Cree C3M0065090J SiC MOSFET

C3M0065090J
VDS
900 V
ID @ 25˚C Silicon Carbide Power MOSFET
TM
C3M MOSFET Technology
RDS(on)
35 A
65 mΩ
N-Channel Enhancement Mode
Features
•
•
•
•
•
•
Package
New C3M SiC MOSFET technology
High blocking voltage with low On-resistance
High speed switching with low capacitances
New low impedance package with driver source
Fast intrinsic diode with low reverse recovery (Qrr)
Halogen free, RoHS compliant
TAB
Drain
Benefits
•
•
•
•
Drain
(TAB)
Higher system efficiency
Reduced cooling requirements
Increased power density
Increased system switching frequency
1 2 3 4 5
G DS S S S
7
S
Gate
(Pin 1)
Applications
•
•
•
•
6
S
Driver
Source
(Pin 2)
Renewable energy
EV battery chargers
High voltage DC/DC converters
Switch Mode Power Supplies
Power
Source
(Pin 3,4,5,6,7)
Part Number
Package
C3M0065090J
7L D2PAK
Maximum Ratings (TC = 25 ˚C unless otherwise specified)
Symbol
Value
Unit
Test Conditions
VDSmax
Drain - Source Voltage
900
V
VGS = 0 V, ID = 100 μA
VGSmax
Gate - Source Voltage
-8/+18
V
Absolute maximum values
VGSop
Gate - Source Voltage
-4/+15
V
Recommended operational values
ID
Continuous Drain Current
ID(pulse)
35
22
A
VGS = 15 V, TC = 25˚C
90
A
EAS
Avalanche energy, Single pulse
110
mJ
ID = 22A, VDD = 50V
PD
Power Dissipation
113
W
TC=25˚C, TJ = 150 ˚C
-55 to
+150
˚C
260
˚C
TL
Operating Junction and Storage Temperature
Solder Temperature
C3M0065090J Rev. A
Note
Fig. 19
VGS = 15 V, TC = 100˚C
Pulsed Drain Current
TJ , Tstg
1
Parameter
Pulse width tP limited by Tjmax
1.6mm (0.063”) from case for 10s
Fig. 22
Fig. 20
Electrical Characteristics (TC = 25˚C unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-Source Breakdown Voltage
VGS(th)
Gate Threshold Voltage
Min.
Typ.
Max.
900
1.8
Unit
Test Conditions
V
VGS = 0 V, ID = 100 μA
2.1
V
VDS = 10V, ID = 5 mA
1.6
V
VDS = 10V, ID = 5 mA, TJ = 150ºC
IDSS
Zero Gate Voltage Drain Current
1
100
μA
VDS = 900 V, VGS = 0 V
IGSS
Gate-Source Leakage Current
10
250
nA
VGS = 15 V, VDS = 0 V
65
78
RDS(on)
Drain-Source On-State Resistance
90
13.6
gfs
Transconductance
Ciss
Input Capacitance
660
Coss
Output Capacitance
60
Crss
Reverse Transfer Capacitance
4.0
Eoss
Coss Stored Energy
16
EON
Turn-On Switching Energy
47
EOFF
Turn Off Switching Energy
17
td(on)
Turn-On Delay Time
7.2
Rise Time
6.5
Turn-Off Delay Time
15
Fall Time
5
tr
td(off)
tf
RG(int)
Note
4.7
Qgs
Gate to Source Charge
6.7
Qgd
Gate to Drain Charge
12
Qg
Total Gate Charge
30
Fig. 4,
5, 6
VGS = 15 V, ID = 20A, TJ = 150ºC
VDS= 15 V, IDS= 20 A
S
11.6
Internal Gate Resistance
VGS = 15 V, ID = 20 A
mΩ
VDS= 15 V, IDS= 20 A, TJ = 150ºC
f = 1 MHz
VAC = 25 mV
μJ
Fig. 7
Fig. 17,
18
VGS = 0 V, VDS = 600 V
pF
Fig. 11
Fig. 16
μJ
VDS = 400 V, VGS = -3 V/15 V, ID = 20A,
RG(ext) = 2.5Ω, L= 77 μH, TJ = 150ºC
Fig. 26
ns
VDD = 400 V, VGS = -3 V/15 V
ID = 20 A, RG(ext) = 2.5 Ω,
Timing relative to VDS
Per IEC60747-8-4 pg 83
Resistive load
Fig. 27
Ω
f = 1 MHz, VAC = 25 mV
nC
VDS = 400 V, VGS = -3 V/15 V
ID = 20 A
Per IEC60747-8-4 pg 21
Fig. 12
Reverse Diode Characteristics (TC = 25˚C unless otherwise specified)
Symbol
VSD
IS
IS, pulse
Parameter
Typ.
Diode Forward Voltage
Max.
Unit
Test Conditions
4.4
V
VGS = -3 V, ISD = 10 A
4.1
V
VGS = -3 V, ISD = 10 A, TJ = 150 °C
Note
Fig. 8,
9, 10
Continuous Diode Forward Current
22
A
VGS = -3 V
Note 1
Diode pulse Current
90
A
VGS = -3 V, pulse width tP limited by Tjmax
Note 1
VGS = -3 V, ISD = 20 A, VR = 400 V
dif/dt = 2800 A/µs
Note 1
trr
Reverse Recovery time
16
ns
Qrr
Reverse Recovery Charge
131
nC
Irrm
Peak Reverse Recovery Current
15
A
Note (1): When using SiC Body Diode the maximum recommended VGS = -4V
Thermal Characteristics
Symbol
2
Parameter
Max.
RθJC
Thermal Resistance from Junction to Case
1.1
RθJA
Thermal Resistance From Junction to Ambient
40
C3M0065090J Rev. A
Unit
°C/W
Test Conditions
Note
Fig. 21
Typical Performance
70
Drain-Source Current, IDS (A)
80
Conditions:
TJ = -55 °C
tp < 200 µs
Conditions:
TJ = 25 °C
tp < 200 µs
VGS = 15 V
70
VGS = 13 V
60
Drain-Source Current, IDS (A)
80
VGS = 11 V
50
40
VGS = 9 V
30
20
10
VGS = 15 V
VGS = 13 V
VGS = 11 V
60
50
VGS = 9 V
40
30
20
VGS = 7 V
10
VGS = 7 V
0
0
0.0
2.5
5.0
7.5
10.0
12.5
15.0
0.0
2.5
5.0
Drain-Source Voltage, VDS (V)
Figure 1. Output Characteristics TJ = -55 ºC
80
Conditions:
TJ = 150 °C
tp < 200 µs
2.0
VGS = 15 V
VGS = 11 V
1.6
60
VGS = 9 V
50
40
30
VGS = 7 V
20
10
1.4
1.2
1.0
0.8
0.6
0.4
0.0
0.0
2.5
5.0
7.5
10.0
12.5
-50
15.0
-25
0
Figure 3. Output Characteristics TJ = 150 ºC
Conditions:
VGS = 15 V
tp < 200 µs
TJ = 150 °C
80
TJ = -55 °C
60
75
100
125
150
Conditions:
IDS = 20 A
tp < 200 µs
120
On Resistance, RDS On (mOhms)
100
50
Figure 4. Normalized On-Resistance vs. Temperature
140
120
25
Junction Temperature, TJ (°C)
Drain-Source Voltage, VDS (V)
On Resistance, RDS On (Ohms)
15.0
0.2
0
TJ = 25 °C
40
20
100
VGS = 11 V
80
VGS = 13 V
60
VGS = 15 V
40
20
0
0
0
10
20
30
40
Drain-Source Current, IDS (A)
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
3
12.5
Conditions:
IDS = 20 A
VGS = 15 V
tp < 200 µs
1.8
VGS = 13 V
10.0
Figure 2. Output Characteristics TJ = 25 ºC
On Resistance, RDS On (P.U.)
Drain-Source Current, IDS (A)
70
7.5
Drain-Source Voltage, VDS (V)
C3M0065090J Rev. A
50
60
-50
-25
0
25
50
75
100
Junction Temperature, TJ (°C)
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
125
150
Typical Performance
-10
Conditions:
VDS = 20 V
tp < 200 µs
-8
-6
-4
-2
0
0
40
VGS = -5 V
TJ = 150 °C
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
50
30
TJ = 25 °C
20
TJ = -55 °C
10
VGS = 0 V
-20
VGS = -3 V
-40
-60
Conditions:
TJ = -55°C
tp < 200 µs
0
0
2
4
6
8
10
Gate-Source Voltage, VGS (V)
Figure 7. Transfer Characteristic for
Various Junction Temperatures
-10
-8
-6
-4
-80
Drain-Source Voltage VDS (V)
Figure 8. Body Diode Characteristic at -55 ºC
-2
0
-10
-8
-6
-4
-2
0
Drain-Source Current, IDS (A)
VGS = -5 V
-20
VGS = 0 V
VGS = -3 V
-40
0
Drain-Source Current, IDS (A)
0
VGS = -5 V
-20
VGS = 0 V
VGS = -3 V
-40
-60
Conditions:
TJ = 25°C
tp < 200 µs
Drain-Source Voltage VDS (V)
-60
Conditions:
TJ = 150°C
tp < 200 µs
-80
Drain-Source Voltage VDS (V)
Figure 9. Body Diode Characteristic at 25 ºC
Figure 10. Body Diode Characteristic at 150 ºC
3.0
2.0
1.5
1.0
0.5
0.0
-50
-25
0
25
50
75
100
125
Junction Temperature TJ (°C)
Figure 11. Threshold Voltage vs. Temperature
4
C3M0065090J Rev. A
Conditions:
IDS = 20 A
IGS = 100 mA
VDS = 400 V
TJ = 25 °C
15
Gate-Source Voltage, VGS (V)
Threshold Voltage, Vth (V)
18
Conditons
VDS = 10 V
IDS = 5 mA
2.5
-80
150
12
9
6
3
0
-3
0
5
10
15
20
25
Gate Charge, QG (nC)
Figure 12. Gate Charge Characteristics
30
35
Typical Performance
-8
-7
-6
-5
-4
-3
-2
-1
0
-8
-7
-6
-5
-4
-3
-2
-1
0
0
0
VGS = 0 V
VGS = 5 V
-20
VGS = 10 V
-40
VGS = 15 V
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
VGS = 0 V
VGS = 5 V
-20
VGS = 10 V
-40
VGS = 15 V
-60
-60
Conditions:
TJ = -55 °C
tp < 200 µs
Conditions:
TJ = 25 °C
tp < 200 µs
-80
Drain-Source Voltage VDS (V)
Figure 13. 3rd Quadrant Characteristic at -55 ºC
-7
-8
-6
-5
-4
-3
-2
Figure 14. 3rd Quadrant Characteristic at 25 ºC
30
0
-1
-80
Drain-Source Voltage VDS (V)
0
25
-20
VGS = 5 V
-40
VGS = 10 V
VGS = 15 V
Stored Energy, EOSS (µJ)
Drain-Source Current, IDS (A)
VGS = 0 V
20
15
10
5
-60
Conditions:
TJ = 150 °C
tp < 200 µs
Drain-Source Voltage VDS (V)
0
0
-80
100
600
700
800
900
1000
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
1000
Capacitance (pF)
Capacitance (pF)
500
10000
Ciss
Coss
100
Crss
10
400
Figure 16. Output Capacitor Stored Energy
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
1000
300
Drain to Source Voltage, VDS (V)
Figure 15. 3rd Quadrant Characteristic at 150 ºC
10000
200
Ciss
100
Coss
10
Crss
1
1
0
50
100
Drain-Source Voltage, VDS (V)
150
Figure 17. Capacitances vs. Drain-Source
Voltage (0 - 200V)
5
C3M0065090J Rev. A
200
0
100
200
300
400
500
600
Drain-Source Voltage, VDS (V)
700
Figure 18. Capacitances vs. Drain-Source
Voltage (0 - 900V)
800
900
Typical Performance
120
Conditions:
TJ ≤ 150 °C
35
Conditions:
TJ ≤ 150 °C
Maximum Dissipated Power, Ptot (W)
Drain-Source Continous Current, IDS (DC) (A)
40
30
25
20
15
10
5
0
-55
-30
-5
20
45
70
95
120
100
80
60
40
20
0
145
-55
Case Temperature, TC (°C)
-30
-5
20
45
70
95
120
145
Case Temperature, TC (°C)
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
1
10 µs
Limited by RDS On
0.5
Drain-Source Current, IDS (A)
Junction To Case Impedance, ZthJC (oC/W)
100.00
0.3
100E-3
0.1
0.05
0.02
10E-3
0.01
SinglePulse
10.00
1 ms
100 ms
1.00
0.10
1E-6
10E-6
100E-6
1E-3
10E-3
Time, tp (s)
100E-3
0.1
1
140
Conditions:
TJ = 25 °C
VDD = 600 V
RG(ext) = 2.5 Ω
VGS = -3V/+15 V
FWD = C3D08060G
L = 77 μH
200
10
100
Conditions:
TJ = 25 °C
VDD = 400 V
RG(ext) = 2.5 Ω
VGS = -3V/+15 V
FWD = C3D08060G
L = 77 μH
120
100
ETotal
150
EOn
100
ETotal
80
EOn
60
40
EOff
EOff
50
1000
Figure 22. Safe Operating Area
Switching Loss (uJ)
250
1
Drain-Source Voltage, VDS (V)
Figure 21. Transient Thermal Impedance
(Junction - Case)
Switching Loss (uJ)
Conditions:
TC = 25 °C
D = 0,
Parameter: tp
0.01
1E-3
100 µs
20
0
0
0
10
20
30
40
Drain to Source Current, IDS (A)
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 600V)
6
C3M0065090J Rev. A
50
0
10
20
30
40
Drain to Source Current, IDS (A)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 400V)
50
Typical Performance
200
Switching Loss (uJ)
100
Conditions:
TJ = 25 °C
VDD = 400 V
IDS = 20 A
VGS = -3V/+15 V
FWD = C3D08060G
L = 77 μH
Conditions:
IDS = 20 A
VDD = 400 V
RG(ext) = 2.5 Ω
VGS = -3V/+15 V
FWD = C3D08060G
L = 77 μH
80
ETotal
ETotal
150
100
Switching Loss (uJ)
250
EOn
EOff
50
60
EOn
40
EOff
20
0
0
0
5
10
15
20
25
External Gate Resistor RG(ext) (Ohms)
-50
-25
0
25
50
75
100
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
35
Conditions:
TJ = 25 °C
VDD = 400 V
IDS = 20 A
VGS = -3V/+15 V
30
Time (ns)
25
td (off)
20
tr
15
tf
10
td (on)
5
0
0
5
10
15
20
25
External Gate Resistor, RG(ext) (Ohms)
Figure 28. Switching Times Definition
Figure 27. Switching Times vs. RG(ext)
35
Conditons:
VDD = 50 V
Avalanche Current (A)
30
25
20
15
10
5
0
0
20
40
60
80
Time in Avalanche TAV (us)
Figure 29. Single Avalanche SOA curve
7
C3M0065090J Rev. A
125
Junction Temperature, TJ (°C)
100
150
Test Circuit Schematic
D1
L=77 uH
VDC
C3D08060G
8A, 60V
SiC Schottky
CDC=42.3 uF
Q2
RG
D.U.T
C3M0065090D
Figure 30. Clamped Inductive Switching
Waveform Test Circuit
Q1
RG
L=77 uH
VDC
CDC=42.3 uF
D.U.T
C3M0065090D
VGS= - 3 V
RG
Q2
C3M0065090D
Figure 31. Body Diode Recovery Test Circuit
8
C3M0065090J Rev. A
Package Dimensions
Package 7L D2PAK
Dim
All Dimensions in Millimeters
Min
C3M0065090J Rev. A
Max
4.570
A
4.300
4.435
A1
0.00
0.125
0.25
b
0.500
0.600
0.700
b2
0.600
0.800
1.000
c
0.330
0.490
0.650
C2
1.170
1.285
1.400
9.125
D
9.025
9.075
D1
4.700
4.800
4.900
E
10.130
10.180
10.230
E1
6.500
7.550
8.600
E2
6.778
7.223
7.665
e
9
typ
1.27
H
15.043
16.178
17.313
L
2.324
2.512
2.700
L1
0.968
1.418
1.868
Ø
0˚
4˚
8˚
Ø1
4.5˚
5˚
5.5˚
Notes
•
RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
•
REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
•
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems.
Related Links
•
•
SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power/Tools-and-Support
Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power/Tools-and-Support
Copyright © 2015 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
10
C3M0065090J Rev - 06-2015
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power