AVAGO AMMP-6120

AMMP-6120
8-24 GHz x2 Frequency Multiplier
Data Sheet
Description
Features
Avago Technologies’ AMMP-6120 is an easy-to-use integrated frequency multiplier (x2) in a surface mount
package designed for commercial communication
systems. The MMIC takes a 4 to 12 GHz input signal and
doubles it to 8 to 24 GHz. It has integrated amplification,
matching, harmonic suppression, and bias networks. The
input/output are matched to 50 Ω and fully DC blocked.
The MMIC is fabricated using PHEMT technology.
• 5x5mm Surface Mount Package
The backside of the package is both RF and DC ground.
This helps simplify the assembly process and reduces
assembly related performance variations and costs. The
surface mount package allows elimination of “chip & wire”
assembly for lower cost. This MMIC is a cost effective alternative to hybrid (discrete-FET), passive, and diode
doublers that require complex tuning and assembly processes.
Package Diagram
RF IN
• Frequency Range : 8-24 GHz output
(Useable to 26 GHz)
• Broad input power range: -11 to +5 dBm
• Output Power : +16 to +18 dBm
• Harmonic Suppression : 20 dBc (Fundamental)
• DC requirements : -1.4V and 5V, 112 mA @ Pin=
+3dBm
Applications
• Microwave Radio systems
• Satellite VSAT and DBS systems
• 802.16 & 802.20 WiMax BWA systems
• WLL and MMDS loops
Functional Block Diagram
Vd
Vg
NC
1
2
3
8
Vd
1
4
7
6
5
NC
NC
NC
RF OUT
Vg
2
3
4 RFout
X2
RFin 8
7
6
5
top view
package base: RF and DC GND
Pin
1
2
3
4
5
6
7
8
Function
Vd
Vg
RF Out
RF In
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model (Class A) = 40V
ESD Human Body Model (Class 1A) = 250V
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
Note: MSL Rating = Level 2A
Electrical Specifications
1. Small/Large -signal data measured in a fully de-embedded test fixture form TA = 25°C.
2. Pre-assembly into package performance verified 100% on-wafer.
3. This final package part performance is verified by a functional test correlated to actual performance at one or more
frequencies.
4. Specifications are derived from measurements in a 50 Ω test environment. Aspects of the amplifier performance
may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise
(Гopt) matching.
Table 1. RF Electrical Characteristics
TA=25°C, Vd=50V, Vg=-1.4V, Idq=85mA, Zin=Zout=50 Ω
Parameter
Min
Typ.
Output Power, Pout
13
16
dBm
Input Power at 1dB Gain Compression,
IP-1dB
2
dBm
Input Return Loss, RLin
-15
dB
-10
dB
25
dBc
3rd Harmonic Suppression, Sup3
25
dBc
4th Harmonic Suppression, Sup4
35
dBc
Single Side Band Phase Noise, SSBPN
(@100kHz offset, fout=15.6GHz)
-140
dBc
Output Return Loss, RLout
Fundamental Suppresion, Sup
18
Max
Unit
Table 2. Recommended Operating Range
1. Ambient operational temperature TA = 25°C unless otherwise noted.
2. Channel-to-backside Thermal Resistance (Tchannel (Tc) = 34°C) as measured using infrared microscopy. Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured data.
Description
Min.
Typical
Max.
Unit
Comments
Drain Supply Current, Id
85
110
mA
Vd = 5V, Under any RF power
drive and temperature
Gate Current, Ig
9
uA
Table 3. Thermal Properties
Parameter
Test Conditions
Value
Thermal Resistance, qch-b
Channel-to-backside Thermal Resistance Tchannel(Tc)=34°C
Thermal Resistance at backside temperature Tb=25°C
qch-b = 34 °C/W
Absolute Minimum and Maximum Ratings
Table 4. Minimum and Maximum Ratings
Description
Min.
Drain Supply Voltage, Vd
Gate Supply Voltage, Vg
Unit
7
V
+0.5
V
Drain Current, Idq
120
mA
CW Input Power, Pin
15
dBm
Channel Temperature, Tch
+150
°C
+150
°C
+300
°C
Storage Temperature , Tstg
Maximum Assembly Temperature, Tmax
-3.0
Max.
-65
Notes:
1. Operation in excess of any one of these conditions may result in permanent damage to this device.
2
Comments
60 second maximum
AMMP-6120 Typical Performances
20
15
10
5
0
-5
-10
-15
-20
-25
-30
2H
1H
3H
4H
8
10
12
14
16
Output Power (dBm)
Output Power (dBm)
(TA = 25°C,Zin = Zout = 50 Ω, Vd=5V, Vg=-1.4V)
18
20
22
24
26
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-40°C [2H]
+25°C [2H]
+85°C [2H]
-40°C [1H]
+25°C [1H]
+85°C [1H]
8
10
12
Output Frequency (GHz)
Figure 1. Output Power vs. Output Freq. @ Pin=+3dBm
16
Suppression [1H] (dBc)
Output Power [2H] (dBm)
15
17
15
14
13
Pin=-2dBm
Pin= 0dBm
Pin=+2dBm
Pin=+4dBm
12
11
8
10
12
14
16
18
20
Output Frequency (GHz)
22
24
20
25
30
Pin=-2dBm
Pin= 0dBm
Pin=+2dBm
Pin=+4dBm
35
40
26
Figure 3. Output Power [2H] vs. Output Freq. at variable Pin
8
0
160
-5
150
-10
-15
-20
S11
S22
-25
-30
4
6
8
10
12
14 16 18
Frequncy (GHz)
Figure 5. Input and Output Return Loss
20
10
12
14
16
18
20
Output Frequency [GHz]
22
24
26
9
11
Figure 4. Fundamental Suppression at variable Pin
Total Drain Current [Id] (mA)
I/P & O/P Return Loss (dB)
26
10
18
3
24
Figure 2. Output Power vs. Output Freq. over temp @ Pin=+3dBm
19
10
14 16 18 20 22
Output Frequency (GHz)
22
24
26
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
140
130
120
110
100
90
80
-11
-9
-7
-5
-3 -1
1
3
5
Input Power [1H] (dBm)
Figure 6. Variation of total drain current with input power
7
20
18
16
20
Fout=8GHz
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
25
Suppression [1H] (dBc)
Output Power [2H] (dBm)
14
12
10
8
6
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
4
2
0
-11
-9
-7
-5 -3 -1
1
3
Input Power [1H] (dBm)
5
7
9
18
35
Fout=8GHz
40
45
-11
11
Figure 7. 2H Output Power Vs Input Power @ Fout=8GHz
20
30
-9
25
Suppression [1H] (dBc)
Output Power [2H] (dBm)
12
10
8
6
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
4
2
-5
-3 -1
1
3
Input Power [1H] (dBm)
5
7
9
12
Suppression [1H] (dBc)
Output Power [2H] (dBm)
9
11
9
11
35
Fout=10GHz
40
-9
-7
-5
-3
-1
1
3
Input Power [1H] (dBm)
5
7
10
8
6
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
-9
-7
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
15
Fout=14GHz
-5
-3 -1
1
3
Input Power [1H] (dBm)
5
Figure 11. 2H Output Power Vs Input Power @ Fout=14GHz
4
11
10
18
4
2
0
-11
9
Figure 10. Fundamental Supp. Vs Input Power @ Fout=10GHz
20
14
7
30
45
-11
11
Figure 9. 2H Output Power Vs Input Power @ Fout=10GHz
16
5
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
14
-7
-3
-1
1
3
Input Power [1H] (dBm)
20
Fout=10GHz
-9
-5
Figure 8. Fundamental Supp. Vs Input Power @ Fout=8GHz
16
0
-11
-7
7
9
11
20
25
30
Fout=14GHz
35
-11
-9
-7
-5
-3
-1
1
3
Input Power [1H] (dBm)
5
7
Figure 12. Fundamental Supp. Vs Input Power @ Fout=14GHz
20
10
18
16
12
Suppression [1H] (dBc)
Output Power [2H] (dBm)
14
Fout=16GHz
10
8
6
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
4
2
0
-11
-9
-7
-5
-3
-1
1
3
Input Power [1H] (dBm)
5
7
9
14
Suppression [1H] (dBc)
Output Power [2H] (dBm)
-9
-7
-5
-3
-1
1
3
Input Power [1H] (dBm)
5
7
9
11
9
11
9
11
Fout=20GHz
10
16
12
10
8
Fout=20GHz
6
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
4
2
-9
-7
-5
-3
-1
1
3
Input Power [1H] (dBm)
5
7
9
11
Figure 15. 2H Output Power Vs Input Power @ Fout=20GHz
15
20
25
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
30
35
-11
5
18
16
10
14
15
Suppression [1H] (dBc)
12
10
8
Fout=22GHz
6
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
4
2
-9
-7
-5
-3
-1
1
3
Input Power [1H] (dBm)
5
Figure 17. 2H Output Power Vs Input Power @ Fout=22GHz
-9
-7
-5
-3 -1
1
3
Input Power [1H] (dBm)
5
7
Figure 16. Fundamental Supp. Vs Input Power @ Fout=20GHz
20
0
-11
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
30
5
18
Output Power [2H] (dBm)
25
Figure 14. Fundamental Supp. Vs Input Power @ Fout=16GHz
20
5
20
35
-11
11
Figure 13. 2H Output Power Vs Input Power @ Fout=16GHz
0
-11
Fout=16GH
15
7
9
11
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
20
25
Fout=22GHz
30
35
-11
-9
-7
-5
-3
-1
1
3
Input Power [1H] (dBm)
5
7
Figure 18. Fundamental Supp. Vs Input Power @ Fout=22GHz
5
Fout=26GHz
Fout=26GHz
Vd=4.5V, Vg=-1.2V
10
Suppression [1H] (-dBc)
Output Power [2H] (dBm)
20
18
16
14
12
10
8
6
4
2
0
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
-11
-9
-7
-5
-3
-1
1
3
5
7
9
11
15
20
Vg=-1.2V, Vd=4.5V
Vg=-1.2V, Vd=5.0V
Vg=-1.4V, Vd=4.5V
Vg=-1.4V, Vd=5.0V
25
30
35
-11
-9
-7
-5
Input Power [1H] (dBm)
SSB Phase Noise (dBc/Hz)
Figure 19 . 2H Output Power Vs Input Power @ Fout=26GHz
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
1.E+02
-3
-1
1
3
Input Power [1H] (dBm)
5
7
9
11
Figure 20 . Fundamental Supp. Vs Input Power @ Fout=26GHz
Fout=15.6GHz
F1
M/N
@ fo
Active
Balun
S
Filter
@ 2fo
Amp
F2
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
Offset Frequency [Hz]
Figure 21. SSB Phase Noise of frequency doubler
(Pin=+2dBm, fout=15.6GHz)
Figure 22. Top Level Schematic of Frequency doubler
Biasing and Operation
The frequency doubler MMIC consists of a balun. The
outputs of this balun feed the gates of balanced FETs and
the drains are connected to form the single-ended output.
This results in fundamental frequency & odd harmonics cancellation. The even harmonic drain currents are in
phase and thus add in phase. The input matching network
(M/N) is designed to provide good match at fundamental
frequencies and produces high impedance mismatch to
higher harmonics.
The AMMP-6120 is biased with a single positive drain
supply Vdd and a single negative gate supply using separate bypass capacitors. It is normally biased with the drain
supply connected to Vd and the gate supply connected to
Vg. For most applications it is recommended to use a Vg
=-1.2V to -1.4V and Vd=4.5V to 5.0V.
The RF input and output ports are AC coupled thus no DC
voltage is present at either port. The ground connection is
made via the package base.”
6
The AMMP-6120 performance changes with Drain Voltage
(Vd) and Gate bias (Vg) as shown in the previous graphs.
Improvements in output power or fundamental suppression performance are possible by optimizing the Vg from
-1.2V to -1.4V and/or Vd from 4.5 to 5.0V.
A simplified schematic of the frequency multiplier is
shown in figure 22. The active balun circuit and the output
amplifier of the circuit are self biased. The Vg negative bias
(below pinch off ) is only applied to FETs ‘F1’ and ‘F2’. FETs
‘F1’ and ‘F2’ have no significant contribution to total drain
current therefore Vg cannot be used to set drain current.
It should only be used to optimize the output power
and fundamental & higher harmonics suppression of the
doubler.
Refer to the Absolute Maximum Ratings table for allowed
DC and thermal conditions.
Typical Scattering Parameters
Please refer to <http://www.avagotech.com> for typical scattering parameters data.
Package Dimension, PCB Layout and Tape and Reel information
Please refer to Avago Technologies Application Note 5520, AMxP-xxxx production Assembly Process (Land Pattern A).
AMMP-6120 Part Number Ordering Information
Part Number
Devices Per
Container
Container
AMMP-6120-BLK
10
Antistatic bag
AMMP-6120-TR1
100
7” Reel
AMMP-6120-TR2
500
7” Reel
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes AV01-0119EN
AV02-0441EN - July 8, 2013