ROHM UMZ8N

EMZ8 / UMZ8N
Transistors
Power management (dual transistors)
EMZ8 / UMZ8N
zFeature
1) Both a 2SA2018 chip and 2SC2412K chip in a EMT
or UMT package.
zDimensions(Unit : mm)
EMZ8
(6) (5) (4)
zEquivalent circuits
(1) (2) (3)
ROHM : EMT6
EIAJ :
(3)
(2)
Each lead has same dimensions
(1)
UMZ8N
Tr2
Tr1
(6) (5) (4)
(4)
(5)
(6)
(1) (2) (3)
ROHM : UMT6
EIAJ : SC-88
Each lead has same dimensions
zAbsolute maximum ratings (Ta=25°C)
Parameter
Symbol
Limits
Tr2
Unit
Collector-base voltage
VCBO
Tr1
−15
Collector-emitter voltage
VCEO
−12
50
Emitter-base voltage
VEBO
−6
7
V
Collector current
IC
ICP
−500
−1
150
−
mA
A
Collector power dissipation
PC
150 (TOTAL)
mW
Junction temperature
Tj
150
°C
Storage temperature
Tstg
−55 to +150
°C
∗ 120mW per element must not be exceeded.
60
V
V
∗
zPackage, marking, and packaging specifications
Part No.
EMZ8
UMZ8N
Package
Marking
EMT6
Z8
UMT6
Z8
Code
Basic ordering unit (pieces)
T2R
8000
TR
3000
Rev.C
1/4
EMZ8 / UMZ8N
Transistors
zElectrical characteristics (Ta=25°C)
Tr1
Parameter
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
Symbol
Min.
Typ.
Max.
Unit
BVCBO
−15
−
−
V
IC = −10µA
Conditions
BVCEO
−12
−
−
V
IC = −1mA
BVEBO
−6
−
−
V
IE = −10µA
ICBO
−
−
−0.1
µA
VCB = −15V
IEBO
−
−
−0.1
µA
VEB = −6V
VCE(sat)
−0.1
IC/IB = −200mA/−10mA
−
−0.25
680
V
hFE
−
270
fT
−
260
−
−
MHz
Cob
−
6.5
−
pF
Symbol
Min.
Typ.
Max.
Unit
BVCBO
60
−
−
V
BVCEO
50
−
−
V
IC = 1mA
BVEBO
7
−
V
IE = 50µA
ICBO
−
−
−
0.1
µA
VCB = 60V
IEBO
−
−
0.1
VEB = 7V
VCE(sat)
−
0.4
hFE
−
120
µA
V
−
560
−
fT
−
180
−
2
−
3.5
MHz
Cob
VCE = −2V , IC = −10mA
VCE = −2V , IE = 10mA , f = 100MHz
VCB = −10V , IE = 0A , f = 1MHz
Tr2
Parameter
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
pF
Conditions
IC = 50µA
IC/IB = 50mA/5mA
VCE = 6V , IC = 1mA
VCE = 12V , IE = −2mA , f = 100MHz
VCB = 12V , IE = 0A , f = 1MHz
zElectrical characteristic curves
<Tr1>
Ta=125°C
Ta=25°C
Ta= −40°C
100
50
20
10
5
160
40
1.5
Fig.1 Grounded Emitter Propagation
Characteristics
IB =0µA
1000
COLLECTOR SATURATION
VOLTAGE : VCE (sat) (mV)
100
Ta=125°C
Ta=25°C
Ta= −40°C
50
20
10
5
Ta=25°C
200
100
50
5
2
1
5
10 20
50 100 200
500 1000
COLLECTOR CURRENT : IC (mA)
Fig.4 Collector-Emitter Saturation
Voltage vs.
Collector Current (Ι)
IC / IB=20
IC / IB=10
10
1
2
IC / IB=50
20
2
1
50
20
10
5
Ta=25°C
pulsed
500
200
Ta=125°C
Ta=25°C
Ta= −40°C
100
2
1
1
1
2
5
10 20
50 100 200
500 1000
COLLECTOR CURRENT : IC (mA)
Fig.5 Collector-Emitter Saturation
Voltage vs.
Collector Current (ΙΙ)
2
5
10 20
50 100 200
500 1000
COLLECTOR CURRENT : IC (mA)
Fig.3 DC Current Gain vs.
Collector Current
Fig.2 Typical Output Characteristics
500
COLLECTOR SATURATION
VOLTAGE : VCE (sat) (V)
IB =100µA
200
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
BASE TO EMITTER VOLTAGE : VBE (V)
IC / IB=20
IB =200µA
60
0
1000
IB =300µA
80
1
1.0
IB =400µA
100
20
0.5
I B =500µA
120
VCE=2V
500
140
2
0
IB =600µA
BASER SATURATION VOLTAGE : VBE (sat) (mV)
200
1000
I B =700µA
180
DC CURRENT GAIN : hFE
200
VCE=2V
500
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : IC (mA)
1000
10000
IC / IB=20
5000
Ta= −40°C
Ta=25°C
Ta=125°C
2000
1000
500
200
100
50
20
10
1
2
5
10 20
50 100 200
500 1000
COLLECTOR CURRENT : IC (mA)
Fig.6 Base-Emitter Saturation
Voltage vs.Collecter Current
Rev.C
2/4
EMZ8 / UMZ8N
TRANSITION FREQUENCY : fT (MHz)
1000
VCE=2V
Ta=25°C
500
200
100
50
20
10
5
2
1
1
2
5
10 20
50 100 200
500 1000
EMITTER INPUT CAPACITANCE : Cib (pF)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
Transistors
1000
200
100
50
Cib
20
10
Cob
5
2
1
0.1 0.2
0.5
1
2
5
10 20
50 100
EMITTER TO BASE VOLTAGE : VEB (V)
EMITTER CURRENT : IC (mA)
Fig.7 Gain Bandwidth Product vs.
Emitter Current
IE=0A
f=1MHz
Ta=25°C
500
Fig.8 Collector Output Capacitance vs.
Collector-Base Voltage
Emitter Input Capacitance vs.
Emitter-Base Voltage
<Tr2>
COLLECTOR CURRENT : IC (mA)
10
2
1
25°C
−55°C
5
0.5
0.2
0.1
0
0.10mA
20
0.05mA
0.8
1.2
VCE=5V
3V
1V
100
50
20
2
5
10 20
50 100 200
2.0
VCE=5V
25°C
200
−55°C
100
50
20
10
0.2
27µA
8
0.5 1
2
5
10 20
50 100 200
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : IC (mA)
Fig.4 DC current gain vs.
collector current ( Ι )
Fig.5 DC current gain vs.
collector current ( ΙΙ )
24µA
21µA
6
18µA
15µA
12µA
4
9µA
6µA
2
3µA
4
IB=0A
12
8
16
20
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.3
Grounded emitter output
characteristics ( Ι )
Ta=100°C
200
1.6
30µA
Ta=25°C
0
0
IB=0A
0.4
500
DC CURRENT GAIN : hFE
DC CURRENT GAIN : hFE
0.15mA
40
Fig.2
Ta=25°C
0.5 1
0.20mA
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Grounded emitter propagation
characteristics
10
0.2
60
0
BASE TO EMITTER VOLTAGE : VBE (V)
500
0.25mA
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Fig.1
80
10
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
20
0.50mA
mA
0.45 A
0.40m
0.35mA
0.30mA
Ta=25°C
COLLECTOR CURRENT : IC (mA)
100
VCE=6V
Ta=100°C
COLLECTOR CURRENT : IC (mA)
50
Grounded emitter output
characteristics ( ΙΙ )
0.5
Ta=25°C
0.2
IC/IB=50
20
10
0.1
0.05
0.02
0.01
0.2
0.5 1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig. 6 Collector-emitter saturation
voltage vs. collector current
Rev.C
3/4
EMZ8 / UMZ8N
IC/IB=10
0.2
Ta=100°C
25°C
−55°C
0.1
0.05
0.02
0.01
0.2
0.5 1
2
5
10
20
50 100 200
0.5
0.2
0.05
0.02
0.01
0.2
Co
b
1
0.5
1
2
5
10
20
50
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.10
Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
BASE COLLECTOR TIME CONSTANT : Cc·rbb' (ps)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE : Cib (pF)
Ta=25°C
f=1MHz
IE=0A
IC=0A
5
0.2
2
5
10
20
50 100
Ta=25°C
VCE=6V
500
200
100
50
−0.5 −1
−2
−5
−10 −20
−50 −100
EMITTER CURRENT : IE (mA)
Fig.8 Collector-emitter saturation
voltage vs. collector current (ΙΙ)
20
2
0.5 1
COLLECTOR CURRENT : IC (mA)
Fig.7 Collector-emitter saturation
voltage vs. collector current ( Ι )
Cib
Ta=100°C
25°C
−55°C
0.1
COLLECTOR CURRENT : IC (mA)
10
IC/IB=50
TRANSITION FREQUENCY : fT (MHz)
0.5
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
Transistors
Fig.9 Gain bandwidth product vs.
emitter current
Ta=25°C
f=32MHZ
VCB=6V
200
100
50
20
10
−0.2
−0.5
−1
−2
−5
−10
EMITTER CURRENT : IE (mA)
Fig.11 Base-collector time constant
vs. emitter current
Rev.C
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level
of reliability and the malfunction of which would directly endanger human life (such as medical
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers
and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM
cannot be held responsible for any damages arising from the use of the products under conditions out of the
range of the specifications or due to non-compliance with the NOTES specified in this catalog.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.
ROHM Customer Support System
www.rohm.com
Copyright © 2008 ROHM CO.,LTD.
THE AMERICAS / EUROPE / ASIA / JAPAN
Contact us : webmaster@ rohm.co. jp
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
TEL : +81-75-311-2121
FAX : +81-75-315-0172
Appendix1-Rev2.0