PD - 97316 IRG4PC50SDPbF Standard Speed CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features Standard: Optimized for minimum saturation voltage and low operating frequencies (<1kHz) IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations Industry standard TO-247AC package VCES = 600V VCE(on) typ. = 1.28V G @VGE = 15V, IC = 41A E n-channel Benefits Generation -4 IGBT's offer highest efficiencies available IGBT's optimized for specific application conditions HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing C E C G TO-247AC G Gate C Collector E Emitter Absolute Maximum Ratings Parameter Max. Units V VCES Collector-to-Emitter Breakdown Voltage 600 IC @ TC = 25°C Continuous Collector Current 70 IC @ TC = 100°C Continuous Collector Current Pulsed Collector Current d 140 25 ICM c ILM Clamped Inductive Load Current IF @ TC = 100°C 41 140 A IFM Diode Continous Forward Current Diode Maximum Forward Current e 280 VGE Continuous Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 200 W PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range 78 -55 to +150 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.64 RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 0.83 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 1 Units °C/W www.irf.com 04/16/08 IRG4PC50SDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage Min. Typ. 600 — Max. Units — — 0.75 — — 1.28 1.36 — VCE(on) Collector-to-Emitter Saturation Voltage — 1.62 — 1.25 — VGE(th) Gate Threshold Voltage 3.0 — 6.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -9.3 — gfe Forward Transconductance 17 34 — — — 250 — — 2.0 — — 1000 — 1.3 1.7 — 1.2 1.5 — — ±100 ICES Collector-to-Emitter Leakage Current VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current V Conditions Ref.Fig VGE = 0V, IC = 250µA V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 41A, VGE = 15V, TJ = 25°C V 2 IC = 80A, VGE = 15V, TJ = 25°C IC = 41A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 250µA 3 mV/°C VCE = VGE, IC = 250µA (25°C - 150°C) S VCE = 100V, IC = 41A VGE = 0V, VCE = 600V µA VGE = 0V, VCE = 10V, TJ = 25°C VGE = 0V, VCE = 600V, TJ = 150°C V IF = 25A 13 IF = 25A, TJ = 150°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 180 Max. Units 280 Qge Gate-to-Emitter Charge (turn-on) — 24 37 Conditions Ref.Fig IC = 41A nC 8 VGE = 15V VCC = 400V Qgc Gate-to-Collector Charge (turn-on) — 61 92 Eon Turn-On Switching Loss — 0.72 — Eoff Turn-Off Switching Loss — 8.27 — Etotal Total Switching Loss — 8.99 13 Energy losses include tail & diode reverse recovery td(on) Turn-On delay time — 33 — IC = 41A, VCC = 480V, VGE = 15V 18a, 18b RG = 5.0Ω, L = 200µH, TJ = 25°C 18c IC = 41A, VCC = 480V, VGE = 15V 18a, 18b IC = 41A, VCC = 480V, VGE = 15V mJ 18a, 18b RG = 5.0Ω, TJ = 25°C 18c tr Rise time — 30 — td(off) Turn-Off delay time — 650 980 tf Fall time — 400 600 Etotal Total Switching Loss — 15 — td(on) Turn-On delay time — 31 — tr Rise time — 31 — td(off) Turn-Off delay time — 1080 — tf Fall time — 620 — Cies Input Capacitance — 4100 — Coes Output Capacitance — 250 — VCC = 30V Cres Reverse Transfer Capacitance — 48 — trr Diode Reverse Recovery Time — f = 1.0Mhz TJ = 25°C, VR = 200V, IF = 25A, di/dt=200A/µs Irr Peak Reverse Recovery Current Qrr Peak Reverse Recovery Current di(rec)M/dt Peak Rate of Fall of Recovery During tb 50 75 105 160 — 4.5 10 — 8.0 15 — 112 375 — 420 1200 — 250 — — 160 — ns mJ ns RG = 5.0Ω, L = 200µH 18c TJ = 150°C pF ns VGE = 0V 7 TJ = 125°C, VR = 200V, IF = 25A, di/dt=200A/µs A TJ = 25°C, VR = 200V, IF = 25A, di/dt=200A/µs TJ = 125°C, VR = 200V, IF = 25A, di/dt=200A/µs nC 14 18a, 18d 15 18a, 18d TJ = 25°C, VR = 200V, IF = 25A, di/dt=200A/µs TJ = 125°C, VR = 200V, IF = 25A, di/dt=200A/µs 16 18a, 18d A/µs TJ = 25°C, VR = 200V, IF = 25A, di/dt=200A/µs TJ = 125°C, VR = 200V, IF = 25A, di/dt=200A/µs Notes: Repetitive rating: VGE=15V; pulse width limited by maximum junction temperature. (See figure 20) VCC=80%(VCES), VGE=15V, RG = 5.0Ω. (See figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. 2 www.irf.com 17 IRG4PC50SDPbF Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) Fig. 2 - Typical Output Characteristics www.irf.com Fig. 3 - Typical Transfer Characteristics 3 IRG4PC50SDPbF Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PC50SDPbF Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Junction Temperature www.irf.com 5 IRG4PC50SDPbF Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Instantaneous Forward Current - I F (A) 100 TJ = 150°C TJ = 125°C 10 1 0.6 TJ = 25°C 1.0 1.4 1.8 2.2 2.6 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PC50SDPbF 100 140 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 120 I IRRM - (A) t rr - (ns) 100 IF = 50A 80 I F = 25A I F = 50A I F = 25A 10 I F = 10A IF = 10A 60 40 20 100 1 100 1000 di f /dt - (A/µs) 1000 di f /dt - (A/µs) Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 10000 1500 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) Q RR - (nC) 1200 900 IF = 50A 600 IF = 25A 1000 IF = 10A I F = 25A 300 I F = 10A 0 100 di f /dt - (A/µs) IF = 50A 1000 Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 100 100 di f /dt - (A/µs) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4PC50SDPbF 90% Vge +Vge Same type device as D.U.T. Vce Ic 90% Ic 10% Vce Ic 430µF 80% of Vce 5% Ic D.U.T. td(off) tf Eoff = ∫ t1+5µS Vce ic dt t1 Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Qrr = Ic trr id dt tx ∫ +Vg tx 10% Irr 10% Vcc Vcc DUT VOLTAGE AND CURRENT Vce Vpk Irr Vcc 10% Ic 90% Ic Ipk Ic DIODE RECOVERY WAVEFORMS tr td(on) 5% Vce t1 ∫ t2 Eon = Vce ie dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 Erec = Vd id dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PC50SDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 480V 480V 4 X IC @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PC50SDPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/08 10 www.irf.com