A-POWER AP6923GMT-HF

AP6923GMT-HF
Halogen-Free Product
Advanced Power
Electronics Corp.
DUAL N-CHANNEL MOSFET WITH
SCHOTTKY DIODE
D1
▼ Simple Drive Requirement
▼ Easy for Synchronous Buck
CH-1
G1
Converter Application
▼ RoHS Compliant & Halogen-Free
D2/S1
CH-2
G2
Description
S2
Advanced Power MOSFETs from APEC provide
the designer with the best combination of fast
switching, ruggedized device design, low onresistance and cost-effectiveness.
BVDSS
30V
RDS(ON)
11mΩ
ID
BVDSS
RDS(ON)
ID
32A
30V
7mΩ
47A
G2
S2
S2
S2
G2 S2 S2 S2
S1/D2
The control MOSFET (CH-1) and synchronous
MOSFET (CH-2) co-package for synchronous buck
converters.
G1
D1
D1
D1
D1
G1 D1 D1 D1
PMPAK® 5x6
Absolute Maximum Ratings
Symbol
Parameter
Units
Rating
CH-1
CH-2
VDS
Drain-Source Voltage
30
30
V
VGS
Gate-Source Voltage
+20
+12
V
[email protected]=25℃
Continuous Drain Current (Chip Limited)
[email protected]=25℃
[email protected]=70℃
32
47
A
3
12.8
18.5
A
3
10.2
14.8
A
40
60
A
3.13
3.9
W
Continuous Drain Current , VGS @ 10V
Continuous Drain Current , VGS @ 10V
1
IDM
Pulsed Drain Current
[email protected]=25℃
Total Power Dissipation
TSTG
Storage Temperature Range
-55 to 150
℃
TJ
Operating Junction Temperature Range
-55 to 150
℃
Thermal Data
Symbol
Rating
Parameter
CH-1
CH-2
Units
Rthj-c
Maximum Thermal Resistance, Junction-case
6.5
5
℃/W
Rthj-a
3
40
32
℃/W
4
70
60
℃/W
Rthj-a
Maximum Thermal Resistance, Junction-ambient
Maximum Thermal Resistance, Junction-ambient
Data & specifications subject to change without notice
1
201202291
AP6923GMT-HF
CH-1 Electrical [email protected]=25oC(unless otherwise specified)
Symbol
BVDSS
RDS(ON)
Parameter
Test Conditions
Drain-Source Breakdown Voltage
Static Drain-Source On-Resistance
2
Min.
Typ.
Max. Units
VGS=0V, ID=250uA
30
-
-
V
VGS=10V, ID=10A
-
8.7
11
mΩ
VGS=4.5V, ID=6A
-
14.3
18.5
mΩ
VGS(th)
Gate Threshold Voltage
VDS=VGS, ID=250uA
1
1.6
3
V
gfs
Forward Transconductance
VDS=10V, ID=10A
-
20
-
S
IDSS
Drain-Source Leakage Current
VDS=24V, VGS=0V
-
-
10
uA
IGSS
Gate-Source Leakage
VGS=+20V, VDS=0V
-
-
+100
nA
Qg
Total Gate Charge
ID=10A
-
10
16
nC
Qgs
Gate-Source Charge
VDS=15V
-
3
-
nC
Qgd
Gate-Drain ("Miller") Charge
VGS=4.5V
-
4
-
nC
td(on)
Turn-on Delay Time
VDS=15V
-
8
-
ns
tr
Rise Time
ID=1A
-
4.5
-
ns
td(off)
Turn-off Delay Time
RG=3.3Ω
-
21
-
ns
tf
Fall Time
VGS=10V
-
4
-
ns
Ciss
Input Capacitance
VGS=0V
-
1150 1840
pF
VDS=15V
-
135
-
pF
Coss
Crss
Reverse Transfer Capacitance
f=1.0MHz
-
100
-
pF
Rg
Gate Resistance
f=1.0MHz
-
1.2
2.4
Ω
Min.
Typ.
IS=10A, VGS=0V
-
-
1.2
V
Source-Drain Diode
Symbol
Parameter
2
Test Conditions
Max. Units
VSD
Forward On Voltage
trr
Reverse Recovery Time
IS=10A, VGS=0V,
-
21
-
ns
Qrr
Reverse Recovery Charge
dI/dt=100A/µs
-
14
-
nC
2
AP6923GMT-HF
o
CH-2 Electrical [email protected]=25 C(unless otherwise specified)
Symbol
BVDSS
RDS(ON)
Parameter
Test Conditions
Drain-Source Breakdown Voltage
2
Static Drain-Source On-Resistance
Min.
Typ.
Max. Units
VGS=0V, ID=250uA
30
-
-
V
VGS=10V, ID=15A
-
5.6
7
mΩ
VGS=4.5V, ID=10A
-
8.7
11.5
mΩ
V
VGS(th)
Gate Threshold Voltage
VDS=VGS, ID=250uA
1
1.4
3
gfs
Forward Transconductance
VDS=10V, ID=15A
-
28
-
S
IDSS
Drain-Source Leakage Current
VDS=24V, VGS=0V
-
-
500
uA
IGSS
Gate-Source Leakage
VGS=+12V, VDS=0V
-
-
+100
nA
Qg
Total Gate Charge
ID=15A
-
17
27.2
nC
Qgs
Gate-Source Charge
VDS=15V
-
4
-
nC
Qgd
Gate-Drain ("Miller") Charge
VGS=4.5V
-
8
-
nC
td(on)
Turn-on Delay Time
VDS=15V
-
10
-
ns
tr
Rise Time
ID=1A
-
6
-
ns
td(off)
Turn-off Delay Time
RG=3.3Ω
-
32
-
ns
tf
Fall Time
VGS=10V
-
8
-
ns
Ciss
Input Capacitance
VGS=0V
-
2000 3200
pF
Coss
Output Capacitance
VDS=15V
-
250
-
pF
Crss
Reverse Transfer Capacitance
f=1.0MHz
-
180
-
pF
Rg
Gate Resistance
f=1.0MHz
-
1
2
Ω
Min.
Typ.
-
0.48
0.5
V
-
25
-
ns
-
15
-
nC
Source-Drain Diode
Symbol
Parameter
Test Conditions
2
VSD
Diode+Schottky Forward On Voltage IS=1A, VGS=0V
trr
Body Diode+Schottky Reverse Recovery Time IS=10A,
Qrr
Body Diode+Schottky Reverse Recovery Charge
VGS=0V,
dI/dt=100A/µs
Max. Units
Notes:
1.Pulse width limited by Max. junction temperature.
2.Pulse test
3.Surface mounted on 1 in2 copper pad of FR4 board, t <10sec.
4.Surface mounted on 1 in2 copper pad of FR4 board, on steady-state.
THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.
USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.
APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED
HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN.
3
AP6923GMT-HF
Channel-1
60
40
10V
7.0V
6.0V
5.0V
V G = 4.0V
ID , Drain Current (A)
50
40
10V
7.0V
6.0V
5.0V
V G =4.0V
o
T A =150 C
ID , Drain Current (A)
T A =25 o C
30
20
30
20
10
10
0
0
0
1
2
3
4
5
0
1
2
3
4
5
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
2.0
18
I D =10A
V G =10V
I D =6A
T A =25 o C
Normalized RDS(ON)
RDS(ON) (mΩ)
16
14
12
1.6
1.2
0.8
10
0.4
8
2
4
6
8
-50
10
0
50
100
150
T j , Junction Temperature ( o C)
V GS , Gate-to-Source Voltage (V)
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance
v.s. Junction Temperature
2.0
10
I D =250uA
1.6
6
T j =25 o C
T j =150 o C
IS(A)
Normalized VGS(th)
8
4
2
1.2
0.8
0.4
0
0.0
0
0
0
1
1
1
1
V SD , Source-to-Drain Voltage (V)
Fig 5. Forward Characteristic of
Reverse Diode
1
-50
0
50
100
150
o
T j , Junction Temperature ( C)
Fig 6. Gate Threshold Voltage v.s.
Junction Temperature
4
AP6923GMT-HF
Channel-1
10
f=1.0MHz
2000
8
1600
6
1200
C (pF)
VGS , Gate to Source Voltage (V)
I D =10A
V DS =15V
C iss
4
800
2
400
0
0
0
4
8
12
16
1
20
5
9
Q G , Total Gate Charge (nC)
13
17
21
25
C oss
C rss
29
V DS ,Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
1
100
100us
10
ID (A)
1ms
10ms
1
100ms
1s
0.1
DC
T A =25 o C
Single Pulse
Normalized Thermal Response (Rthja)
Duty factor = 0.5
Operation in this
area limited by
RDS(ON)
0.2
0.1
0.1
0.05
0.02
0.01
PDM
Single Pulse
0.01
t
T
Duty factor = t/T
Peak Tj = PDM x R thja + T a
Rthja=70 oC/W
0.001
0.01
0.01
0.1
1
10
0.0001
100
0.001
0.01
0.1
1
10
100
1000
V DS ,Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
60
50
V DS =5V
50
ID , Drain Current (A)
ID , Drain Current (A)
40
40
30
20
T j =150 o C
10
30
20
10
T j =25 o C
T j =-40 o C
0
0
0
2
4
6
V GS , Gate-to-Source Voltage (V)
Fig 11. Transfer Characteristics
8
25
50
75
100
T C , Case Temperature (
125
o
150
C)
Fig 12. Maximum Continuous Drain Current
v.s. Case Temperature
5
AP6923GMT-HF
Channel-2
60
60
10V
7.0V
6.0V
5.0V
V G =4.0V
ID , Drain Current (A)
50
40
50
30
20
10
40
30
20
10
0
0
0
1
2
3
4
5
0
1
2
3
4
5
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
2.0
11
I D =15A
V G =10V
I D =10A
T A =25 o C
Normalized RDS(ON)
10
RDS(ON) (mΩ)
10V
7.0V
6.0V
5.0V
V G =4.0V
o
T A =150 C
ID , Drain Current (A)
T A =25 o C
9
8
1.6
1.2
7
0.8
6
0.4
5
2
4
6
8
-50
10
0
50
100
150
T j , Junction Temperature ( o C)
V GS , Gate-to-Source Voltage (V)
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance
v.s. Junction Temperature
2.0
10
I D =10mA
1.6
Normalized VGS(th)
IS(A)
8
6
T j =25 o C
T j =150 o C
4
2
1.2
0.8
0.4
0
0.0
0
0
0
1
1
1
V SD , Source-to-Drain Voltage (V)
Fig 5. Forward Characteristic of
Reverse Diode
1
-50
0
50
100
150
o
T j , Junction Temperature ( C)
Fig 6. Gate Threshold Voltage v.s.
Junction Temperature
6
AP6923GMT-HF
Channel-2
10
C iss
2000
8
1600
6
C (pF)
VGS , Gate to Source Voltage (V)
f=1.0MHz
2400
I D =15A
V DS =15V
1200
4
800
2
400
C oss
C rss
0
0
0
10
20
30
1
40
5
9
Q G , Total Gate Charge (nC)
13
17
21
25
29
V DS ,Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
1
100
Operation in this
area limited by
RDS(ON)
100us
ID (A)
10
1ms
10ms
100ms
1
1s
0.1
DC
T A =25 o C
Single Pulse
Normalized Thermal Response (Rthja)
Duty factor = 0.5
0.2
0.1
0.1
0.05
0.02
0.01
PDM
0.01
t
Single Pulse
T
Duty factor = t/T
Peak Tj = PDM x R thja + T a
Rthja=60 oC/W
0.001
0.01
0.01
0.1
1
10
0.0001
100
0.001
0.01
V DS ,Drain-to-Source Voltage (V)
0.1
1
10
100
1000
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
60
60
V DS =5V
50
ID , Drain Current (A)
ID , Drain Current (A)
50
40
30
20
T j =150 o C
10
T j =-40 o C
0
1
2
3
30
20
10
T j =25 o C
0
40
4
0
5
V GS , Gate-to-Source Voltage (V)
Fig 11. Transfer Characteristics
6
25
50
75
100
T C , Case Temperature (
125
o
150
C)
Fig 12. Maximum Continuous Drain Current
v.s. Case Temperature
7