic
VD1
0
VD2
700
870
800
1045
1700
800
705
330
RFin
330
RFout
0
0
0
1600
90
Figure 20. AMMC-6220 Bonding pad locations
To VDD DC supply
100 pF Capacitors
VD1
RF INPUT
VD2
AMMC-6220
RF OUTPUT
Gold Plated Shim (Optional)
Figure 21. AMMC-6220 Assembly diagram
Ordering Information:
AMMC-6220-W10 = 10 devices per tray
AMMC-6220-W50 = 50 devices per tray
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0218EN
AV02-1287EN - June 23, 2008
1700