Accurate Mixer Measurements Using Multi-tone X-parameter - Models Mihai Marcu Radoslaw M. Biernacki Agilent Technologies, Inc. © Copyright Agilent Technologies 2010 Page 1 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 What We Will Talk About This presentation focuses on the applicability of X-parameter* technology h l to mixers. i System-level models need to protect the manufacturer IP and to accurately predict the HW nonlinear behavior in the simulation environment. X-parameter models have this unique capability. Their applicability to mixers is demonstrated and the accuracy is shown based on some fundamental measurements, such as compression and LO-starvation. * "X-parameters" is a registered trademark of Agilent Technologies. The X-parameter format and underlying equations are open and documented. For more information visit http://www.agilent.com/find/eesof-x-parameters-info © Copyright Agilent Technologies 2010 Page 2 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer X-Parameter Models Accuracy of X-parameter models for mixer is evaluated for severall practical i l scenarios: i – multi-tone – multi-port – swept RF level – swept LO level – swept RF frequency – mixer sub sub-system system = mixer + Band Pass Filter (BPF) © Copyright Agilent Technologies 2010 Page 3 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer Circuit • standard Gilbert-cell mixer R R1 0 R=40 0 Oh m R R11 R=8 0 0 Oh m BJ T_ NPN BJ T9 M o d el =BJ TM 4 Are a =1 Re gi on = Tri s e = BJ T_ NPN BJ T1 0 M o de l =BJ TM 3 Are a=1 Re gi o n = Tri s e = R R8 R=4 00 Ohm R R12 R=7 0 0 Oh m R R7 R=1 00 Ohm Port L O_ PORT Num =4 C C4 C=1 u F L L2 L =0 .5 n H R= BJ T_NPN BJ T7 M od el =BJ TM 1 Area =1 Re g i on = Tri s e= R R3 R=5 0 Oh m BJ T_ NPN BJ T5 M o d el =BJ TM 1 Are a =1 Re gi on = Tri s e = C C3 C=1.0 uF C C1 C=1 u F L L1 L=0.5 nH R= BJ T_NPN BJ T4 M od e l =BJ TM 2 Area =1 Reg i o n= Tri s e= Is c =1 .1 61 6 00 00 E-12 C4= Nc =2 .00 E+0 0 Cbo = Gbo = Vbo = Rb=6 .12 4 58 79 1 E+01 Rbm =1.91 7 85 71 4E+01 Re=3 .57 1 42 85 7 E+00 Rc =6 .96 2 32 09 6 E+01 Rc v = Rc m = Dop e = Cex = Cc o = Im ax =1.0 A Im el t= Cj e =9.67 68 00 1 7E-1 4 Vj e =8.49 99 99 8 7E-0 1 M j e=3 .99 9 99 99 4E-0 1 Cj c =6.05 00 00 1 1E-1 4 Vj c =7.49 99 99 8 9E-0 1 M j c =4 .99 9 99 99 3E-0 1 Xc j c =2 .5 25 61 9 80 E-01 Cj s =8.68 00 00 1 5E-1 4 Vj s =6.99 99 99 9 0E-0 1 M j s =4 .99 9 99 99 3E-0 1 Fc =7 .9 99 9 99 88 E-01 Xtf=3 .3 54 7 22 24 E+0 0 Tf=8 .9 12 92 80 3 E-1 2 Itf=1 .0 8 50 00 02 E-02 Tri s e = Eg =1 .1 1 Ptf=1.80 E+0 1 Tr=1 .6 0 00 00 05 E-09 Xtb=2.20 E+00 Xti =8 .0 0E+00 Kf=0 .0 0 E+00 Af=1 .0 0 E+00 Ab=1.00 Fb=1.00 Rbn oi = Is s =0 A Ns =1.00 Nk =0.50 Ffe=1 .0 0 RbM o de l =M DS App ro x q b=y es Tno m =2 5. BJ T_ M od e l BJ TM 2 NPN=y es PNP=n o Is =2 .1 48 22 9 3E-1 6 Bf=1 .3 00 35 6 47 E+02 Nf=1 .0 3E+0 0 Va f=2.50 E+0 1 Ik f=1 .0 85 0 00 02 E-02 Is e=7.56 17 3 43 4E-1 3 C2 = Ne =2 .0 0E+00 Br=5 .1 22 95 0 82 E+00 Nr=1 .0 0E+0 0 Ik r=5 .6 00 0 00 01 3 E-0 2 Ke = Kc = © Copyright Agilent Technologies 2010 Page 4 BJ T_ NPN BJ T2 M o de l =BJ TM 3 Are a=1 Re gi o n = Tri s e = Im a x =1 .0 A Im e l t= Cj e =1 .9 35 3 60 03 E-13 Vj e =8 .4 99 9 99 87 E-01 M j e =3.9 9 99 99 9 4E-0 1 Cj c =1 .0 45 0 00 02 E-13 Vj c =7 .4 99 9 99 89 E-01 M j c =4.9 9 99 99 9 3E-0 1 Xc j c =2.92 4 40 18 7E-0 1 Cj s =1 .0 92 0 00 02 E-13 Vj s =6 .9 99 9 99 90 E-01 M j s =4.9 9 99 99 9 3E-0 1 Fc =7 .99 9 99 98 8 E-0 1 Xtf=3 .35 4 72 22 4 E+00 Tf=8.91 29 2 80 3E-1 2 Im a x =1 .0 A Im e l t= Cj e =3 .8 70 72 0 07 E-13 Vj e =8 .4 99 99 9 87 E-01 M j e =3.9 9 99 99 94 E-0 1 Cj c =1 .9 25 00 0 03 E-13 Vj c =7 7 .4 4 99 99 9 89 E E-01 01 M j c =4.9 9 99 99 93 E-0 1 Xc j c =3.17 50 6 48 9E-0 1 Cj s =1 .5 40 00 0 03 E-13 Vj s =6 .9 99 99 9 90 E-01 M j s =4.9 9 99 99 93 E-0 1 Fc =7 .99 9 99 98 8E-0 1 Xtf=3 .35 4 72 22 4E+00 Tf=8.91 29 28 0 3E-1 2 Itf=4 .3 40 00 01 0 E-02 Ptf=1 .8 0E+01 Tr=1 .6 00 00 00 5 E-09 Kf=0 .0 0E+0 0 Af=1 .0 0E+0 0 Ab =1 .0 0 Fb =1 1 .0 00 Rb no i = Is s =0 A Ns =1 .0 0 Nk =0 .5 0 Ffe=1.00 Rb M od el =M DS Ap prox qb =y e s Tn om =25 . Tri s e = Eg =1 .1 1 Xtb =2.2 0 E+00 Xti =8 .0 0E+0 0 C C5 C=1 uF L L3 L=0.5 n H R= Port IF_ po rt Num =3 R R13 R=5 0 0 Oh m BJ T_M o de l BJ TM 3 NPN=y es PNP=n o Is =2 .0 43 1 59 24 E-16 Bf=1 .6 61 7 89 34 E+0 2 Nf=1 .0 3E+00 Vaf=2 .50 E+0 1 Ik f=1.16 25 00 0 3E-0 2 Is e=6 .09 1 23 88 8 E-1 3 C2= Ne=2.00 E+00 Br=5 .1 22 9 50 82 E+0 0 Nr=1 .0 0E+00 Ik r=6.00 00 00 1 3E-0 2 Ke= Kc = Is c =2 .3 18 40 0 01 E-12 C4= Nc =2.00 E+0 0 Cbo = Gbo = Vbo = Rb=1.17 1 66 37 9E+02 Rbm =2.70 22 1 48 4E+0 1 Re=1.66 6 66 66 7E+00 Rc =3.58 0 72 51 2E+01 Rc v = Rc m = Dop e= Cex = Cc o = Im a x =1 .0 A Im e l t= Cj e =1 .5 61 60 0 03 E-13 Vj e =8 .4 99 99 9 87 E-01 M j e =3.9 9 99 99 94 E-0 1 Cj c =1 .2 07 50 0 02 E-13 Vj c =7 .4 99 99 9 89 E-01 M j c =4.9 9 99 99 93 E-0 1 Xc j c =1.95 44 5 13 2E-0 1 Cj s =1 .1 89 00 0 02 E-13 Vj s =6 .9 99 99 9 90 E-01 M j s =4.9 9 99 99 93 E-0 1 Fc =7 .99 9 99 98 8E-0 1 Xtf=3 .16 1 17 21 5E+00 Tf=7.97 47 77 1 2E-1 2 Itf=2 .3 25 00 00 5 E-02 Ptf=1 .8 0E+01 Tr=1 .6 00 00 00 5 E-09 Kf=0 .0 0E+0 0 Af=1 .0 0E+0 0 Ab =1 .0 0 Fb =1 .0 0 Rb no i = Is s =0 A Ns =1 .0 0 Nk =0 .5 0 Ffe=1.00 Rb M od el =M DS Ap prox qb =y e s Tn om =25 . Tri s e = Eg =1 .1 1 Xtb =2.2 0 E+00 Xti =8 .0 0E+0 0 BJ T_ NPN BJ T1 2 M o de l =BJ TM 3 Are a=1 Re gi o n = Tri s e = BJ T_NPN BJ T1 M od e l =BJ TM 3 Area =1 Reg i o n= Tri s e= R R4 R=17 0 Oh m Is c =2 .0 06 40 0 01 E-12 C4= Nc =2 .00 E+0 0 Cbo = Gbo = Vbo = Rb=3 .16 6 46 06 2E+01 Rbm =1.06 30 9 52 4E+01 Re=1 .78 5 71 42 9E+00 Rc =3 .75 7 04 75 6E+01 Rc v = Rc m = Dop e = Cex = Cc o = Is c =3 .6 96 00 0 01 E-12 C4= Nc =2.00 E+0 0 Cbo = Gbo = Vbo = Rb 1 61 7 95 25 3E Rb=1.61 3E+01 01 Rbm =5.66 26 9 84 1E+0 0 Re=8.92 8 57 13 0E-0 1 Rc =2.27 4 41 08 7E+01 Rc v = Rc m = Dop e= Cex = Cc o = BJ T_ NPN BJ T1 1 M o de l =BJ TM 3 Are a=1 Re gi o n = Tri s e = C C2 C=1 u F R R6 R=20 Ohm BJ T_ M od el BJ TM 1 NPN=y e s PNP=no Is =1.07 41 1 14 7E-1 6 Bf=1.30 03 5 64 7E+0 2 Nf=1.03 E+0 0 Va f=2 .5 0E+01 Ik f=5 .4 24 99 97 4 E-0 3 Is e =3 .7 80 8 67 17 E-13 C2 = Ne =2 .0 0E+0 0 Br=5.12 29 5 08 2E+0 0 Nr=1.00 E+0 0 Ik r=2 .8 00 00 00 6 E-0 2 Ke = Kc = BJ T_NPN BJ T8 M od el =BJ TM 1 Area =1 Re g i on = Tri s e= R R2 R=50 Ohm BJ T_ NPN BJ T3 M o de l =BJ TM 2 Are a=1 Re gi o n = Tri s e = BJ T_M o de l BJ TM 4 NPN=y es PNP=n o Is =4 .2 96 4 45 87 E-16 Bf=1 .3 00 3 56 47 E+0 2 Nf=1 .0 3E+00 Vaf=2 .50 E+0 1 Ik f=2.17 f 2 17 00 00 0 5E-0 5E 0 2 Is e=1 .51 2 34 68 5 E-1 2 C2= Ne=2.00 E+00 Br=5 .1 22 9 50 82 E+0 0 Nr=1 .0 0E+00 Ik r=1.11 99 99 9 8E-0 1 Ke= Kc = R R9 R=10 0 Oh m BJ T_NPN BJ T6 M o de l =BJ TM 1 Are a=1 Reg i o n= Tri s e= R R1 R=50 Ohm Port RF_ po rt Num =1 Port Bi as _ po rt Num =2 BJ T_ NPN BJ T1 4 M o d el =BJ TM 5 Are a =1 Re gi on = Tri s e = R R5 R=1 70 Ohm Itf=2 .1 70 00 0 05 E-02 Ptf=1 .8 0E+01 Tr=1 .6 00 00 0 05 E-09 Kf=0 .0 0E+0 0 Af=1 .0 0E+0 0 Kb = Ab =1 .0 0 Fb =1 .0 0 Rb no i = Is s =0 A Ns =1 .0 0 Nk =0 .5 0 Ffe=1.00 Rb M od el =M DS Ap prox qb =y e s R R1 7 R=45 Ohm BJ T_ NPN BJ T1 3 M o de l =BJ TM 3 Are a=1 Reg i o n= Tri s e = R R15 R=1 0 00 Ohm R R14 R=2 0 0 Oh m BJ T_M o de l BJ TM 5 NPN=y es PNP=n o Is =4 .0 86 3 18 47 E-16 Bf=1 .6 61 7 89 34 E+0 2 Nf=1 .0 3E+00 Vaf=2 .50 E+0 1 Ik f=2.32 50 00 0 5E-0 2 Is e=1 .21 8 24 77 6 E-1 2 C2= Ne=2.00 E+00 Br=5 .1 22 9 50 82 E+0 0 Nr=1 .0 0E+00 Ik r=1.19 99 99 9 98 E-01 Ke= Kc = Is c =4.0 8 48 00 02 E-12 C4 = Nc =2 .0 0E+0 0 Cb o= Gb o= Vb o= Rb =5 .9 17 84 2 77 E+01 Rb m =1 .4 10 63 12 3 E+01 Re =8 .3 33 33 3 21 E-01 Rc =2 .2 01 44 3 69 E+01 Rc v = Rc m = Do pe = Ce x = Cc o= Im ax =1 .0 A Im el t= Cj e =3.1 2 32 00 0 5E-1 3 Vj e =8.4 9 99 99 8 7E-0 1 M j e=3.99 99 9 99 4E-0 1 Cj c =2.1 2 75 00 0 4E-1 3 Vj c =7.4 9 99 99 8 9E-0 1 M j c =4.99 99 9 99 3E-0 1 Xc j c =2 .2 18 56 6 36 E-01 Cj s =1.6 5 30 00 0 3E-1 3 Vj s =6.9 9 99 99 9 0E-0 1 M j s =4.99 99 9 99 3E-0 1 Fc =7 .9 99 99 9 88 E-01 Xtf=3 .1 61 17 2 15 E+0 0 Tf=7 .97 4 77 71 2 E-1 2 Itf=4 .6 50 0 00 10 E-02 Ptf=1.80 E+01 Tr=1 .6 00 0 00 05 E-09 Kf=0 .0 0E+00 Af=1 .0 0E+00 Ab=1.00 Fb=1.00 Rbn oi = Is s =0 A Ns =1.00 Nk =0.50 Ffe=1 .00 RbM o de l =M DS App ro x q b=y e s Tno m =2 5. Tri s e= Eg =1.1 1 Xtb=2.20 E+0 0 Xti =8.0 0 E+00 Tn om =25 .0 Tri s e = Eg =1 .1 1 Xtb =2.20 E+00 Xti =8 .0 0E+00 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Performance to Be Measured • spectral content – magnitude and phase • compression curve • LO starvation curve • leakage: LO-to-RF, LO-to-IF, RF-to-IF • frequency response © Copyright Agilent Technologies 2010 Page 5 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 X-Parameter Model Extraction X-parameter model is extracted using multiport multiport, multi multi-tone tone ADS ADSsimulation. DC XP_Bias PORT4 Num=4 DC_mode=Voltage DC_value=5 V Bias_port • RFfreq = 2 GHz • LOfreq = 1.75 GHz RF_port XP_Source PORT1 IF_port LO_port x_2_GilCellMix X1 XP_Load PORT2 XP_Source PORT3 • IFfreq = 250 MHz • RF-power sweep: -30 dBm to 0 dBm • LO-power LO power sweep: -25 25 dB to 0 dBm • power supply – one point: 5 V X-Parameters X_Param XP1 MaxOrder=5 Freq[1]=1.75 GHz Freq[2]=2 GHz Order[1]=5 Order[2]=5 XParamMaxOrder=5 © Copyright Agilent Technologies 2010 Page 6 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Spectral Content • measurement made at single LO and RF power levels • magnitude and phase of output signal at all frequencies monitored at the output port © Copyright Agilent Technologies 2010 Page 7 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Spectral Content Measurement Setup • RFpwr = -50 dBm • LOpwr = -5 dBm HARMONIC BALANCE V_DC SRC1 Vdc=5 V HarmonicBalance HB1 MaxOrder=5 MaxOrder 5 Freq[1]=1.75 GHz Freq[2]=2 GHz Order[1]=5 Order[2]=5 Bias_port V_DC SRC2 Vdc=5 V X4P XNP1 File="a0_Mixer.ds" 4 RF_port P_1Tone PORT1 Num=1 Z=50 Ohm P=polar(dbmtow(-50),0) Freq=2 GHz IF_port LO_port © Copyright Agilent Technologies 2010 Page 8 x_2_GilCellMix X1 P_1Tone PORT2 Num=2 Z=50 Ohm P=polar(dbmtow(-5),0) Freq=1.75 GHz v out_ckt out ckt 1 R R1 R=50 Ohm P_1Tone PORT3 Num=3 Z=50 Ohm P=polar(dbmtow(-50),0) Freq=2 GHz v out_mdl out mdl 2 3 Re f P_1Tone PORT4 Num=4 Z=50 Ohm P=polar(dbmtow(-5),0) Freq=1.75 GHz R R2 R=50 Ohm IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Spectral Content Measurement Results - Magnitude • RFpwr = -50 dBm m4 indep(m4)= 3.000E8 plot_vs(dBm(vout_mdl), freq+(0.05 GHz))=-38.914 • LOpwr = -5 dBm m3 indep(m3)= 2.500E8 plot_vs(dBm(vout_ckt), freq)=-38.914 -20 m3 m4 -40 dBm(vou ut_mdl) dBm(vout_ckt) -60 Small display offset -80 100 -100 -120 -140 -160 160 -180 1.1E10 1.0E10 9.0E9 8.0E9 7.0E9 6.0E9 5.0E9 4.0E9 3.0E9 2.0E9 1.0E9 0.0 Ckt Xpar p freq Hz freq, freq+(0.05 GHz) • intentional display p y offset of 50 MHz – to distinguish g the traces © Copyright Agilent Technologies 2010 Page 9 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Spectral Content Measurement Results - Phase • RFpwr = -50 dBm m2 indep(m2)= 3.000E8 plot vs(phase(vout mdl) freq+(0 plot_vs(phase(vout_mdl), freq+(0.05 05 GHz))=-50 GHz))=-50.105 105 • LOpwr = -5 dBm m1 indep(m1)= 2.500E8 plot_vs(phase(vout_ckt), freq)=-50.105 200 150 phase(vout_mdl) phase(vo out_ckt) 100 Small display offset 50 0 -50 m1 m2 -100 -150 150 -200 1.1E10 1.0E10 9.0E9 8.0E9 7.0E9 6.0E9 5.0E9 4.0E9 3.0E9 2.0E9 1.0E9 0.0 Ckt Xpar p freq Hz freq, freq+(0.05 GHz) • intentional display p y offset of 50 MHz – to distinguish g the traces © Copyright Agilent Technologies 2010 Page 10 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Compression Curve • compression curve measured by maintaining a constant LO power and d sweeping i th the RF power llevell • magnitude and phase of output signal at the IF frequency monitored at the output port © Copyright Agilent Technologies 2010 Page 11 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Compression Curve Measurement Setup • RFpwr = -50 dBm to 0 dBm • LOpwr = -5 dBm V_DC SRC1 Vdc=5 V V_DC SRC2 Vdc=5 V X4P XNP1 File="b0_Mixer_Compression.ds" Bi a s _ p o rt RF_ p o rt P_1Tone PORT1 Num=1 Z=50 Ohm P=polar(dbmtow(RFpwr_dBm),0) Freq=2 GHz LO_ p o rt R R1 R=50 Ohm P_1T one PORT 2 Num=2 Z=50 Ohm P=polar(dbmtow(-5),0) F Freq=1.75 1 75 GH GHz HarmonicBalance HB1 M Od 5 MaxOrder=5 Freq[1]=1.75 GHz Freq[2]=2 GHz Order[1]=5 Order[2]=5 Page 12 1 x_2_GilCellMix X1 HARMONIC BALANCE © Copyright Agilent Technologies 2010 4 vout_ckt o t ckt IF_ p o rt Var Eqn VAR VAR1 RFpwr_dBm=-20 _dBm P_1Tone PORT 3 Num=3 Z=50 Ohm P=polar(dbmtow(RFpwr_dBm),0) Freq=2 GHz 2 3 vout_mdl o t mdl Ref P_1T one PORT 4 Num=4 Z=50 Ohm P=polar(dbmtow(-5),0) F Freq=1.75 1 75 GHz GH R R2 R=50 Ohm PARAMETER SWEEP ParamSweep Sweep1 S SweepVar="RFpwr_dBm" V "RF dB " SimInstanceName[1]="HB1" SimInstanceName[2]= SimInstanceName[3]= SimInstanceName[4]= SimInstanceName[5]= SimInstanceName[6]= Start=-50 Stop=0 Step=1 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Compression Curve 10 10 0 0 dBm(vout_m mdl[::,1])+1 dBm(vout_ _ckt[::,1]) dBm(vout_m mdl[::,1]) dBm(vout_ _ckt[::,1]) Measurement Results • small intentional display offset – to distinguish traces Mag -10 -20 -30 -50 -45 -40 -35 No display offset -30 -25 -20 -15 -10 -5 -20 -30 -50 0 -45 -40 -35 Small display offset RFpwr_dBm -30 -25 -20 -15 -10 -5 0 -15 -10 -5 0 RFpwr_dBm -44 -46 Phase -48 -50 Ckt Xpar -52 phase(v vout_mdl[::,1])+0.2 phas se(vout_ckt[::,1]) -44 phase e(vout_mdl[::,1]) phas se(vout_ckt[::,1]) -10 -40 -40 -46 Phase -48 -50 -52 -54 -54 -50 -45 -40 -35 -30 -25 -20 RFpwr_dBm © Copyright Agilent Technologies 2010 Page 13 Mag -15 -10 -5 0 -50 -45 -40 -35 -30 -25 -20 RFpwr dBm IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 LO Starvation Curve • starvation curve measured by maintaining a constant RF power and d sweeping i th the LO power llevell • magnitude and phase of output signal at the IF frequency monitored at the output port © Copyright Agilent Technologies 2010 Page 14 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 LO Starvation Curve Measurement Setup • RFpwr = -50 dBm • LOpwr = -15 dBm to 0 dBm V_DC SRC1 Vdc=5 V V_DC SRC2 Vdc=5 V X4P XNP1 File="c0_Mixer_Starvation.ds" Bi as _ po rt 4 vin ckt vin_ckt RF_ p o rt P_1Tone PORT1 Num=1 Z=50 Ohm P=polar(dbmtow(-50),0) Freq=2 GHz vout ckt vout_ckt IF_p o rt L O_ p ort x_2_GilCellMix X1 HarmonicBalance HB1 MaxOrder=5 Freq[1]=1.75 GHz Freq[2]=2 GHz Order[1]=5 Order[2]=5 © Copyright Agilent Technologies 2010 Page 15 1 2 3 P_1Tone PORT2 Num=2 Z=50 Ohm P=polar(dbmtow(LOpwr_dBm),0) Freq=1 75 GHz Freq=1.75 HARMONIC BALANCE vin mdl vin_mdl Var Eqn R R1 R=50 Ohm VAR VAR1 LOpwr_dBm=-20 _dBm vout mdl vout_mdl Re f P_1Tone PORT3 Num=3 Z=50 Ohm P=polar(dbmtow(-50),0) Freq=2 GHz P_1Tone PORT4 Num=4 Z=50 Ohm P=polar(dbmtow(LOpwr_dBm),0) Freq=1 75 GHz Freq=1.75 R R2 R=50 Ohm PARAMETER SWEEP ParamSweep Sweep1 SweepVar="LOpwr SweepVar= LOpwr_dBm dBm" SimInstanceName[1]="HB1" SimInstanceName[2]= SimInstanceName[3]= SimInstanceName[4]= SimInstanceName[5]= SimInstanceName[6]= Start=-15 Stop=0 Step=1 p IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 LO Starvation Curve -38 38 -38 38 -39 -39 dBm(vout_m mdl[::,1])+0.1 dBm(vout_ _ckt[::,1]) dBm(vout_ _mdl[::,1]) dBm(vout_ _ckt[::,1]) Measurement Results • small intentional display offset – to distinguish traces Mag -40 -41 -42 -43 -16 -14 -12 No display offset -10 -8 -6 -4 -2 -42 -43 -16 0 -14 -12 -10 Small display offset LOpwr_dBm -8 -6 -4 -2 0 -6 -4 -2 0 LOpwr_dBm -44 48 -48 Phase -50 -52 -54 Ckt Xpar -56 phase((vout_mdl[::,1])+0.2 2 phas se(vout_ckt[::,1]) -46 phase e(vout_mdl[::,1]) phas se(vout_ckt[::,1]) -41 41 -44 44 -44 -46 Phase -48 -50 -52 -54 -56 -58 -58 -16 -14 -12 -10 -8 LOpwr_dBm © Copyright Agilent Technologies 2010 Page 16 Mag -40 -6 -4 -2 0 -16 -14 -12 -10 -8 LO LOpwr_dBm dB IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 LO to RF and LO to IF Leakage • LO to RF and LO to IF leakage measured by maintaining a constant t t RF power and d sweeping i the th LO power level l l • magnitude and phase of output signal at the LO frequency monitored at both the input and output ports © Copyright Agilent Technologies 2010 Page 17 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 LO to RF and LO to IF Leakage Measurement Setup • same as LO starvation curve • RFpwr = -50 dBm • LOpwr = -15 15 dBm to 0 dBm © Copyright Agilent Technologies 2010 Page 18 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 LO to RF Leakage -30 -30 -32 -32 -34 dBm(mix(vin_m mdl,{1,0}))+0.2 dBm(mix(vin_ _ckt,{1,0})) dBm(mix(vin_ _mdl,{1,0})) dBm(mix(vin_ _ckt,{1,0})) Measurement Results • small intentional display offset – to distinguish traces Mag -36 -38 38 -40 -42 -44 -46 -16 -14 -12 -10 No display offset -8 -6 -4 -2 -38 -40 -42 -44 -46 -16 0 -14 -12 -10 Small display offset LOpwr_dBm -8 -6 -4 -2 0 -6 -4 -2 0 LOpwr_dBm 4.0 35 3.5 Phase 3.0 2.5 20 2.0 Ckt Xpar 1.5 1.0 phase(m mix(vin_mdl,{1,0}))+ +0.05 phas se(mix(vin_ckt,{1,0}))) 4.0 phase((mix(vin_mdl,{1,0}))) phase(mix(vin_ckt,{1,0})) Mag -36 -48 48 -48 3.5 Phase 3.0 2.5 2.0 1.5 1.0 -16 -16 -14 -12 -10 -8 LOpwr dBm LOpwr_dBm © Copyright Agilent Technologies 2010 Page 19 -34 -6 -4 -2 0 -14 -12 -10 -8 LOpwr_dBm IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 LO to IF Leakage Measurement Results • small intentional display offset – to distinguish traces -24 dBm(mix(vout_m mdl,{1,0}))+0.2 dBm(mix(voutt_ckt,{1,0})) dBm(mix(vout_ _mdl,{1,0})) dBm(mix(vout_ _ckt,{1,0})) -24 -26 Mag -28 -30 -32 -34 -36 -38 -16 -14 -12 No display offset -10 -8 -6 -4 -2 -30 -32 -34 -36 -38 0 -16 -14 -12 Small display offset LOpwr_dBm 128 -10 -8 -6 -4 -2 0 -6 -4 -2 0 LOpwr_dBm 129 127 Phase 126 125 124 Ckt Xpar 123 122 phase(mix x(vout_mdl,{1,0}))+0 0.1 phase(m mix(vout_ckt,{1,0}))) phase(m mix(vout_mdl,{1,0})) phase(m mix(vout_ckt,{1,0}))) Mag -28 -40 -40 128 Phase 127 126 125 124 123 122 -16 -14 -12 -10 -8 LO LOpwr_dBm dB © Copyright Agilent Technologies 2010 Page 20 -26 -6 -4 -2 0 -16 -14 -12 -10 -8 LOpwr_dBm IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 RF to IF Leakage • RF to IF leakage measured by maintaining a constant LO power and d sweeping i th the RF power llevell • magnitude and phase of output signal at the RF frequency monitored at the output port © Copyright Agilent Technologies 2010 Page 21 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 RF to IF Leakage Measurement Setup • same as compression curve • RFpwr = -50 dBm to 0 dBm • LOpwr = -5 dBm © Copyright Agilent Technologies 2010 Page 22 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 RF to IF Leakage Measurement Results • small intentional display offset – to distinguish traces -10 dBm(mix(vout_ _mdl,{0,1}))+1 dBm(mix(vou ut_ckt,{0,1})) dBm(mix(voutt_mdl,{0,1})) dBm(mix(vout_ckt,{0,1})) -10 -20 Mag -30 -40 -50 -60 -50 -45 -40 -35 No display offset -30 -25 -20 -15 -10 -5 -40 -50 -60 -50 0 -45 -40 -35 Small display offset RFpwr_dBm -30 -25 -20 -15 -10 -5 0 -15 -10 -5 0 RFpwr_dBm 115 110 Phase 105 100 Ckt Xpar 95 90 -50 -45 -40 -35 -30 -25 -20 RFpwr dBm RFpwr_dBm © Copyright Agilent Technologies 2010 -15 -10 -5 0 phase(m mix(vout_mdl,{0,1}))+0.5 phase e(mix(vout_ckt,{0,1}})) 115 phase(mix(vout_mdl,{0,1})) phase((mix(vout_ckt,{0,1}))) Mag -30 -70 70 -70 Page 23 -20 110 Phase 105 100 95 90 -50 -45 -40 -35 -30 -25 -20 RFpwr p _dBm IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Modeling a Mixer Sub-System The X-parameters may be used to model more than just the mixer i it itself. lf The following example is a simple system where the mixer is cascaded with a band-pass filter. The X-parameters are extracted for the entire cascade encompassing both the mixer and the band-pass filter. © Copyright Agilent Technologies 2010 Page 24 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer Sub-System – X-Parameter Extraction Mixer and Band Band-Pass Pass Filter • one set of power levels is verified • similar tests as for the single mixer could be configured DC XP_Bias PORT4 Num=4 DC_mode=Voltage DC_value=5 V Bi Bias_port t RF_port XP_Source PORT1 Num=1 Z0=(50+j*0) Ohm LS_freqHarms[1]=0,1 LS_format[1]=Mag/Phase LS sw pType[1]=Single point LS_sw LS_value[1,Mag]=dbmtow (-50) LS_value[1,Phase]=0 LS_start[1,Mag]= LS_stop[1,Mag]= LS_numPts[1,Mag]= IF_port LO_port x_2_GilCellMix X1 XP_Source PORT3 Num=3 Z0=(50+j*0) Ohm LS_freqHarms[1]=1,0 LS_format[1]=Mag/Phase LS_sw pType[1]=Single point LS_value[1,Mag]=dbmtow (-5) LS_value[1,Phase]=0 LS_start[1,Mag]= LS_stop[1,Mag]= LS_numPts[1,Mag]= BPF_Chebyshev BPF1 Fcenter=250 MHz BWpass=100 MHz Ripple=0.5 dB N=15 XP_Load PORT2 Num=2 Z0=(50+j*0) Ohm Load_mode=Impedance LS_freqHarms[1]=1 LS format[1]=Mag/Phase LS_format[1]=Mag/Phase LS_sw pType[1]=Use sw eep LS_value[1,Mag]= LS_start[1,Mag]= LS_stop[1,Mag]= LS_numPts[1,Mag]= X-Parameters X Parameters X_Param XP1 MaxOrder=5 Freq[1]=1.75 GHz Freq[2]=2 GHz Order[1]=5 Order[2]=5 XParamMaxOrder=5 © Copyright Agilent Technologies 2010 Page 25 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer Sub-System Spectrum Measurement • output port now located after the BPF • measurement made at single LO and RF power levels • magnitude and phase of output signal at all frequencies monitored at the output port © Copyright Agilent Technologies 2010 Page 26 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer Sub-System Spectrum Measurement Setup • RFpwr = -50 V_DC SRC1 Vdc=5 V • LOpwr = -5 dBm Bias_port RF_port P_1Tone PORT1 Num=1 Z=50 Ohm P=polar(dbmtow(-50),0) Freq=2 GHz v out_ckt IF_port x_2_GilCellMix x 2 GilCellMix X1 LO_port P_1Tone PORT2 Num=2 Z=50 Ohm P=polar(dbmtow(-5),0) Freq=1.75 GHz BPF_Cheby shev BPF1 Fcenter=250 MHz BWpass=100 MHz Ripple=0.5 dB N=15 R R1 R=50 Ohm V_DC SRC2 Vdc=5 V HARMONIC BALANCE HarmonicBalance HB1 MaxOrder=5 Freq[1]=1.75 GHz Freq[2]=2 GHz Order[1]=5 Order[2]=5 © Copyright Agilent Technologies 2010 Page 27 X4P XNP1 File="d0_MixerBPF.ds" 4 1 P_1Tone PORT3 Num=3 Z=50 Ohm P=polar(dbmtow(-50),0) Freq=2 GHz v out_mdl 2 3 Re f P_1Tone PORT4 Num=4 Z=50 Ohm P=polar(dbmtow(-5),0) Freq=1.75 GHz R R2 R=50 Ohm IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer Sub-System 0 0 -200 -200 Mag dBm(vo out_mdl) dBm(vo out_ckt) dBm(vou ut_mdl) dBm(vou ut_ckt) Spectrum Measurement Results • small intentional display offset – to distinguish traces -400 -600 Mag -400 -600 -800 -800 -1000 1 1.0E10 1 1.1E10 1.0E10 1.1E10 No display offset 9.0E9 10 9 9.0E9 9 8.0E9 8 8 8.0E9 7 7 7.0E9 6 6 6.0E9 5 freq, GHz 5 5.0E9 4 4 4.0E9 3 3 3.0E9 2 2 2.0E9 1 1 1.0E9 0 0 0.0 -1000 000 Small display offset freq, Hz freq+(0.05 GHz) 200 Phase 100 phase(vout_mdl) phase(vout_ckt) ph hase(vout_mdl) ph hase(vout_ckt) 200 0 -100 freq, GHz © Copyright Agilent Technologies 2010 Page 28 6 7 8 9 10 7.0E9 5 6.0E9 4 5.0E9 3 4.0E9 2 -200 3.0E9 1 -100 100 2.0E9 0 0 1.0E9 -200 Phase 0.0 Ckt Xpar 100 freq, Hz ffreq+(0.05 (0 05 GHz) GH ) IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer Sub-System Frequency Response • output port now located after the BPF (BW = 100 MHz) • measurement made at single LO and RF power levels • RF frequency swept from 1.9 GHz to 2.1 GHz • magnitude and phase of output signal at all frequencies monitored at the output port © Copyright Agilent Technologies 2010 Page 29 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer Sub-System – Frequency Sweep Mixer and Band Band-Pass Pass Filter X-Parameter X Parameter Extraction • cross-frequency non-linear response DC XP_Bias PORT4 Num=4 DC_mode=Voltage DC_value=5 V Bias_port RF_port XP_Source XP Source PORT1 Num=1 Z0=(50+j*0) Ohm LS_freqHarms[1]=0,1 LS_format[1]=Mag/Phase LS_sw pType[1]=Single point LS_value[1,Mag]=dbmtow (-50) LS value[1 Phase]=0 LS_value[1,Phase]=0 LS_start[1,Mag]= LS_stop[1,Mag]= LS_numPts[1,Mag]= X-Parameters X_Param XP1 MaxOrder=5 Freq[1]=1.75 GHz Freq[2]=RFfreq Order[1]=5 Order[2]=5 XP XParamMaxOrder=5 M Od 5 © Copyright Agilent Technologies 2010 Page 30 IF_port LO port LO_port Var Eqn x_2_GilCellMix X1 BPF Ch b h BPF_Chebyshev BPF1 Fcenter=250 MHz BWpass=100 MHz Ripple=2 dB N=9 XP_Load XP Load PORT2 Num=2 Z0=(50+j*0) Ohm Load_mode=Impedance LS_freqHarms[1]=1 LS_format[1]=Mag/Phase LS_sw pType[1]=Use sw eep LS value[1 Mag]= LS_value[1,Mag]= LS_start[1,Mag]= LS_stop[1,Mag]= LS_numPts[1,Mag]= XP_Source PORT3 Num=3 Z0=(50+j*0) Ohm LS_freqHarms[1]=1,0 LS_format[1]=Mag/Phase LS_sw pType[1]=Single point LS_value[1,Mag]=dbmtow (-5) LS_value[1,Phase]=0 LS_start[1,Mag]= LS_stop[1,Mag]= LS_numPts[1,Mag]= VAR SWEEP PLAN VAR1 RFfreq=2 GHz Sw eepPlan Sw pPlan1 Start=1.9 GHz Stop=2.1 GHz Step=0.001 GHz Lin= UseSw eepPlan= Sw eepPlan= Reverse=no IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer Sub-System – Frequency Sweep Measurement Setup • RFfreq = 1.9 GHz to 2.1 GHz V_DC SRC1 Vdc=5 V • RFpwr = -50 dBm • LOpwr = -5 dBm Bias_port RF_port P_1Tone PORT1 Num=1 Z=50 Ohm P=polar(dbmtow(-50),0) Freq=RFf req v out_ckt IF_port x_2_GilCellMix X1 LO_port P_1Tone PORT2 Num=2 Z=50 Ohm P=polar(dbmtow(-5),0) Freq=1 75 GHz Freq=1.75 BPF_Cheby shev BPF1 Fcenter=250 MHz BWpass=100 MHz Ripple=2 dB N=9 R R1 R=50 Ohm HARMONIC BALANCE HarmonicBalance HB1 MaxOrder=5 Freq[1]=1.75 GHz Freq[2]=RFf req Order[1]=5 Order[2]=5 Var Eqn V_DC SRC2 Vdc=5 V X4P XNP1 File="d2_MixerBPF_Fswp.ds" VAR VAR1 RFf req=2 GHz 4 1 PARAMETER SWEEP ParamSweep Sweep1 SweepVar="RFf req" SimInstanceName[1]="HB1" SimInstanceName[2]= SimInstanceName[3]= SimInstanceName[4]= SimInstanceName[5]= SimInstanceName[6]= Start=1.9 GHz Stop=2.1 p GHz Step=0.001 GHz © Copyright Agilent Technologies 2010 Page 31 P_1Tone PORT3 Num=3 Z 50 Oh Z=50 Ohm P=polar(dbmtow(-50),0) Freq=RFf req v out_mdl 2 3 Re f P_1Tone PORT4 Num=4 Z=50 Ohm P=polar(dbmtow(-5),0) Freq=1.75 GHz R R2 R=50 Ohm IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Mixer Sub-System – Frequency Sweep Measurement Results • small intentional display offset – to distinguish traces -30 -20 dBm(vout_ _mdl[::,1]) dBm(vout_ _ckt[::,1]) dBm(vout_m mdl[::,1])+1 dBm(vout_ _ckt[::,1]) Mag -40 -60 -80 -100 -120 Mag -35 -40 40 -45 -140 -50 -160 Phase 100 50 0 -50 -100 100 Ckt Xpar -200 Phase 100 0 -100 100 -200 2.10E9 2.08E9 2.06E9 2.04E9 2.02E9 2.00E9 1.98E9 1.96E9 1.94E9 1.92E9 1.90E9 2.10E9 2.08E9 2.06E9 2.04E9 © Copyright Agilent Technologies 2010 2.02E9 2.00E9 1.98E9 1.96E9 1.94E9 1.92E9 1.90E9 RFfreq pha ase(vout_mdl[::,1])+10 0 phase(vout_ckt[::,1]) phase(vout_mdl[::,1]) phase(vout_ckt[::,1]) p 2.06E9 2.05E9 2.04E9 2.03E9 2.02E9 2.01E9 2.00E9 1.99E9 1.98E9 1.97E9 RFfreq 200 -150 Page 32 1.96E9 Small display offset 200 150 1.95E9 RFfreq 1.94E9 2.10E9 2.08E9 2.06E9 2.04E9 2.02E9 2.00E9 1.98E9 1.96E9 1.94E9 1.92E9 1.90E9 No display offset RFf RFfreq IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010 Conclusions We have demonstrated excellent accuracy of X-parameter models d l iin mixer i applications: li i spectrum, compression, i starvation, leakage, frequency response. It is important to understand the X-parameter model needs to have a proper coverage for the operating conditions under which it is going to be used (power levels levels, frequencies frequencies, loading loading, biasing). X-parameter X t models d l may simulate i l t significantly i ifi tl ffaster t th than th the transistor level circuits. X-parameter models provide the IP-protection of the circuit level designs. © Copyright Agilent Technologies 2010 Page 33 IMS 2010 - MicroApps: Accurate Mixer Measurements Using Multi-Tone X-Parameter Models May 26, 2010