AMMC - 6220 6 - 20 GHz Low Noise Amplifier Data Sheet Chip Size: 1700 x 800 µm (67 x 31.5 mils) Chip Size Tolerance: ± 10 µm (±0.4 mils) Chip Thickness: 100 ± 10 µm (4 ± 0.4 mils) Pad Dimensions: 100 x 100 µm (4 ± 0.4 mils) Description Features Avago Technologies’ AMMC-6220 is a high gain, lownoise amplifier that operates from 6 GHz to 20 GHz. This LNA provides a wide-band solution for system design since it covers several bands, thus, reduces part inventory. The device has input / output match to 50 Ohm, is unconditionally stable and can be used as either primary or sub-sequential low noise gain stage. By eliminating the complex tuning and assembly processes typically required by hybrid (discrete-FET) amplifiers, the AMMC6220 is a cost-effective alternative in the 6 - 20 GHz communications receivers. The backside of the chip is both RF and DC ground. This helps simplify the assembly process and reduces assembly related performance variations and costs. It is fabricated in a PHEMT process to provide exceptional noise and gain performance. For improved reliability and moisture protection, the die is passivated at the active areas. • Wide frequency range: 6 - 20 GHz • High gain: 23 dB • Low 50 Ω Noise Figure: 2.0 dB • 50 Ω Input and Output Match • Single 3V Supply Bias Applications • Microwave Radio systems • Satellite VSAT, DBS Up/Down Link • LMDS & Pt-Pt mmW Long Haul • Broadband Wireless Access (including 802.16 and 802.20 WiMax) • WLL and MMDS loops AMMC-6220 Absolute Maximum Ratings[1] Symbol Parameters/Conditions Units Vd Positive Drain Voltage V Min. 7 Vg Gate Supply Voltage V NA Id Drain Current mA 100 Pin CW Input Power dBm 15 Tch Operating Channel Temp. °C +150 Tstg Storage Case Temp. °C Tmax Maximum Assembly Temp (60 sec max) °C -65 Max. +150 +300 Note: 1. Operation in excess of any one of these conditions may result in permanent damage to this device Note: These devices are ESD sensitive. The following precautions are strongly recommended. Ensure that an ESD approved carrier is used when dice are transported from one destination to another. Personal grounding is to be worn at all times when handling these devices AMMC-6220 DC Specifications/Physical Properties [1] Symbol Parameters and Test Conditions Units Id Drain Supply Current (under any RF power drive and temperature) (Vd=3.0 V) Vg qch-b Min. Typ. Max. mA 55 70 Gate Supply Operating Voltage (Id(Q) = 800 (mA)) V NA Thermal Resistance[2] (Backside temperature, Tb = 25°C) °C/W 25 Notes: 1. Ambient operational temperature TA=25°C unless otherwise noted. 2. Channel-to-backside Thermal Resistance (qch-b) = 26°C/W at Tchannel (Tc) = 34°C as measured using infrared microscopy. Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured data. AMMC-6220 RF Specifications [3, 4, 5] (TA= 25°C, Vd=3.0 V, Id(Q)=55 mA, Zo=50 Ω) Symbol Parameters and Test Conditions Units Minimum Typical Maximum Sigma Gain Small-signal Gain[6] dB 21 23 NF Noise Figure into 50 W dB 7-10 GHz = 2.1 10-16 GHz = 1.8 16-20 GHz = 2.0 P-1dB Output Power at 1dB Gain Compression dBm +9 0.87 OIP3 Third Order Intercept Point; Df=100MHz; Pin=-35dBm dBm +19 1.20 RLin Input Return Loss[6] dB -12 -10 0.31 RLout Output Return Loss[6] dB -16 -10 0.68 Isol Reverse Isolation[6] dB -45 0.30 8 GHz = 2.4 12 GHz = 2.2 18 GHz = 2.4 0.10 0.50 Notes: 3. Small/Large -signal data measured in wafer form TA = 25°C. 4. 100% on-wafer RF test is done at frequency = 8, 12, and 18 GHz. 5. Specifications are derived from measurements in a 50 Ω test environment. Aspects of the amplifier performance may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching. 6. As derived from measured s-parameters USL LSL Gain at 12 GHz 1. Noise Figure at 12 GHz 1.8 1.9 USL -11. -11. -11 -10. -10. -10.1 -9.8 -9. Return Loss at 12 GHz Typical distribution of Small Signal Gain, Noise Figure, and Return Loss. Based on 1500 part sampled over several production lots. AMMC-6220 Typical Performances (TA = 25°C, Vd =3.0 V, ID = 55 mA, Zin = Zout = 50 Ω unless otherwise stated) NOTE: These measurements are in a 50 Ω test environment. Aspects of the amplifier performance may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching.Figure 1. Typical Gain 0 0 -10 0 Input Return Loss(dB) - 1 Isolation (dB) Gain (dB) -0 10 -0 -0 -10 -1 -0 0 -0 8 10 1 1 1 18 0 -0 8 10 1 1 Frequency (GHz) Frequency (GHz) Figure 1. Typical Gain 1 18 0 Figure 2. Typical Isolation 0 8 10 1 1 Frequency (GHz) 1 18 0 Figure 3 Typical Input Return Loss .0 0 0 1 1 10 10 -0 . OP1dB (dBm) -10 .0 1. 1.0 OIP (dBm) .0 Noise Figure [dB] Output Return Loss (dB) . 0. -0 8 10 1 1 1 Frequency (GHz) 18 0 Figure 4. Typical Output Return Loss 0.0 0 8 10 1 1 1 Frequency [GHz] 18 0 -10 0 -0 10 1 1 1 Frequency [GHz] 0 0 18 0 0 8 Figure 6. Typical Output P-1dB and 3rd Order Intercept Pt. Figure 5. Typical Noise Figure into a 50 W load. 0 degC -0degC +8degC degC -0degC +8degC 1 10 -0 -10 -0 -1 degC -0degC +8degC -0 -0 0 8 10 1 1 1 18 0 Frequency (GHz) Figure 7. Typical Gain (s21) over temperature S11 (dB) S1 (dB) S1 (dB) - 8 10 1 1 1 18 0 Frequency (GHz) Figure 8. Typical Isolation (s12) over temperature -0 8 10 1 1 1 Frequency (GHz) 18 0 Figure 9. Typical Input Return Loss (s11) over temperature AMMC-6220 Typical Performances (TA = 25°C, Vd =3.0 V, ID = 55 mA, Zin = Zout = 50Ω unless otherwise stated) NOTE: These measurements are in a 50 Ω test environment. Aspects of the amplifier performance may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching. 0 -0degC - degC -0degC degC +8degC . +8degC -0degC +degC +8degC 0 8 -1 Idd (mA) . NF (dB) S (dB) -10 1. -0 1 - -0 0. 8 10 1 1 1 Frequency (GHz) 18 0 Figure 10. Typical Output Return Loss over Temperature 0 0 8 10 1 1 1 Frequency (GHz) 18 0 0 0 Figure 11. Typical Noise Figure over Temperature V V V Vdd (V) . Figure 12. Typical Total Idd over Temperature 0 V V V -10 . V V V - S1 (dB) -0 8 10 1 1 Frequency (GHz) 1 18 0 Figure 13. Typical Gain over Vdd (supply voltage.) 0 8 10 1 1 Frequency (GHz) 1 18 0 Figure 14. Typical Isolation over Vdd (supply voltage) .00 V V V - NF (dB) -0 1.00 8 10 1 1 Frequency (GHz) 1 18 Figure 16. Typical Output Return Loss over Vdd (supply voltage) 0 10 1 1 Frequency (GHz) 1 18 0 0.0 8 8 1.0 0.00 10 - -0 1 .00 -1 - -0 Figure 15. Typical Input Return Loss over Vdd (supply voltage) V V V .0 -10 S (dB) -1 -0 -10 -0 10 0 -0 OP1dB (dBm) S1 (dB) 1 S11 (dB) -0 0 8 10 1 1 1 Frequency (GHz) 18 0 Figure 17. Typical Noise Figure over Vdd (supply voltage.) 0 V V V 8 10 1 1 1 Frequency (GHz) 18 Figure 18. Typical OP-1dB over Vdd (supply voltage.) 0 AMMC-6220 Typical Scattering Parameters[1] (Tc=25°C, VD1=VD2= 3 V, Zin = Zout = 50 Ω) S11 S21 S12 Freq GHz dB Mag Phase dB Mag Phase 4.000 -0.146 0.983 103.687 9.033 2.829 -128.237 4.500 -1.392 0.852 74.728 21.862 12.391 5.000 -0.823 0.910 37.284 23.130 5.500 -1.961 0.798 -3.456 6.000 -5.151 0.553 -33.435 6.500 -7.415 0.426 7.000 -10.150 7.500 Mag Phase -48.748 0.004 -115.810 -4.132 0.621 171.001 118.600 -41.044 0.009 103.896 -13.516 0.211 141.837 14.338 39.967 -44.986 0.006 29.720 -16.564 0.149 168.028 23.710 15.328 -15.875 -46.775 0.005 -28.575 -17.481 0.134 -175.481 23.699 15.310 -59.866 -50.848 0.003 -45.938 -17.158 0.139 -166.821 -53.353 23.622 15.174 -95.795 -51.753 0.003 -76.787 -16.707 0.146 -164.516 0.311 -65.197 23.557 15.060 -126.279 -52.284 0.002 -109.752 -16.549 0.149 -165.262 -11.146 0.277 -71.056 23.641 15.207 -153.658 -52.173 0.002 -108.492 -16.750 0.145 -165.145 8.000 -11.953 0.253 -76.086 23.761 15.419 -179.298 -51.490 0.003 -134.195 -16.835 0.144 -165.958 8.500 -11.917 0.254 -79.875 23.793 15.475 156.812 -50.677 0.003 -149.675 -17.025 0.141 -166.708 9.000 -11.731 0.259 -85.876 23.908 15.681 133.712 -50.500 0.003 -159.105 -17.310 0.136 -167.942 9.500 -11.478 0.267 -93.111 24.000 15.849 111.612 -50.296 0.003 -171.408 -17.862 0.128 -168.952 10.000 -11.328 0.271 -100.430 24.071 15.979 90.667 -48.911 0.004 -176.724 -18.509 0.119 -168.793 10.500 -11.278 0.273 -107.107 23.989 15.829 70.398 -49.083 0.004 174.601 -19.271 0.109 -166.105 11.000 -11.184 0.276 -114.292 23.915 15.695 50.874 -48.773 0.004 155.804 -19.908 0.101 -161.607 11.500 -11.267 0.273 -119.551 23.867 15.607 31.947 -47.506 0.004 155.799 -20.309 0.097 -153.779 12.000 -11.033 0.281 -125.024 23.786 15.464 14.018 -47.811 0.004 150.219 -20.177 0.098 -146.759 12.500 -10.820 0.288 -130.580 23.724 15.354 -3.874 -46.361 0.005 124.708 -19.456 0.106 -141.031 13.000 -10.768 0.289 -136.143 23.620 15.170 -20.953 -46.149 0.005 119.468 -18.642 0.117 -137.531 13.500 -10.685 0.292 -140.774 23.568 15.081 -37.794 -45.536 0.005 120.694 -17.844 0.128 -136.674 14.000 -10.672 0.293 -147.067 23.459 14.891 -54.252 -44.238 0.006 108.871 -17.088 0.140 -136.397 14.500 -10.611 0.295 -151.974 23.351 14.707 -70.766 -44.824 0.006 98.487 -16.419 0.151 -137.700 15.000 -10.629 0.294 -157.342 23.287 14.600 -86.927 -43.591 0.007 85.314 -15.782 0.163 -140.788 15.500 -10.792 0.289 -164.023 23.184 14.428 -102.737 -42.101 0.008 81.787 -15.469 0.168 -145.110 16.000 -11.118 0.278 -169.248 23.119 14.320 -119.061 -41.806 0.008 64.948 -15.429 0.169 -150.386 16.500 -11.744 0.259 -173.681 22.973 14.082 -135.063 -40.650 0.009 63.398 -15.606 0.166 -156.073 17.000 -12.571 0.235 -176.840 22.847 13.879 -151.033 -41.699 0.008 48.516 -16.000 0.158 -160.598 17.500 -13.207 0.219 -179.413 22.728 13.689 -166.718 -40.813 0.009 43.851 -16.795 0.145 -166.616 18.000 -14.063 0.198 -176.351 22.548 13.409 176.850 -40.203 0.010 34.195 -17.791 0.129 -173.574 18.500 -14.853 0.181 -172.040 22.336 13.086 160.709 -39.642 0.010 21.429 -19.662 0.104 178.090 19.000 -14.720 0.184 -161.713 22.122 12.767 144.491 -39.641 0.010 20.910 -22.604 0.074 169.680 19.500 -13.710 0.206 -153.813 21.797 12.298 128.151 -39.632 0.010 8.070 -28.897 0.036 148.784 20.000 -12.221 0.245 -148.391 21.451 11.819 111.521 -38.926 0.011 -7.980 -35.137 0.018 31.294 20.500 -10.382 0.303 -147.276 20.983 11.198 95.148 -39.251 0.011 -13.094 -23.741 0.065 -15.174 21.000 -8.701 0.367 -150.640 20.472 10.558 78.624 -38.616 0.012 -25.399 -18.636 0.117 -26.892 21.500 -7.194 0.437 -156.785 19.879 9.862 62.593 -38.726 0.012 -35.505 -15.322 0.171 -36.809 22.000 -5.883 0.508 -163.716 19.198 9.118 47.073 -38.915 0.011 -38.784 -12.780 0.230 -45.747 Mag S22 dB Note: Data obtained from on-wafer measurements dB Phase AMMC-6220: Typical Scattering Parameters[1] (Tc=25°C, VD1=VD2= 5 V, Zin = Zout = 50 Ω) dB S11 mag S12 mag dB S22 mag phase phase phase 4.0 -0.673 0.925 103.544 8.514 2.665 4.5 -1.492 0.842 74.318 21.395 11.742 -130.371 -50.551 0.003 117.926 -43.657 0.007 -109.410 -3.600 0.661 170.277 103.138 -10.722 0.291 137.294 5.0 -0.635 0.929 37.411 22.845 13.875 43.305 -45.849 0.005 43.526 -13.626 0.208 140.892 5.5 -2.032 0.791 -3.432 23.951 15.759 -11.567 -48.892 0.004 -22.501 -17.072 0.140 136.619 6.0 -4.747 0.579 -34.664 24.262 16.335 -56.971 -49.740 0.003 -50.634 -20.223 0.097 138.857 6.5 -7.598 0.417 -55.144 24.334 16.471 -94.487 -51.629 0.003 -90.737 -23.311 0.068 145.708 7.0 7.5 -10.093 0.313 -66.567 -11.669 0.261 -72.043 24.292 16.392 -126.702 -54.247 0.002 -108.004 -26.096 0.050 152.950 24.333 16.468 -155.390 -52.202 0.002 -121.340 -29.853 0.032 167.732 8.0 -12.300 0.243 -74.699 24.406 16.606 178.048 -51.151 0.003 -137.135 -33.106 0.022 -157.216 8.5 -12.080 0.249 -78.056 24.422 16.639 153.532 -52.505 0.002 -155.276 -31.608 0.026 -119.404 9.0 -11.733 0.259 -84.004 24.477 16.744 129.984 -51.516 0.003 -155.878 -28.205 0.039 -97.950 9.5 -11.303 0.272 -91.544 24.511 16.810 107.486 -52.868 0.002 -177.492 -25.326 0.054 -87.835 10.0 -11.062 0.280 -99.362 24.549 16.883 86.003 -51.015 0.003 175.740 -22.836 0.072 -83.845 10.5 -10.806 0.288 -106.223 24.467 16.724 65.381 -50.416 0.003 169.269 -20.540 0.094 -82.739 11.0 -10.685 0.292 -113.824 24.397 16.590 45.507 -50.539 0.003 161.489 -18.620 0.117 -83.562 11.5 -10.652 0.293 -120.486 24.282 16.372 26.125 -49.084 0.004 140.732 -17.073 0.140 -86.634 12.0 -10.584 0.296 -126.927 24.165 16.152 7.602 -49.630 0.003 129.430 -15.819 0.162 -91.173 12.5 -10.383 0.303 -133.049 24.037 15.916 -10.789 -49.737 0.003 117.272 -14.698 0.184 -95.581 13.0 -10.495 0.299 -139.396 23.885 15.641 -28.235 -47.563 0.004 112.685 -13.888 0.202 -100.779 13.5 -10.452 0.300 -144.569 23.757 15.412 -45.463 -47.315 0.004 114.739 -13.275 0.217 -106.161 14.0 -10.610 0.295 -150.864 23.582 15.104 -62.199 -48.035 0.004 101.112 -12.824 0.228 -111.602 14.5 -10.688 0.292 -155.580 23.400 14.792 -79.220 -47.535 0.004 89.549 -12.509 0.237 -116.032 15.0 -10.967 0.283 -161.115 23.239 14.519 -95.555 -46.791 0.005 88.406 -12.349 0.241 -121.314 15.5 -11.235 0.274 -166.831 23.018 14.154 -111.710 -45.741 0.005 82.235 -12.368 0.241 -126.026 16.0 -11.633 0.262 -170.420 22.817 13.831 -128.090 -45.071 0.006 65.758 -12.610 0.234 -130.007 16.5 -12.194 0.246 -173.577 22.522 13.369 -144.087 -46.403 0.005 65.253 -12.974 0.225 -132.934 17.0 -13.128 0.221 -174.413 22.241 12.944 -159.749 -44.636 0.006 52.243 -13.422 0.213 -134.003 17.5 -13.449 0.213 -173.665 21.974 12.552 -175.168 -44.918 0.006 40.428 -13.851 0.203 -134.954 18.0 -13.681 0.207 -169.464 21.613 12.041 169.124 -44.953 0.006 41.677 -14.243 0.194 -134.370 18.5 -13.952 0.201 -166.852 21.241 11.536 154.065 -44.297 0.006 28.636 -14.790 0.182 -132.741 19.0 -13.377 0.214 -162.360 20.881 11.067 139.077 -44.325 0.006 18.417 -15.145 0.175 -128.824 19.5 -12.587 0.235 -158.579 20.458 10.541 124.370 -44.648 0.006 17.829 -15.378 0.170 -124.591 20.0 -11.593 0.263 -155.670 20.070 10.080 109.618 -44.290 0.006 7.552 -15.265 0.172 -118.577 20.5 -10.402 0.302 -156.118 19.610 9.561 95.315 -43.949 0.006 4.072 -14.896 0.180 -112.117 21.0 -9.292 0.343 -158.544 19.157 9.075 81.210 -44.129 0.006 2.016 -14.201 0.195 -108.617 21.5 -8.122 0.393 -161.368 18.767 8.677 66.820 -43.714 0.007 -6.903 -13.518 0.211 -105.366 22.0 -7.019 0.446 -165.866 18.255 8.180 53.298 -43.878 0.006 -4.490 -12.580 0.235 -102.937 Freq GHz dB Note: Data obtained from on-wafer measurements S21 mag phase dB Biasing and Operation The AMMC-6220 is normally biased with a single positive drain supply connected to both VD1 and VD2 bond pads through the 2 bypass capacitors as shown in Figure 20. The recommended supply voltage is 3 V. It is important to have 2 separate 100pF bypass capacitors, and these two capacitors should be placed as close to the die as possible. The AMMC-6220 does not require a negative gate voltage to bias any of the three stages. No ground wires are needed because all ground connections are made with plated through-holes to the backside of the device. Refer the Absolute Maximum Ratings table for allowed DC and thermal conditions Assembly Techniques The backside of the MMIC chip is RF ground. For microstrip applications the chip should be attached directly to the ground plane (e.g. circuit carrier or heatsink) using electrically conductive epoxy[1,2] For best performance, the topside of the MMIC should be brought up to the same height as the circuit surrounding it. This can be accomplished by mounting a gold plate metal shim (same length and width as the MMIC) under the chip which is of correct thickness to make the chip and adjacent circuit the same height. The amount of epoxy used for the chip and/or shim attachment should be just enough to provide a thin fillet around the bottom perimeter of the chip or shim. The ground plan should be free of any residue that may jeopardize electrical or mechanical attachment. The location of the RF bond pads is shown in Figure 12. Note that all the RF input and output ports are in a Ground-Signal-Ground configuration. RF connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. A single bond wire is normally sufficient for signal connections, however double bonding with 0.7 mil gold wire or use of gold mesh is recommended for best performance, especially near the high end of the frequency band. Thermosonic wedge bonding is preferred method for wire attachment to the bond pads. Gold mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams and a ultrasonic power of roughly 55 dB for a duration of 76 ± 8 mS. The guided wedge at an untrasonic power level of 64 dB can be used for 0.7 mil wire. The recommended wire bond stage temperature is 150 ± 2 °C. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. The chip is 100um thick and should be handled with care. This MMIC has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up the die with a vacuum on die center). This MMIC is also static sensitive and ESD precautions should be taken. Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Eutectic attach is not recommended and may jeopardize reliability of the device. Vcc Out In Figure 19. AMMC-6220 Schematic VD1 0 VD2 700 870 800 1045 1700 800 705 330 RFin 330 RFout 0 0 0 1600 90 Figure 20. AMMC-6220 Bonding pad locations To VDD DC supply 100 pF Capacitors VD1 RF INPUT VD2 AMMC-6220 RF OUTPUT Gold Plated Shim (Optional) Figure 21. AMMC-6220 Assembly diagram Ordering Information: AMMC-6220-W10 = 10 devices per tray AMMC-6220-W50 = 50 devices per tray For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0218EN AV02-1287EN - June 23, 2008 1700