C3M0065090J VDS 900 V ID @ 25˚C Silicon Carbide Power MOSFET TM C3M MOSFET Technology RDS(on) 35 A 65 mΩ N-Channel Enhancement Mode Features • • • • • • Package New C3M SiC MOSFET technology High blocking voltage with low On-resistance High speed switching with low capacitances New low impedance package with driver source Fast intrinsic diode with low reverse recovery (Qrr) Halogen free, RoHS compliant TAB Drain Benefits • • • • Drain (TAB) Higher system efficiency Reduced cooling requirements Increased power density Increased system switching frequency 1 2 3 4 5 G DS S S S 7 S Gate (Pin 1) Applications • • • • 6 S Driver Source (Pin 2) Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Power Source (Pin 3,4,5,6,7) Part Number Package C3M0065090J 7L D2PAK Maximum Ratings (TC = 25 ˚C unless otherwise specified) Symbol Value Unit Test Conditions VDSmax Drain - Source Voltage 900 V VGS = 0 V, ID = 100 μA VGSmax Gate - Source Voltage -8/+18 V Absolute maximum values VGSop Gate - Source Voltage -4/+15 V Recommended operational values ID Continuous Drain Current ID(pulse) 35 22 A VGS = 15 V, TC = 25˚C 90 A EAS Avalanche energy, Single pulse 110 mJ ID = 22A, VDD = 50V PD Power Dissipation 113 W TC=25˚C, TJ = 150 ˚C -55 to +150 ˚C 260 ˚C TL Operating Junction and Storage Temperature Solder Temperature C3M0065090J Rev. A Note Fig. 19 VGS = 15 V, TC = 100˚C Pulsed Drain Current TJ , Tstg 1 Parameter Pulse width tP limited by Tjmax 1.6mm (0.063”) from case for 10s Fig. 22 Fig. 20 Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol Parameter V(BR)DSS Drain-Source Breakdown Voltage VGS(th) Gate Threshold Voltage Min. Typ. Max. 900 1.8 Unit Test Conditions V VGS = 0 V, ID = 100 μA 2.1 V VDS = 10V, ID = 5 mA 1.6 V VDS = 10V, ID = 5 mA, TJ = 150ºC IDSS Zero Gate Voltage Drain Current 1 100 μA VDS = 900 V, VGS = 0 V IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V 65 78 RDS(on) Drain-Source On-State Resistance 90 13.6 gfs Transconductance Ciss Input Capacitance 660 Coss Output Capacitance 60 Crss Reverse Transfer Capacitance 4.0 Eoss Coss Stored Energy 16 EON Turn-On Switching Energy 47 EOFF Turn Off Switching Energy 17 td(on) Turn-On Delay Time 7.2 Rise Time 6.5 Turn-Off Delay Time 15 Fall Time 5 tr td(off) tf RG(int) Note 4.7 Qgs Gate to Source Charge 6.7 Qgd Gate to Drain Charge 12 Qg Total Gate Charge 30 Fig. 4, 5, 6 VGS = 15 V, ID = 20A, TJ = 150ºC VDS= 15 V, IDS= 20 A S 11.6 Internal Gate Resistance VGS = 15 V, ID = 20 A mΩ VDS= 15 V, IDS= 20 A, TJ = 150ºC f = 1 MHz VAC = 25 mV μJ Fig. 7 Fig. 17, 18 VGS = 0 V, VDS = 600 V pF Fig. 11 Fig. 16 μJ VDS = 400 V, VGS = -3 V/15 V, ID = 20A, RG(ext) = 2.5Ω, L= 77 μH, TJ = 150ºC Fig. 26 ns VDD = 400 V, VGS = -3 V/15 V ID = 20 A, RG(ext) = 2.5 Ω, Timing relative to VDS Per IEC60747-8-4 pg 83 Resistive load Fig. 27 Ω f = 1 MHz, VAC = 25 mV nC VDS = 400 V, VGS = -3 V/15 V ID = 20 A Per IEC60747-8-4 pg 21 Fig. 12 Reverse Diode Characteristics (TC = 25˚C unless otherwise specified) Symbol VSD IS IS, pulse Parameter Typ. Diode Forward Voltage Max. Unit Test Conditions 4.4 V VGS = -3 V, ISD = 10 A 4.1 V VGS = -3 V, ISD = 10 A, TJ = 150 °C Note Fig. 8, 9, 10 Continuous Diode Forward Current 22 A VGS = -3 V Note 1 Diode pulse Current 90 A VGS = -3 V, pulse width tP limited by Tjmax Note 1 VGS = -3 V, ISD = 20 A, VR = 400 V dif/dt = 2800 A/µs Note 1 trr Reverse Recovery time 16 ns Qrr Reverse Recovery Charge 131 nC Irrm Peak Reverse Recovery Current 15 A Note (1): When using SiC Body Diode the maximum recommended VGS = -4V Thermal Characteristics Symbol 2 Parameter Max. RθJC Thermal Resistance from Junction to Case 1.1 RθJA Thermal Resistance From Junction to Ambient 40 C3M0065090J Rev. A Unit °C/W Test Conditions Note Fig. 21 Typical Performance 70 Drain-Source Current, IDS (A) 80 Conditions: TJ = -55 °C tp < 200 µs Conditions: TJ = 25 °C tp < 200 µs VGS = 15 V 70 VGS = 13 V 60 Drain-Source Current, IDS (A) 80 VGS = 11 V 50 40 VGS = 9 V 30 20 10 VGS = 15 V VGS = 13 V VGS = 11 V 60 50 VGS = 9 V 40 30 20 VGS = 7 V 10 VGS = 7 V 0 0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 Drain-Source Voltage, VDS (V) Figure 1. Output Characteristics TJ = -55 ºC 80 Conditions: TJ = 150 °C tp < 200 µs 2.0 VGS = 15 V VGS = 11 V 1.6 60 VGS = 9 V 50 40 30 VGS = 7 V 20 10 1.4 1.2 1.0 0.8 0.6 0.4 0.0 0.0 2.5 5.0 7.5 10.0 12.5 -50 15.0 -25 0 Figure 3. Output Characteristics TJ = 150 ºC Conditions: VGS = 15 V tp < 200 µs TJ = 150 °C 80 TJ = -55 °C 60 75 100 125 150 Conditions: IDS = 20 A tp < 200 µs 120 On Resistance, RDS On (mOhms) 100 50 Figure 4. Normalized On-Resistance vs. Temperature 140 120 25 Junction Temperature, TJ (°C) Drain-Source Voltage, VDS (V) On Resistance, RDS On (Ohms) 15.0 0.2 0 TJ = 25 °C 40 20 100 VGS = 11 V 80 VGS = 13 V 60 VGS = 15 V 40 20 0 0 0 10 20 30 40 Drain-Source Current, IDS (A) Figure 5. On-Resistance vs. Drain Current For Various Temperatures 3 12.5 Conditions: IDS = 20 A VGS = 15 V tp < 200 µs 1.8 VGS = 13 V 10.0 Figure 2. Output Characteristics TJ = 25 ºC On Resistance, RDS On (P.U.) Drain-Source Current, IDS (A) 70 7.5 Drain-Source Voltage, VDS (V) C3M0065090J Rev. A 50 60 -50 -25 0 25 50 75 100 Junction Temperature, TJ (°C) Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 125 150 Typical Performance -10 Conditions: VDS = 20 V tp < 200 µs -8 -6 -4 -2 0 0 40 VGS = -5 V TJ = 150 °C Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 50 30 TJ = 25 °C 20 TJ = -55 °C 10 VGS = 0 V -20 VGS = -3 V -40 -60 Conditions: TJ = -55°C tp < 200 µs 0 0 2 4 6 8 10 Gate-Source Voltage, VGS (V) Figure 7. Transfer Characteristic for Various Junction Temperatures -10 -8 -6 -4 -80 Drain-Source Voltage VDS (V) Figure 8. Body Diode Characteristic at -55 ºC -2 0 -10 -8 -6 -4 -2 0 Drain-Source Current, IDS (A) VGS = -5 V -20 VGS = 0 V VGS = -3 V -40 0 Drain-Source Current, IDS (A) 0 VGS = -5 V -20 VGS = 0 V VGS = -3 V -40 -60 Conditions: TJ = 25°C tp < 200 µs Drain-Source Voltage VDS (V) -60 Conditions: TJ = 150°C tp < 200 µs -80 Drain-Source Voltage VDS (V) Figure 9. Body Diode Characteristic at 25 ºC Figure 10. Body Diode Characteristic at 150 ºC 3.0 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 125 Junction Temperature TJ (°C) Figure 11. Threshold Voltage vs. Temperature 4 C3M0065090J Rev. A Conditions: IDS = 20 A IGS = 100 mA VDS = 400 V TJ = 25 °C 15 Gate-Source Voltage, VGS (V) Threshold Voltage, Vth (V) 18 Conditons VDS = 10 V IDS = 5 mA 2.5 -80 150 12 9 6 3 0 -3 0 5 10 15 20 25 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 30 35 Typical Performance -8 -7 -6 -5 -4 -3 -2 -1 0 -8 -7 -6 -5 -4 -3 -2 -1 0 0 0 VGS = 0 V VGS = 5 V -20 VGS = 10 V -40 VGS = 15 V Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) VGS = 0 V VGS = 5 V -20 VGS = 10 V -40 VGS = 15 V -60 -60 Conditions: TJ = -55 °C tp < 200 µs Conditions: TJ = 25 °C tp < 200 µs -80 Drain-Source Voltage VDS (V) Figure 13. 3rd Quadrant Characteristic at -55 ºC -7 -8 -6 -5 -4 -3 -2 Figure 14. 3rd Quadrant Characteristic at 25 ºC 30 0 -1 -80 Drain-Source Voltage VDS (V) 0 25 -20 VGS = 5 V -40 VGS = 10 V VGS = 15 V Stored Energy, EOSS (µJ) Drain-Source Current, IDS (A) VGS = 0 V 20 15 10 5 -60 Conditions: TJ = 150 °C tp < 200 µs Drain-Source Voltage VDS (V) 0 0 -80 100 600 700 800 900 1000 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz 1000 Capacitance (pF) Capacitance (pF) 500 10000 Ciss Coss 100 Crss 10 400 Figure 16. Output Capacitor Stored Energy Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz 1000 300 Drain to Source Voltage, VDS (V) Figure 15. 3rd Quadrant Characteristic at 150 ºC 10000 200 Ciss 100 Coss 10 Crss 1 1 0 50 100 Drain-Source Voltage, VDS (V) 150 Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 5 C3M0065090J Rev. A 200 0 100 200 300 400 500 600 Drain-Source Voltage, VDS (V) 700 Figure 18. Capacitances vs. Drain-Source Voltage (0 - 900V) 800 900 Typical Performance 120 Conditions: TJ ≤ 150 °C 35 Conditions: TJ ≤ 150 °C Maximum Dissipated Power, Ptot (W) Drain-Source Continous Current, IDS (DC) (A) 40 30 25 20 15 10 5 0 -55 -30 -5 20 45 70 95 120 100 80 60 40 20 0 145 -55 Case Temperature, TC (°C) -30 -5 20 45 70 95 120 145 Case Temperature, TC (°C) Figure 19. Continuous Drain Current Derating vs. Case Temperature Figure 20. Maximum Power Dissipation Derating vs. Case Temperature 1 10 µs Limited by RDS On 0.5 Drain-Source Current, IDS (A) Junction To Case Impedance, ZthJC (oC/W) 100.00 0.3 100E-3 0.1 0.05 0.02 10E-3 0.01 SinglePulse 10.00 1 ms 100 ms 1.00 0.10 1E-6 10E-6 100E-6 1E-3 10E-3 Time, tp (s) 100E-3 0.1 1 140 Conditions: TJ = 25 °C VDD = 600 V RG(ext) = 2.5 Ω VGS = -3V/+15 V FWD = C3D08060G L = 77 μH 200 10 100 Conditions: TJ = 25 °C VDD = 400 V RG(ext) = 2.5 Ω VGS = -3V/+15 V FWD = C3D08060G L = 77 μH 120 100 ETotal 150 EOn 100 ETotal 80 EOn 60 40 EOff EOff 50 1000 Figure 22. Safe Operating Area Switching Loss (uJ) 250 1 Drain-Source Voltage, VDS (V) Figure 21. Transient Thermal Impedance (Junction - Case) Switching Loss (uJ) Conditions: TC = 25 °C D = 0, Parameter: tp 0.01 1E-3 100 µs 20 0 0 0 10 20 30 40 Drain to Source Current, IDS (A) Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 600V) 6 C3M0065090J Rev. A 50 0 10 20 30 40 Drain to Source Current, IDS (A) Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDD = 400V) 50 Typical Performance 200 Switching Loss (uJ) 100 Conditions: TJ = 25 °C VDD = 400 V IDS = 20 A VGS = -3V/+15 V FWD = C3D08060G L = 77 μH Conditions: IDS = 20 A VDD = 400 V RG(ext) = 2.5 Ω VGS = -3V/+15 V FWD = C3D08060G L = 77 μH 80 ETotal ETotal 150 100 Switching Loss (uJ) 250 EOn EOff 50 60 EOn 40 EOff 20 0 0 0 5 10 15 20 25 External Gate Resistor RG(ext) (Ohms) -50 -25 0 25 50 75 100 Figure 26. Clamped Inductive Switching Energy vs. Temperature Figure 25. Clamped Inductive Switching Energy vs. RG(ext) 35 Conditions: TJ = 25 °C VDD = 400 V IDS = 20 A VGS = -3V/+15 V 30 Time (ns) 25 td (off) 20 tr 15 tf 10 td (on) 5 0 0 5 10 15 20 25 External Gate Resistor, RG(ext) (Ohms) Figure 28. Switching Times Definition Figure 27. Switching Times vs. RG(ext) 35 Conditons: VDD = 50 V Avalanche Current (A) 30 25 20 15 10 5 0 0 20 40 60 80 Time in Avalanche TAV (us) Figure 29. Single Avalanche SOA curve 7 C3M0065090J Rev. A 125 Junction Temperature, TJ (°C) 100 150 Test Circuit Schematic D1 L=77 uH VDC C3D08060G 8A, 60V SiC Schottky CDC=42.3 uF Q2 RG D.U.T C3M0065090D Figure 30. Clamped Inductive Switching Waveform Test Circuit Q1 RG L=77 uH VDC CDC=42.3 uF D.U.T C3M0065090D VGS= - 3 V RG Q2 C3M0065090D Figure 31. Body Diode Recovery Test Circuit 8 C3M0065090J Rev. A Package Dimensions Package 7L D2PAK Dim All Dimensions in Millimeters Min C3M0065090J Rev. A Max 4.570 A 4.300 4.435 A1 0.00 0.125 0.25 b 0.500 0.600 0.700 b2 0.600 0.800 1.000 c 0.330 0.490 0.650 C2 1.170 1.285 1.400 9.125 D 9.025 9.075 D1 4.700 4.800 4.900 E 10.130 10.180 10.230 E1 6.500 7.550 8.600 E2 6.778 7.223 7.665 e 9 typ 1.27 H 15.043 16.178 17.313 L 2.324 2.512 2.700 L1 0.968 1.418 1.868 Ø 0˚ 4˚ 8˚ Ø1 4.5˚ 5˚ 5.5˚ Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links • • SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power/Tools-and-Support Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power/Tools-and-Support Copyright © 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10 C3M0065090J Rev - 06-2015 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power