LT Journal of Analog Innovation V24N3 - 2014年10月

2014
10
24
3
IO-Link
1m
DCR
Kevin Wrenner / Juan-G. Aranda
16
µModule®
/
IO-Link®
24
12V/100A
26
Hot Swap™
LTC®2874
PHY
2
4
®
LT 3669
IO-Link
LDO
PHY
IO-Link
29
IO-Link
LTC2874 LT3669
IO-Link
1
IO-Link
2
2009
2013
IEC
61131-9
SDCI
IEC 61131-2
LTC3882 POL
16
www.linear-tech.co.jp
2
4
2
COVER STORY
8
IO-Link
Kevin Wrenner / Juan-G. Aranda
25
20
1
2
DESIGN FEATURES
1m
DCR
PolyPhase
2
16
James A. McKenzie
DESIGN IDEAS
25
1989
LTspice IV
22
Gabino Alonso
µModule®
µModule
24
Jesus Rosales
12V/100A Hot Swap
26
Dan Eddleman
Philip Karantzalis
29
new product briefs
31
back page circuits
32
1997/1998
2005
2
5
3
1000
IC
25
2 | 2014 10
LT Journal of Analog Innovation
& Technik
20
Energy Efficient
Semiconductors – How They Will Change
RAID
1994
IC
Our Lives – From Energy Harvesting to
µModule
EE Times China
20
ACE Award
IoT, Smart Production, Smart Buildings,
Smart Grids and Beyond
–
–
2
6
/
LTC3300-1
40
µModule
www.electronica.de/
Energy Harvesting & Storage Conference
RF/ Wireless/ Microwave
RF/
1,500
IoT
Power Semiconductor/ Voltage Converter
Santa Clara Convention Center
/
11
LTC5551 300MHz 3.5GHz
20
Best of Microwaves & RF Industry Award
Microwaves & RF
Dust Networks®
Data Conversion/ Driver/ Clock
/
19
L28
/
LTC2378-20 20
SAR A/D
Joy Weiss
1Msps
Wireless Sensor Network Considerations
for the Industrial Internet of Things (IoT)
Best of Microwaves & RF
Industry Awards
6
Best
Technical Support
4F 402
10
17
James Noon
Energy Harvesting:Battery Life Extension
& Storage
Web
www.idtechex.
com/energy-harvesting-usa/eh.asp
www.dust-consortium.jp/
2
Electronica 2014
EE Times China
11
ACE Award
9
China
Messe München
A4
EE Times
537
11
5
14
538
12
CTO
5
Bob Dobkin
Steve Pietkiewicz A.
Power Management
LTM®4676
Kawamoto
Product of the Year
Award
Joy
Weiss
13A/
26A
11
12
3:00
http://analog-guru.jp/
Markt
µModule
DC/DC
EE Times China
Power
Management
LTM4676
LTM4676
13A/
26A µModule
DC/DC
Product of the Year
Award
2014 10
LT Journal of Analog Innovation | 3
LTC2874
n
MOSFET
MOSFET
Hot Swap
L+
IC
LTC2874/LT3669 1
MASTER
3
1 IO-Link
PHY
DEVICE
L+
24V
C/Q
DRV
DRV
ILL
L–
IO-Link
PHY
IO-Link
1
20m
3
M5 M8
2
L+
3
IO-Link
L–
WURQ
IO-Link
200mA
230.4kb/s COM3
38.4kb/s
COM2
2
CQ
IO-
Wake-up
Link
230.4kb/s
L–
80µs
0.5A
M12
DC24V
Wake-
up
4
IO-Link
4.8kb/s COM1
24V
IO-Link
5
IO-Link
SIO
11
2a
IO-Link
IO-Link
UART
Wake-up
• IO-Link
• IO-Link
M-SEQUENCE (MESSAGE SEQUENCE)
I/O SIO
IO-Link
MASTER SEQUENCE
STOP BIT (SP)
IO-Link
START BIT (ST)
SIO
0
CQ
M
2b
ILLM
b0
b1
PARITY BIT (EVEN)
b2
b3
b4
b5
b6
b7
P
1
UART
FRAME
UART
FRAME
• • •
DEVICE MESSAGE
UART
FRAME
UART
FRAME
DATA OCTET
PNP
H
a
2
4 | 2014 10
LT Journal of Analog Innovation
a IO-Link
UART
UART
b
11
b
M
• • •
UART
FRAME
2
I/O
DC24V
LTC2874
3a
RC
M
?
3b
LTC2874
LTC2874
n
Hot Swap
MOSFET
MOSFET
L+
LTC2874
MOSFET
Hot Swap
IO-Link
L+
IC
200mA
SPI
L+
MOSFET
MOSFET
IO-Link
Fairchild
IO-Link
FQT7N10
MOSFET
LTC2874
Power over Ethernet
4
IO-Link
POC
SPI
/
4W
CG = 22nF
RG = 10Ω
LOAD = 10µF
LOAD = 100µF
L+1
FLDBK_MODE = 1
10V/DIV
SPI
L+1
L+2
L+2
L+3
L+3
10V/DIV
L+4
L+4
LT3669
VOUT
2V/DIV
FLDBK_MODE = 0
3.L+
a
4ms/DIV
20ms/DIV
a
b
b GATE
L+
5V/DIV
/
400µs/DIV
c
c 4V
LT3669
2014 10
LT Journal of Analog Innovation | 5
IO-Link
Wake-up
LTC2874
LT3669
WURQ
LTC2874
IRQ
LT3669
SPI
WURQ
WAKE
L
20V TO 34V
22V TO 34V
SENSE+
LTC2874
D1: S100
Q1: FQT7N10
2XPTC = 0×0 (DEFAULT)
0.2Ω
SENSE−
D1
Q1
GATE
SENSE+
LTC2874
SENSE−
D1
200mA
GUARANTEED
CABLE
<6Ω
Q1
GATE
L+
DEVICE
D1: S100
Q1: FQT7N10
2XPTC = 0×1 (DISABLED)
0.08Ω
500mA
GUARANTEED
CABLE
<6Ω
L+
>18V
DEVICE
L–
a
4
a IO-Link
D1
b
200mA
b 500mA
50ms
>18V
L–
LTC2874
400mA
MOSFET
SOA
DC
MOSFET
L+
4b
200mA
4
LTC2874
IO-Link
SPI
18V
Wake-up
IO-Link
5
a
LT3669
CQ
LTC2874
CQ1
80µs 500mA
b LT3669
Wake-up
LT3669 DEVICE
RELEASES CQ1
SCK
5V/DIV
WURQ
WURQ
WAKE
2V/DIV
IRQ
5V/DIV
20µs/DIV
LT Journal of Analog Innovation
LTC2874
WURQ
5a
IRQ
CQ1
10V/DIV
WAKE-UP
DETECTED
40µs/DIV
WURQ
SPI
b
16th PULSE
6 | 2014 10
LT3669
WURQ WURQ
a
CQ1
10V/DIV
PHY
LTC2874
IO-Link
24V
LTC2874
EMI
LT3669
CQ
TXD1
10V/DIV
CQ1
20V/DIV
20
AMPLITUDE (dBV)
CQ2
20V/DIV
TXD1
10V/DIV
CQ3
20V/DIV
CQ4
20V/DIV
5µs/DIV
a
b
LTC2874
2
−40
20
0
0.0
CQ
1 3
b
LT3669
7.
LT3669
•
38.4kb/s
EMI
IO-Link
H
30V
L+
CQ1
500mA
24V
•
L
EMI
CQ1
LTC2874
2.95V
TXEN1
200mA CQ
DC100mA
2.95V
L
2.0
L
IO-Link
H
1.6
LT3669
WAKE
VL+
0.8
1.2
FREQUENCY (MHz)
CQ1
5b
TXEN1
0.4
LT3669
75µs
TXEN1
SLOW CQ1/Q2 Edge Rate
(SR = L)
−40
10µs/DIV
2 4 COM3 230.4kb/s
COM2 COM3
−20
−20
CQ1
(SR = H)
10V/DIV
6. a 2
COM2 38.4kb/s
FAST CQ1/Q2 EDGE RATE
(SR = H)
0
CQ1
(SR = L)
10V/DIV
LT3669
MOSFET
CQ
LTC2874
L
TXD1
LT3669
WAKE
IC
LT3669
6
LT3669
7
LTC2874
L+
50V
GND
CQ
50V
WURQ
IC
2014 10
LT Journal of Analog Innovation | 7
1
EMC
LTC2874
ESD
LT3669
8kV
/
4kV
TVS
IEC 61000-4-2
ESD
8kV
4
6kV
3
DC1880A/DC1733A
CPIN = 470pF
IEC 61000-4-4
EFT/
4kV
4kV
4
4
4kV
4kV
4
4
5kHz/15ms
100kHz/0.75ms
2kV
2
2kV
2
1.2/50µs 8/20µs
IEC 61000-4-5
TVS
SM6T36A
L+
SM6T39A
MOSFET
CQ
IC
IO-Link
L+
4nF
CQ
LT3669
L+
IO-Link PHY
LTC2874
LT3669
100mA
LT3669
140
LTC2874
LDO
DC12V
VOUT
SC1
250mA
DC24V
5
SC2
IC
IC
LTC2874 LT3669
15
TVS
LT3669
EMI
L+ CQ1 Q2
1
GND
60V
TVS
8
L+
a 12V
5W
36V
LT3669
SC1
a
SIO
b
RILIM = 42.2kΩ
12V/5W BULB
VL+ = 12V
RILIM = 42.2kΩ
Q2
CQ1/Q2
5V/DIV
CQ1
1V/DIV
SC1
5V/DIV
2.2ms
0V
SC1
5V/DIV
SC2
5V/DIV
50ms/DIV
8 | 2014 10
b 470µF
2.95V
IO-Link
CQ1
LT3669
LT Journal of Analog Innovation
5ms/DIV
SC2
IO-Link
4nF
100mA
DC12V
LTC2874 LT3669
LT3669
DC24V
IO-Link PHY
250mA
24V
CVDD2
1µF
VDD
CVDD1
100µF
SENSE+
LTC2874
VL
2.9V TO 5.5V
4.7k
IRQ
VCC
IRQ
2V/DIV
0.2Ω
4
0.2Ω
0.2Ω
SENSE–1
SENSE–2
SENSE–3
SENSE–4
1µF
0.2Ω
GATE1
RXDn
10Ω
Q1
L+1
µC
SPI
CQ1
GATE2
10Ω
Q2
L+2
CQ
10V/DIV
CQ2
GATE3
10Ω
Q3
L+3
100ms/DIV
CQ3
a
GATE4
TXENn
b
10Ω
Q4
L+4
TXDn
CQ4
GND
9
a 24V 2W
LTC2874
GND
b 8
Q1 TO Q4: FQT7N10
LT3669
2
LT3669
500mA
L
12V 5W
8a
CQ1
Q2
SC1
10
LTC2874
4
SC2
CQ
8b
LTC2874
TXD1
CQ1
TXD2
CQ2
TXD3
CQ3
TXD4
CQ4
GND
DZ1
CQ
10V/DIV
DZ1: SM6T36A
D2: 1N4004
20m
CABLE
D2
2.95V
EQUIVALENT
1.2H
47Ω
−I(CQ)
200mA/DIV
200ms/DIV
2014 10
LT Journal of Analog Innovation | 9
LTC2874
LT3669
CQ
L+
LTC2874
12V
24V
CQ
RXD
SPI
LTC2874
CQ
L+
8
LTC2874
12
SPI
24V
DZ5
1µF
VDD
1W
TXD1
100µF
SENSE+
0.2Ω
TXD2
VL
2.9V TO 5.5V
SENSE–1
4.7k
CQ
SENSE–2
IRQ
VCC
1µF
4
9a
GATE1
RXDn
DS2
10Ω
D1–D4: 1N4004
DS1, DS2: FAIRCHILD S100
DZ1–DZ5: SM6T36A
K1–K4: RELAYS
Q1–Q4: FQT7N10
Q1
A
L+1
SPI
D1
LTC2874
CQ1
9b
µC
GATE2
DC
DS1
LTC2874
L+
8
0.2Ω
10Ω
Q2
A
L+2
10
K1
B
D2
CQ2
K2
B
A
CQ3
D3
LTC2874
LT3669
TXENn
TXD4
GND
A
CQ4
TXD3
D4
GND
CQ
Potter and Brumfield
KRPA-11DG-24
2
CQ3
20V/DIV
HIGH SIDE
DRIVER
CQ4
20V/DIV
CQ1
20V/DIV
CQ2
20V/DIV
LOW SIDE
DRIVER
100ms/DIV
10 | 2014 10
LT Journal of Analog Innovation
K4
B
DZ1–DZ4
11
Tyco
K3
B
LTC2874
13 L+
CQ
LT3669
24V
DZ5
100µF
VDD
L+1
20V/DIV
+
SENSE
0.2Ω
L+2
20V/DIV
SENSE–1
SPI
4
LTC2874
(1 OF 4 PORTS)
GATE1
RXD1
DS1
10Ω
Q1
DS1: FAIRCHILD S100
DZ1, DZ5: SM6T36A
K1: RELAY
Q1–Q4: FQT7N10
RXD1
5V/DIV
L+1
CQ1
RXD2
5V/DIV
A
TXEN1
TXD1
K1
DZ1
100ms/DIV
B
GND
Link
SIO
IO-Link
RELAY SENSE
L+
24V
COM3
/
LTC2874
LT3669
12V
PHY
24V
11
CQ
1.8V 5V
12
24V
3.3V 15V
IO-
LDO
5V
10mA
LTC2874
L+
CQ
13
RXD
14 LT3669
IO-Link PHY
SPI
LTC2874
CQ
L+
8
2014 10
LT Journal of Analog Innovation | 11
LDO
LT3669-2
15 LT3669-2
LDOIN
100mA
1.9W
a
b
33µH
c
SW
D1
DIO
BD
FBOUT
BST
0.22µF
LT3669-2
53.6k
10.2k
COUT
22µF
DA
VL+
L+
DIO
LDOIN
RT
FBLDO
4.7µF
LDO
4.42k
38.3k
LT3669
1µF
LT3669-2
AGND
a
LT3669-2
33µH
SW
LT3669-2
41.2k
24V
VL+
COUT
22µF
L+
DIO
LDOIN
RT
FBLDO
4.7µF
423mW
69%
4V
10.2k
DA
78%
100mA
BD
FBOUT
BST
0.22µF
D1
300mA
LOGIC I/O
GND
LDO
14k
4.42k
38.3k
1µF
1
µC
AGND
LT3669
b
14
LOGIC I/O
GND
3.3V
3.3V
225mW
8
5V
3.3V
µC
LDO
5V
14k
TRANSDUCER
190mW
TRANSDUCER
LT3669
100mA
64%
BD
FBOUT
BST
0.22µF
SW
D1
LT3669-2
31.6k
10.2k
COUT
22µF
DA
LDO
VL+
LT3669
L+
DIO
LDOIN
RT
FBLDO
4.7µF
LT3669-2
LDO
14k
4.42k
38.3k
1µF
3.3V
µC
AGND
c
12 | 2014 10
LT Journal of Analog Innovation
GND
LOGIC I/O
3.3V
TRANSDUCER
33µH
LDO
150mA
LDOIN
16
a
4
LTC2874
b 12
PHY
LDO
2.25V 40V
LDO
15
LDO
15a
15c
15b
LDO
DIO
L+
LDO
DIO
L+
LDO
IO-Link
16a
PHY
a
QFN
TSSOP
LTC2874
12
b
16b
4
FIELDBUS
UART
SPI
U1 U2
LTC2874
SPI
TXEN1–4
L+1–4
TXD1–4
CQ1–4
RXD1–4
CS
GND
IRQ
12
TXEN1–4
TXD1–4
RXD1–4
SS0_0
IRQ0
µC
UART
FIELDBUS
PHY
ARM
SPI0
SS1_0
SS2_0
3
U1
SPI
CS
IRQ
TXEN1–4
TXD1–4
RXD1–4
12
IRQ1
DC2228A
17a
DC2227A
8
IO-Link
4 PORTS
17b
SPI1
SS0_1
SS1_1
3
U2
SPI
CS
IRQ
TXEN1–4
TXD1–4
RXD1–4
12
IRQ2
LTC2874
SPI
TXEN1–4
L+1–4
TXD1–4
CQ1–4
RXD1–4
CS
GND
IRQ
LTC2874
SPI
TXEN1–4
L+1–4
TXD1–4
CQ1–4
RXD1–4
CS
GND
IRQ
4 PORTS
4 PORTS
U1, U2: PORT EXPANDER USING SAM4N (OR SIMILAR)
NOTE: SHARED INTERRUPTS MIGHT LIMIT PERFORMANCE
2014 10
LT Journal of Analog Innovation | 13
IO-Link
PHY QFN
LTC2874
TSSOP
b
a
17.IO-Link
b DC2227A LT3669-2
a DC2228A LTC2874
28V/100mA
IEC 61131-2
8
90W
Power over Ethernet LTPoE++™
IO-Link
LTC2874
IO-Link
LT3669
IO-Link
IEC 61131-2
PLC
IO-Link
18
LTC2874
4
LTC2874
I/O
4
6
LT3669
2
LT3669
LT3669
LDO
100mA
LTC2874
1
5V
3.3V
Q2
2
Q2
LDO
LTC2874
8V 34V LT3669
7.5V 40V
2
24V
n
14 | 2014 10
LT Journal of Analog Innovation
LTC2874 LT3669
LTC2874 4
IO-Link
LT3669
Q2 LDO
53.6k
VOUT, IOUT**
5V, 100mA
2.9V TO 5.5V
VL
10.2k 0.1µF
4.7k
VDD
1µF
100µF
SENSE+
1µF
SENSE–1
SDO
GATE1
RXD1
TXEN1
TXD1
14k
VLDO, ILDO**
3.3V, 100mA
20 METERS
0.2Ω
SCK
CS
GND
RT
BST
4.42k
SYNC
LDO
RST
FBLDO
SC1
AGND
SC2
DIO
10Ω
200mA
L+1
100mA
CQ1
18
4
4
Q1: FQT7N10
SURGE PROTECTION NOT SHOWN
*ADDITIONAL BYPASS CAP AS NEEDED
L+
100mA
1
5
33
1
2
2
3
100mA
4
4.7µF
**IOUT(MAX), IS 100mA AND ILDO(MAX) IS 100mA
(REMAINING AVAILABLE IOUT IS: 100mA – ILDO)
24V 3
1
Tsun-kit Chin / Dac Tran Combine power feed and
data link via cable for remote peripherals EE Times
2011 11 10
2
www.io-link.com IO-Link
Organization PNO
3
IEC 61131-9
4
Paul Schimel MOSFET Design Basics You Need To
Know Part 1 and 2 Electronic Design 2010 4
4
4 21
5
Safely Light Miniature Incandescent Lamps
Using LTC2874 Kevin Wrenner 2014 1
http://www.linear-tech.co.jp/solutions/4534
6
IEC 61131-2 Third edition 2007-07
WAKE
EN/UVLO
Q1
4
470pF
470pF
VOUT
OR
VLDO
SR
LDOIN
VOUT
IRQ
µC
SW
ILIM
*
SDI
CPOR
0.1µF
38.3k
24V
82µH
LT3669
0.1µF
1/4
LTC2874
BD
FBOUT
10µF
RXD1
µC
TXEN1
Q2
TXD1
CQ1
TXEN2
GND
TXD2
fSW = 600kHz
tRST = 12.5ms
1
PROFIBUS User
1.0
2014 10
LT Journal of Analog Innovation | 15
DCR
PolyPhase
1m
James A. McKenzie
PolyPhase®
VIN
7V TO 14V
1Ω
330µF
×2
+
100nF
VDD33
10k
4.99k
10k
10k
4.99k
10k
VDD25
2.2µF
4.99k
VCC
1µF
VDD33 VDD25
VINSNS
SCL
ALERT
GPIO0
RUN
RUN1
SYNC
16.2k
17.4k
100pF
LTC3882
COMP0
VOUT1_CFG
FREQ_CFG
PHAS_CFG
IAVG0
7.32k
10nF
Q2
220pF
1µF
FB1
10nF
137Ω
ISENSE1–
2.2µF
VIN PHASE GH CGND GND BOOT VDRV
ISENSE1+
TG1/PWM1
GND
TG1_PWM1
PGND
BG1/EN1
DrMOS: FAIRCHILD FD6802A
10Ω
VIN
22µF
×2
VSENSE1+
IAVG1
LT Journal of Analog Innovation
FDMF6820A
PLACE Q1,Q2 NEAR L1, L2 RESPECTIVELY
Q1
100pF
VOUT0_CFG
16 | 2014 10
V
137Ω
10nF
COMP1
90W
220pF
10nF
TSNS0
TSNS1
ASEL1
1 DrMOS
7.32k
ASEL0
IAVG_GND
VIN PHASE GH CGND GND BOOT VDRV
PGND
FB0
SHARE_CLK
VDD25
10Ω
VSENSE0+
VSENSE0–
RUN0
WP
22µF
×2
TG0_PWM0
ISENSE0–
GPIO1
2.2µF
VIN
VCC
TG0/PWM0
BG0/EN0
ISENSE0+
SDA
1µF
INPUT SUPPLY +5V TO +12V
4.7µF
FDMF6820A
V
LTC3882
PMBus
PWM
4
LTC3882
DC/DC
0.5V 5.25V
8
LTC3882
PMBus
DC/DC
PWM
LTC3882
0.5V 5.25V
4
LTC3882
8
6
8
III
EEPROM
1
LTC3882
LTC3882
40
6mm
6mm QFN
1
5VBIAS
+5V INPUT SUPPLY
2k
1µF
VCIN SMOD
PWM
TG1_PWM0
DISB
RUN
L1
0.22µH
PULSE
VSWH
CGND
1.21k
GL
100µF
×4
+
VOUT0
1.8V, 30A
470µF
×4
2
1
GND
0.22µF
VOUT
20mV/DIV
45mV
IOUT
10A/DIV
5VBIAS
15A
2k
50µs/DIV
LOAD STEP = 0A TO 15A TO 0A
di/dt = 15A/µs
1µF
0.22µF
VCIN SMOD
PWM
TG1_PWM1
DISB
RUN
VSWH
CGND
GL
1.21k
L2
0.22µH
PULSE
100µF
×4
+
VOUT1
1V, 40A
470µF
×4
GND
2014 10
LT Journal of Analog Innovation | 17
LTC3882
PWM
3.3V
FET
5
PWM
DrMOS
3 AVP
4
IOUT
10A/DIV
VOUT
0.5V/DIV
IL1, IL2
10A/DIV
VOUT
50mV/DIV
200µs/DIV
LTC3882
VIN = 12V
1ms/DIV
3V 38V
25:1
0
1
4
PolyPhase
LTC3882
LTC3882
DC/
AVP
ESR
LTC3882
2
AVP
PWM
3
LTC3882
250kHz
1.25MHz
DC
LTC3882
PWM
18 | 2014 10
LT Journal of Analog Innovation
DCR
LTC3882
16
A/D
PMBus
5 DrMOS
LTC3882
FDMF5820A
6
ISENSE
2
92
13
3500
8593 UNITS
FROM 3 LOTS
3000 T = 38°C
J
CHO MASTER
2500
91
11
90
9
87
7
86
85
84
5
83
VIN = 12V
VOUT = 1V
SYNC = 500kHz
82
81
80
0
10
20
30 40 50 60
LOAD CURRENT (A)
70
80
NUMBER OF ICs
88
POWERLOSS (W)
EFFICIENCY (%)
89
2000
1500
1000
3
500
1
0
–400 –300–200–100 0 100 200 300 400
CH1 ISENSE OFFSET TO IDEAL (µV)
LTC3882
0.2%
DC
mV
2%
DCR
0.5%
600mV 5V
7
PolyPhase
PWM
LTC3882
LTC3882
5
PWM
PWM
3.3V
DCR
Fairchild
FET
FDMF5820A DrMOS
DrMOS
IAVG
LTC3882
100pf
5
200pf
LTC3882
COMP
16
A/D
6
DCR
2014 10
LT Journal of Analog Innovation | 19
PSM
LTC3882
PMBus
/
LTC3882
100
PMBus
7
LTC3882
16
A/D
PCB
IOUT
20A/DIV
PMBus
VOUT
20mV/DIV
LTC3882
EEPROM
IL1, IL2
10A/DIV
LTC3882
PMBus
VOUT = 1V
VIN = 12V
SYNC = 500kHz
L = 320nH
EEPROM
5µs/DIV
LTC3882
PSM
LTC3880
LTC3882
LTC3882
ARA
PSM
ALERT
LTC3882
PMBus
LTC3882
/
PMBus
PMBus
LTC3882
LTC3882
EEPROM
20 | 2014 10
/
LTC3882
100
/
LT Journal of Analog Innovation
PMBus
LTC3882
LTC3882
LTC3882
LTpowerCAD™
LTC3882
PC
PSM
PWM
8
FET
LTspice®
PCB
DrMOS
16
A/D
LTpowerPlay™
PSM
GUI
LTC3882
PC
EEPROM
PMBus
LTC3882
PSM
PMBus
LTpowerPlay
EEPROM
ATE
n
/
PMBus
DC1936A
www.
linear-tech.co.jp
2014 10
LT Journal of Analog Innovation | 21
LTspice IV
Gabino Alonso
Modeling Safe
Operating Area Behavior of N-Channel
Dan Eddleman
MOSFETs
www.linear-tech.co.jp/solutions/5239
www.twitter.com/LTspice
facebook.com/LTspice
!
@LTspice
LTspice
LTspice
www.linear-tech.co.jp/
solutions/LTspice
Modeling Safe Operating Area Behavior of
Dan Eddleman
N-Channel MOSFETs
www.linear-tech.co.jp/solutions/5239
Swap
www.linear-tech.co.jp/democircuits
Hot
MOSFET
SOA
SOA
LTspice
SOAtherm-
LTspice
NMOS
4.5V 60V
3.3V/20A
www.linear-tech.co.jp/LT3840
• LT8620 5V 2MHz
5.5V 65V
5V/2A
www.linear-tech.co.jp/LT8620
MOSFET
SOAtherm
• LT3840
4.5V 15V
1.8V/600mA
3.3V/600mA
www.linear-tech.co.jp/LTC3607
C
SOAtherm/
LTspice
• LTC3622
5V 17V
3.3V/1A
5V/1A
www.linear-tech.co.jp/LTC3622
NMOS
• LTC3875
LTC3874 1m
DCR
4
4.5V 14V
1V/120A
www.linear-tech.co.jp/LTC3875
LTspice IV
LTspice® IV
SPICE
LTspice IV
6 80A
11V 13V
0.95V/80A
www.linear-tech.co.jp/LTM4630
• LTM4630
SPICE
SPICE
SPICE
60V
6V 55V
48V/1A
www.linear-tech.co.jp/LTC3769
• LTC3769
LTspice IV
LTspice
www.linear-tech.co.jp/
LTspice
IV
200
MOSFET
22 | 2014 10
SOAtherm NMOS
• LTC3607
MOSFET
NMOS
LTspice
MOSFET
LT Journal of Analog Innovation
• LTM8058 LDO
2kV
4.3V 29V
5.7V/120mA
5V/120mA
www.linear-tech.co.jp/LTM8058
LED
• LT3796-1
LTC1541
100:1 SEPIC LED
8V 20V
35V
www.linear-tech.co.jp/LT3796
• LT3797
1A
LED
2.7V 40V
3x 50V LED
1A www.linear-tech.co.jp/LT3797
• LTC4120 800mA
www.linear-tech.co.jp/LTC4120
VOUT1
VIN
VIN
4.3V TO 29V
•
RUN
VOUT1
5.7V
VOUT2
LOW
NOISE
LDO
•
2.2µF
ADJ2
BYP
VOUT–
GND
22µF
VOUT2
5V
10µF
162k
BIAS
LDO
2kV
LTM8058
4.7µF
6.19k
LTspice
SS
ADJ1
Edit
Component
LTM8058
2kVAC ISOLATION
F2
LTspice
Tools
Release
Sync
LTspice
• LT6119 POR
• LTC3114-1
40V 1A
DC/DC
www.linear-tech.co.jp/LT6119-1
www.linear-tech.co.jp/LTC3114-1
• LTC3807 24V
www.linear-tech.co.jp/LTC3807
• LTM4634
Hot Swap
• LTC4231
5A/5A/4A
DC/DC µModule
www.linear-tech.co.jp/LTM4634
• LT8310
www.linear-tech.co.jp/LTC4231
100V
www.linear-tech.co.jp/LT8310
1
LTspice
Draw Wire
n
Duplicate
F3
Duplicate
F6
Ctrl + C
Windows
LTspice
2
!
2014 10
LT Journal of Analog Innovation | 23
µModule
Jesus Rosales
µModule®
450
OUTPUT CURRENT (mA)
400
12V
2
µModule
2
350
300
250
200
2.5V
3.3V
5V
7.5V
10V
12V
150
100
50
UL60950
AC 2kV
1
LTM8057
0
LTM®8057
µModule
LTM8058
1
LTM8046
LTM8047
20V
5V
1
300mA
LTM8048
20V
LTM8057
4 6 8 10 12 14 16 18 20 22 23 24 28 30
VIN (V)
10V/300mA
5V
1
2
12V
2
LTM8057
10V/300mA
2
7.5V
15V
15V
7.5V µModule
VIN
5V TO 28V
GND
+
CIN1
10µF
35V
VIN
RUN
C1
10µF
50V
C4
4.7µF
50V
C6
0.1µF
25V
R2
6.98k
1%
C3
10µF
50V
2
LTM8057 µModule
10V 300mA
20V
C8
4.7µF
50V
2
C7
0.1µF
25V
R4
6.98k
1%
24 | 2014 10
LT Journal of Analog Innovation
VOUT
VOUT–
BIAS
3
VOUT
C210V
22µF
16V
U1
LTM8057EY
SS
ADJ
GND
VOUT
VIN
RUN
BIAS
VOUT–
C5
22µF
16V
RTN
U2
LTM8057
SS
ADJ
GND
3
15V
2
160mA
LTM8057 µModule
12V
μModule
μModule
1
2
VIN
5V TO 28V
3
GND
2
5V
+
C1
10µF
50V
1210
CIN1
10µF
35V
C4
4.7µF
50V
–5V
C6
0.1µF
25V
R5
5.9k
1%
LTM8058
LDO
C14
4.7µF
50V
VOUT2
10V
2
LTM8058
4
5
C9
0.1µF
25V
6
LDO
4
R7
5.9k
1%
10V/100mA
C2
22µF
16V
VOUT–
BIAS
U1
LTM8058
VOUT2
SS
ADJ1
GND
ADJ2
C3
10µF
16V
R4
162k
1%
VOUT1
C8
22µF
16V
VOUT–
BIAS
VOUT2
10V
C5
0.01µF
25V
BYP
VIN
RUN
C7
10µF
50V
LDO
VOUT1
VIN
RUN
U1
LTM8058
SS
VOUT2
C15
0.01µF
25V
BYP
ADJ1
GND
ADJ2
C16
10µF
16V
RTN
R10
162k
1%
LTM8058
2
4 VOUT2
10V
LTM8058 µModule
LTM8057 LTM8058
μModule
n
1
INTENSITY (dBm)
μModule
0
0
–20
–20
–40
–40
INTENSITY (dBm)
μModule
–60
–80
–80
–100
–100
–120
–60
0 0.5 1
5 100mA 10V
2
1.5 2 2.5 3 3.5 4
FREQUENCY (MHz)
LDO
4.5
5
–120
0 0.5 1
1.5 2 2.5 3 3.5 4
FREQUENCY (MHz)
4.5
5
6 100mA 10V
LTM8058
2
2014 10
LTM8058
LT Journal of Analog Innovation | 25
12V/100A Hot Swap
Dan Eddleman
Hot
Swap
Hot Swap
Hot Swap
MOSFET
Hot Swap
PG
LTC4218
H
ISET
TIMER
R4
L
MOSFET
100A
PG
L
R4
3k
R6 R7
MOSFET
R4
SOA
M3 M4
C4
3k
ISET
13%
LTC4218 Hot Swap
12V/100A
12V/100A
RSENSE RESISTOR ARRAY
8x 1mΩ PARALLEL SENSE RESISTORS
8x PAIRS OF 1Ω RESISTORS
RSENSE8
1mΩ
Hot Swap
1000µF
M2
100A
12V
RSP8
1Ω
IN
OUT
RSM8
1Ω
RSENSE1
1mΩ
ENABLE/RESET
LTC4218 Hot Swap
1
RSP1
1Ω
MOSFET M1
10Ω
RSM1
1Ω
10Ω
M2
100k
SENSE–
C1
12nF
GATE SOURCE
SENSE+
PG
FB
1µF
VDD
Hot Swap
PG
M1, M2: IPT004N03L
M3, M4, M5: 2N7002
R1
187k
1
TIMER
FLT
MOSFET
26 | 2014 10
LT Journal of Analog Innovation
1 12V/100A
Hot Swap
C4
1nF
IMON
R5
20k
C2
0.1µF
PG
ISET
R4
3k
LTC4218
LTC4218GN
OV
R3
20k
10
20k
UV
R2
3.65k
RESET
L
C6
1000µF
150k
R8
1k
100A
PG
LOAD
M1
M4
GND
INTVCC
R6
20k
C4
1nF
M3
R7
20k
ENABLE/RESET
M5
M1
RSENSE
IN
LTC4218
OUT
SENSE−
15mV
R1
100A
SENSE+
0.15m
LTC4218
Hot Swap
1
IC
C
2
1
2
LTC4218
24µA
C1
LTC4218
MOSFET
SENSE+
MOSFET M1
SENSE
PCB
M2
2
2V/ms
PG
MOSFET
100A
1
C6
Hot Swap
1000µF
100A
1m
1
2V/ms
1000µF • (2V/ms)=2A
8
MOSFET
2
1m
2
I R = (100A) • 1m
= 10W
R4
8 • (15mV/1m ) = 120A
50A
100A
MOSFET
I2R = (50A)2 • 1m
16A
= 2.5W
13%
3 8
LTC4218
MOSFET M1
M2
IN
IN
MOSFET
SOA
M2
MOSFET
RSP4
SENSE
/
RSENSE8
RSENSE4
M1
+
RSM4
SENSE−
M2
MOSFET
RSP3
SOA
RSM3
RSP7
RSP2
RSM2
M1
RSP6
SENSE+
RSM7
RSM6
RSENSE5
RSENSE1
RSP1
RSM8
RSENSE6
RSENSE2
MOSFET
−
RSENSE7
RSENSE3
SOA
RSP8
SENSE
RSM1
RSP5
2014 10
RSM5
LT Journal of Analog Innovation | 27
Hot Swap
MOSFET
12V/100A LTC4218 Hot Swap
2
5
2
LTC4218
MOSFET M1
M2
1
100ms
Hot Swap
LTC4218
4
16A
100
50%
ENABLE/
MOSFET M1
RESET
H
100A
M2
ENABLE/RESET
4V
M5
R10
ON
1
12V
Hot Swap
4
12V
LTC4218
1000µF
2V/ms
ENABLE/RESET
H
1m
MOSFET
MOSFET M1
M2
100A
12V/100A LTC4218 Hot
12V/100A
SENSE+
8
SENSE
+
1
LTC4218
SENSE
1
Swap
n
1m
SENSE
1m
8
1m
3
VIN
5V/DIV
VOUT
5V/DIV
VIN
VOUT
VIN
5V/DIV
VOUT
5V/DIV
PG
5V/DIV
PG
5V/DIV
IIN
50A/DIV
IIN
10A/DIV
20µs/DIV
4
28 | 2014 10
LT Journal of Analog Innovation
VIN
VOUT
20µs/DIV
5
Philip Karantzalis
LT6110
/
LT6110
LT6110
/
IIOUT
1
RFA
/
1
LT6110
2
1
LT6110
1
20m
LT6110
RSENSE
ILOAD
IIOUT
10µA
1mA
VDROP
2
RSENSE
3A
RSENSE
RSENSE
DC
5A
PCB
RSENSE
LT6110
IMON
IIOUT
5A
IMON
RFA
LT3080
ILOAD
25m
140m
RSENSE
825mV
0A ≤ ILOAD ≤ 5A
IIOUT
VLOAD
VDROP
LT6110
1
20
18 AWG
IIOUT
RIN
/
3A
ILOAD
VSENSE
3.3V 5A
• RFA
/
IIOUT
825mV
2
VIN
IN
OUT
REGULATOR
FB
ILOAD
VREG
VFB
I+IN
RFA
+
–
+IN V+
RSENSE
20mΩ
RG
IIOUT
CLOAD
VSENSE
RIN
RFB
RWIRE
IOUT
IMON
LT6110
RS
VLOAD
REMOTE
LOAD
–IN
+ –
V–
2014 10
LT Journal of Analog Innovation | 29
PCB
LT6110
VIN
5V TO 40V
10µF
RWIRE RSENSE
VIN
OUT
EN
BOOST
SS
SW
LT3976
100k
PDS540
VREG
2Ω 100µF
10k
470pF
RT
0.01µF
VISHAY
IHLP4040DZE
6.8µH
0.47µF
FB
SYNC GND
VFB
1.197V
340k
180pF
200k
8
1
+IN
NC
2
7
EN
V+
LT6110
3
6
IMON
RS
4
GND
–IN
1.5k
0.1µF
5
VISHAY
VSL2512R0250F
RWIRE
140mΩ
20 FT, 18AWG
2
LT6110
IIOUT
/
3.3V 5A
RFA
LT6110
LT6110
RIN
IIOUT
IIOUT
RWIRE
100µA
IIOUT
30µA 300µA
1%
2
2
10k
/
LT6110
6µA VFB/200k
RFA
/
RIN
2
IIOUT
• RFA = 825mV
RSENSE
RWIRE
LT6110
25%
VLOAD
6.25%
IIOUT = VSENSE/RIN
IIOUT • RFA = VDROP
RIN = RFA •
PCB
RSENSE
RSENSE • R WIRE
RFA = 10k RSENSE = 25m
RWIRE = 140m
RIN = 1.5k
/
∆ VLOAD
• 140m )
21.2%
VLOAD
25
700mV (5
3.3V
LT6110
50mV
∆
1.5%
1
30 | 2014 10
LT Journal of Analog Innovation
RWIRE RSENSE
LT6110
LT6110 RWIRE
RSENSE
∆ VLOAD
n
VLOAD
3.3V
220µF LOAD 5A
USB µModule
USB 2.0 Full Speed 12Mbps
LTC2668
6mm
6mm
QFN
Low Speed 1.5Mbps
LTM2884
USB
USB
VBUS
USB µModule
2.0mA
5
SoftSpan
LTC2668
2.5W
LTM2884
DAC
50%
DC/DC
USB
16
5V
VBUS
1W
10ppm/
USB
LTM2884
LTM2884
1
15mm
RoHS
16:1
µModule
LTM2884
30kV/µs
0
–40
LTM2884
EMI
5mm
BGA
USB
2500VRMS
15mm
2.5V
70
–40
LTC2668
85
AC
105
DC/DC
LTC2668
USB
/
2.5W
LTM2884
/
/
10mA
16
DAC
1000pF
16
16
10V SoftSpan
16
D/A
1
LTM2884
125
LTC2668
DC2025A
www.linear-
tech.co.jp/demo
DAC
Linduino™
10mA
DC2026A
1000pF
LTM2884
www.linear-tech.co.jp/
LTC2668
USB
LTC2668
www.linear-tech.co.jp/
solutions/linduino
µModule
12
–40
10V
5
USB 2.0
16
SoftSpan™
DAC
2500VRMS
1.8V 5V
SPI
LTC2668
LTC2668-16
A/B
PLC
MRI
n
X
LTM2884
USB
15kV
ESD
2014 10
LT Journal of Analog Innovation | 31
circuits.linear-tech.co.jp
VIN
12V
10µF
16V
VIN
15.3µH
SYNC
255k
SWA
UVLO
•
•
•
•
10µF
16V
OVLO/DC
RDC
10k
LT3999
15.8k
VOUT
12V
0.8A
LT3999 12V
LT®3999
/12V
10W
DC/DC
DC/DC
www.linear-tech.co.jp/solutions/5377
SWB
RT
ILIM/SS
RBIAS
28k
500kHz
0.1µF
49.9k
GND
RSNS
0.2Ω
VIN
2.7V TO 5.8V
LTC2946
ADIN
LTC®2946
SENSE+
100V
0V 100V
12
A/D
ADR1
C2
0.1µF
LTC2946
ACCUMULATE
SCL
SDAI
SDA
3.3V
GPIO1
CLKIN
GP OUTPUT
C4
33pF
X1: ABLS-4.000MHz-B2-T
POWER FOR REVERSE PATH = CODEADIN × CODEVDD TO BE PERFORMED BY µP
CA[7] = 1, SEE TABLE 3
VIN
12.5V TO 38V
CIN
22µF
INTVCC
LTC3807
LTC®3807
100k
VIN
PGOOD
LTC3807
RUN
2.2µF
PGND
ILIM
VOUT
60.4k
4.7nF
15.4k
47pF
10A
N
D1
EXTVCC
PLLIN/MODE
12V
MOSFET
DC/DC
750kHz
www.linear-tech.co.jp/solutions/5396
INTVCC
MTOP
TG
0.1µF
BOOST
L1
4.7µH
SW
FREQ
RSENSE
5mΩ
+
MBOT
BG
ITH
COUT
180µF
VOUT
12V
10A
10µF
SENSE+
0.1µF
TRACK/SS
1nF
SENSE–
SGND
SGND
1M
VFB
71.5k
MTOP, MBOT: RJK0452
L1 WÜRTH 7443320470
COUT: SANYO 16SVP150M
D1: DFLS1100
L LT LTC LTM Linear Technology Linear
LTPowerPlay
Dust Networks LTspice PolyPhase
µModule
SoftSpan
102-0094
TEL. 03(5226)7291 FAX. 03(5226)0268
550-0011 1-6-13
TEL. 06(6533)5880 FAX. 06(6543)2588
460-0002
TEL. 052(955)0056 FAX. 052(955)0058
Hot Swap Linduino LTPoE++ LTPowerCAD
© 2014 Linear Technology Corporation
3-6
8F
10F
3-20-22
KT
VDD
µP
INT
GND
R4
2k
CLKOUT
C3 X1
33pF
I 2C
www.linear-tech.co.jp/solutions/5393
ALERT
GPIO3
GPIO2
1%
R3
2k
SCL
GND
LTC2946
R2
2k
SDAO
ADR0
0.6%
R1
2k
SENSE– INTVCC
VDD
2.7V 100V
3.3V
VOUT
0.5A
7F
www.linear-tech.co.jp