IRF IRG4PC50SDPBF

PD - 97316
IRG4PC50SDPbF
Standard Speed CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Standard: Optimized for minimum saturation voltage
and low operating frequencies (<1kHz)
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use
in bridge configurations
• Industry standard TO-247AC package
VCES = 600V
VCE(on) typ. = 1.28V
G
@VGE = 15V, IC = 41A
E
n-channel
Benefits
• Generation -4 IGBT's offer highest efficiencies
available
• IGBT's optimized for specific application conditions
• HEXFRED diodes optimized for performance with
IGBT's . Minimized recovery characteristics require
less/no snubbing
C
E
C
G
TO-247AC
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Parameter
Max.
Units
V
VCES
Collector-to-Emitter Breakdown Voltage
600
IC @ TC = 25°C
Continuous Collector Current
70
IC @ TC = 100°C
Continuous Collector Current
Pulsed Collector Current
d
140
25
ICM
c
ILM
Clamped Inductive Load Current
IF @ TC = 100°C
41
140
A
IFM
Diode Continous Forward Current
Diode Maximum Forward Current
e
280
VGE
Continuous Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
200
W
PD @ TC = 100°C
Maximum Power Dissipation
TJ
Operating Junction and
TSTG
Storage Temperature Range
78
-55 to +150
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.64
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
0.83
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
1
Units
°C/W
www.irf.com
04/16/08
IRG4PC50SDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
Min.
Typ.
600
—
Max. Units
—
—
0.75
—
—
1.28
1.36
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
1.62
—
1.25
—
VGE(th)
Gate Threshold Voltage
3.0
—
6.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-9.3
—
gfe
Forward Transconductance
17
34
—
—
—
250
—
—
2.0
—
—
1000
—
1.3
1.7
—
1.2
1.5
—
—
±100
ICES
Collector-to-Emitter Leakage Current
VFM
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
V
Conditions
Ref.Fig
VGE = 0V, IC = 250µA
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 41A, VGE = 15V, TJ = 25°C
V
2
IC = 80A, VGE = 15V, TJ = 25°C
IC = 41A, VGE = 15V, TJ = 150°C
V
VCE = VGE, IC = 250µA
3
mV/°C VCE = VGE, IC = 250µA (25°C - 150°C)
S VCE = 100V, IC = 41A
VGE = 0V, VCE = 600V
µA
VGE = 0V, VCE = 10V, TJ = 25°C
VGE = 0V, VCE = 600V, TJ = 150°C
V
IF = 25A
13
IF = 25A, TJ = 150°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
180
Max. Units
280
Qge
Gate-to-Emitter Charge (turn-on)
—
24
37
Conditions
Ref.Fig
IC = 41A
nC
8
VGE = 15V
VCC = 400V
Qgc
Gate-to-Collector Charge (turn-on)
—
61
92
Eon
Turn-On Switching Loss
—
0.72
—
Eoff
Turn-Off Switching Loss
—
8.27
—
Etotal
Total Switching Loss
—
8.99
13
Energy losses include tail & diode reverse recovery
td(on)
Turn-On delay time
—
33
—
IC = 41A, VCC = 480V, VGE = 15V
18a, 18b
RG = 5.0Ω, L = 200µH, TJ = 25°C
18c
IC = 41A, VCC = 480V, VGE = 15V
18a, 18b
IC = 41A, VCC = 480V, VGE = 15V
mJ
18a, 18b
RG = 5.0Ω, TJ = 25°C
18c
tr
Rise time
—
30
—
td(off)
Turn-Off delay time
—
650
980
tf
Fall time
—
400
600
Etotal
Total Switching Loss
—
15
—
td(on)
Turn-On delay time
—
31
—
tr
Rise time
—
31
—
td(off)
Turn-Off delay time
—
1080
—
tf
Fall time
—
620
—
Cies
Input Capacitance
—
4100
—
Coes
Output Capacitance
—
250
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
48
—
trr
Diode Reverse Recovery Time
—
f = 1.0Mhz
TJ = 25°C, VR = 200V, IF = 25A, di/dt=200A/µs
Irr
Peak Reverse Recovery Current
Qrr
Peak Reverse Recovery Current
di(rec)M/dt
Peak Rate of Fall of Recovery During tb
50
75
105
160
—
4.5
10
—
8.0
15
—
112
375
—
420
1200
—
250
—
—
160
—
ns
mJ
ns
RG = 5.0Ω, L = 200µH
18c
TJ = 150°C
pF
ns
VGE = 0V
7
TJ = 125°C, VR = 200V, IF = 25A, di/dt=200A/µs
A
TJ = 25°C, VR = 200V, IF = 25A, di/dt=200A/µs
TJ = 125°C, VR = 200V, IF = 25A, di/dt=200A/µs
nC
14
18a, 18d
15
18a, 18d
TJ = 25°C, VR = 200V, IF = 25A, di/dt=200A/µs
TJ = 125°C, VR = 200V, IF = 25A, di/dt=200A/µs
16
18a, 18d
A/µs TJ = 25°C, VR = 200V, IF = 25A, di/dt=200A/µs
TJ = 125°C, VR = 200V, IF = 25A, di/dt=200A/µs
Notes:
Repetitive rating: VGE=15V; pulse width limited by maximum junction temperature. (See figure 20)
‚VCC=80%(VCES), VGE=15V, RG = 5.0Ω. (See figure 19)
ƒPulse width ≤ 80µs; duty factor ≤ 0.1%.
2
www.irf.com
17
IRG4PC50SDPbF
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
Fig. 2 - Typical Output Characteristics
www.irf.com
Fig. 3 - Typical Transfer Characteristics
3
IRG4PC50SDPbF
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PC50SDPbF
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
www.irf.com
5
IRG4PC50SDPbF
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F (A)
100
TJ = 150°C
TJ = 125°C
10
1
0.6
TJ = 25°C
1.0
1.4
1.8
2.2
2.6
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PC50SDPbF
100
140
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
120
I IRRM - (A)
t rr - (ns)
100
IF = 50A
80
I F = 25A
I F = 50A
I F = 25A
10
I F = 10A
IF = 10A
60
40
20
100
1
100
1000
di f /dt - (A/µs)
1000
di f /dt - (A/µs)
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
10000
1500
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
Q RR - (nC)
1200
900
IF = 50A
600
IF = 25A
1000
IF = 10A
I F = 25A
300
I F = 10A
0
100
di f /dt - (A/µs)
IF = 50A
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
100
100
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4PC50SDPbF
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
Ic
90% Ic
10% Vce
Ic
430µF
80%
of Vce
5% Ic
D.U.T.
td(off)
tf
Eoff =
∫
t1+5µS
Vce ic dt
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Qrr =
Ic
trr
id dt
tx
∫
+Vg
tx
10% Irr
10% Vcc
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
90% Ic
Ipk
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
5% Vce
t1
∫
t2
Eon = Vce ie dt
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PC50SDPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's
Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 480V
480V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test
Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PC50SDPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/08
10
www.irf.com