CREE C2M1000170D

VDS
1700 V
ID @ 25˚C 4.9 A
C2M1000170D
Silicon Carbide Power MOSFET
TM
Z-FET MOSFET
RDS(on)
1.0 Ω
N-Channel Enhancement Mode
Features
•
•
•
•
•
Package
High Speed Switching with Low Capacitances
High Blocking Voltage with Low RDS(on)
Easy to Parallel and Simple to Drive
Resistant to Latch-Up
Halogen Free, RoHS Compliant
Benefits
•
•
•
•
TO-247-3
Higher System Efficiency
Increased System Switching Frequency
Reduced Cooling Requirements
Increased System Reliability
Applications
•
•
Auxiliary Power Supplies
Switch Mode Power Supplies
Part Number
Package
C2M1000170D
TO-247-3
Maximum Ratings (TC = 25 ˚C unless otherwise specified)
Symbol
IDS (DC)
Parameter
Continuous Drain Current
IDS (pulse) Pulsed Drain Current
VGS
Gate Source Voltage
Ptot
Power Dissipation
TJ , Tstg
1
Operating Junction and Storage Temperature
Value
4.9
3.0
A
A
-10/+25
V
69
W
-55 to
+150
˚C
˚C
Solder Temperature
260
Md
Mounting Torque
1
8.8
Test Conditions
VGS = 20 V, TC = 25 °C
Note
Fig. 14
VGS = 20 V, TC = 100 °C
5.0
TL
C2M1000170D Rev. A
Unit
Pulse width tP limited by Tjmax
TC = 25 °C
TC=25 °C, TJ = 150 °C
1.6 mm (0.063”) from case for 10s
Nm
M3 or 6-32 screw
lbf-in
Fig. 16
Fig. 13
Electrical Characteristics (TC = 25˚C unless otherwise specified)
Symbol
V(BR)DSS
VGS(th)
Parameter
Drain-Source Breakdown Voltage
Zero Gate Voltage Drain Current
IGSS
Gate-Source Leakage Current
Typ.
V
VGS = 0 V, ID = 100 μA
2.4
V
VDS = VGS, ID = 100 μA
1.4
1.8
V
VDS = VGS, ID = 100 μA TJ = 150 °C
Drain-Source On-State Resistance
30
100
20
0.95
1.1
2.1
2.9
0.9
Transconductance
Ciss
Input Capacitance
Coss
Output Capacitance
12
Crss
Reverse Transfer Capacitance
1.3
Eoss
Coss Stored Energy
6.0
trv
td(off)v
Turn-On Delay Time
15
Internal Gate Resistance
Note
Fig. 9
VDS = 1700 V, VGS = 0 V
VDS = 1700 V, VGS = 0 V TJ=150 °C
VGS = 20 V, VDS = 0 V
VGS = 20 V, ID = 2 A
Ω
VGS = 20 V, ID = 2 A, TJ = 150 °C
VDS= 20 V, IDS= 2 A
VDS= 20 V, IDS= 2 A, TJ = 150 °C
Fig. 6,
7, 8
Fig. 5
VGS = 0 V
pF
VDS = 1000 V
Fig. 12
f = 1 MHz
VAC = 25 mV
μJ
Fig 10
VDD = 1000 V, VGS = -5/20 V
9
Turn-Off Delay Time
RG
nA
191
46
Fall Time
nA
S
0.8
Rise Time
tfv
Test Conditions
2.0
gfs
td(on)v
Max. Unit
1700
Gate Threshold Voltage
IDSS
RDS(on)
Min.
ID = 2 A
ns
RG(ext) = 0 Ω, RL = 40 Ω
Fig. 7
Timing relative to VDS
9
24.8
f = 1 MHz, VAC = 25 mV, ESR of CISS
Ω
Built-in SiC Body Diode Characteristics
Thermal Characteristics
Symbol
RθJC
Parameter
Thermal Resistance from Junction to Case
Typ.
Max.
Unit
1.7
1.8
°C/W
Max.
Unit
Test Conditions
Note
Fig. 15
Gate Charge Characteristics
Symbol
2
Parameter
Typ.
Qgs
Gate to Source Charge
2.7
Qgd
Gate to Drain Charge
5.4
Qg
Gate Charge Total
13
C2M1000170D Rev. A
nC
Test Conditions
VDS = 1000 V, VGS = -5/20 V
ID = 1 A
Per JEDEC24 pg 27
Note
Fig. 18
Typical Performance
4.0
VGS = 18 V
3.0
VGS = 16 V
2.5
2.0
VGS = 12 V
1.5
1.0
0.5
VGS = 20 V
Parameters:
TJ = 25 °C
tp < 50 µ
3.5
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
3.5
4.0
VGS = 20 V
Parameters:
TJ = -55 °C
tp < 50 µ
VGS = 18 V
3.0
VGS = 16 V
2.5
VGS = 12 V
2.0
1.5
1.0
0.5
0.0
0.0
0
1
2
3
4
5
0
1
2
Drain-Source Voltage, VDS (V)
Figure 1. Typical Output Characteristics TJ = -55 °C
Drain-Source Current, IDS (A)
4.0
Parameters:
TJ = 100 °C
tp < 50 µ
3.5
VGS = 20 V
Parameters:
TJ = 150 °C
tp < 50 µ
3.5
VGS = 18 V
3.0
VGS = 16 V
2.5
VGS = 12 V
2.0
1.5
1.0
VGS = 18 V
VGS = 20 V
VGS = 16 V
3.0
VGS = 12 V
2.5
2.0
1.5
1.0
0.0
0.0
0
1
2
3
4
5
6
0
7
2
3.0
5.0
Normalized Typical On Resistance, RDS On (p.u.)
Parameters:
TJ = -55 °C
tp < 50 µ
4.0
3.0
TJ = 25 °C
2.0
TJ = 150 °C
TJ = -55 °C
1.0
0.0
2
4
6
8
Gate-Source Voltage, VGS (V)
10
Figure 5. Typical Transfer Characteristics
C2M1000170D Rev. A
12
14
8
10
2.5
Conditions:
IDS = 2 A
VGS = 20 V
tp < 50 µs
2.0
1.5
1.0
0.5
0.0
-55
0
6
Figure 4. Typical Output Characteristics TJ = 150 °C
Figure 3. Typical Output Characteristics TJ = 100 °C
6.0
4
Drain-Source Voltage, VDS (V)
Drain-Source Voltage, VDS (V)
Drain-Source Current, IDS (A)
5
0.5
0.5
3
4
Figure 2. Typical Output Characteristics TJ = 25 °C
Drain-Source Current, IDS (A)
4.0
3
Drain-Source Voltage, VDS (V)
-35
-15
5
25
45
65
85
105
125
145
Junction Temperature, TJ (°C)
Figure 6. Normalized On-Resistance vs. Temperature
3,000
3,000
2,500
2,500
Typical On Resistance, RDS On (mOhms)
Typical On Resistance, RDS On (mOhms)
Typical Performance
TJ = 150 °C
2,000
1,500
1,000
TJ = 25 °C
TJ = -55 °C
500
Conditions:
VGS = 20 V
tp < 50 µs
TJ = 150 °C
2,000
1,500
TJ = 25 °C
1,000
500
0
TJ = -55 °C
Conditions:
IDS = 2 A
tp < 50 µs
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
12
13
14
Drain-Source Current, IDS (A)
Figure 7. Typical On-Resistance vs. Drain Current
16
19
20
Stored Energy, EOSS (µJ)
2.5
Typical
2.0
Min
1.5
5
1.0
4
3
2
1
0.5
0.0
0
-55
-30
-5
20
45
70
95
120
145
0
250
500
750
1000
Drain-Source Voltage, VDS (V)
Junction Temperature, TJ (°C)
Figure 10. Typical transfer Characteristics
Figure 9. Typical Threshold Voltage vs. Temperature
CISS
CISS
100
100
Capacitance (pF)
Capacitance (pF)
18
6
Conditions:
VGS = VDS
IDS = 1 mA
3.0
COSS
10
Conditions:
ftest = 1 MHz
Vac = 25 mV
TJ = 25 °C
COSS
10
Conditions:
ftest = 1 MHz
Vac = 25 mV
TJ = 25 °C
Crss
Crss
1
1
0
50
100
150
200
250
Drain-Source Voltage, VDS (V)
Figure 11. Typical Capacitances vs Drain Voltage
(0-300 V)
4
17
Figure 8. Typical On-Resistance vs. Gate Voltage
3.5
Threshold Voltage, Vth (V)
15
Gate-Source Voltge, VGS (V)
C2M1000170D Rev. A
300
0
300
600
900
1200
1500
Drain-Source Voltage, VDS (V)
Figure 12. Typical Capacitances vs Drain Voltage
(0-1200 V)
1800
Typical Performance
6
Conditions:
TJ ≤ 150 °C
70
Drain-Source Continous Current, IDS (DC) (A)
Maximum Dissipated Power, Ptot (W)
80
60
50
40
30
20
10
0
Conditions:
TJ ≤ 150 °C
5
4
3
2
1
0
-55
-5
45
95
145
-55
-5
45
Case Temperature, TC (°C)
95
145
Case Temperature, TC (°C)
Figure 13. Power Dissipation Derating Curve
Figure 14. Continuous IDS Current derating curve
1 µs
1
100 µs
D=30%
Drain-Source Current, IDS (A)
Junction-Case Thermal Response, Zth JC (°C/W)
10.00
D=90%
D=70%
D=10%
0.1
D=5.0%
D=2.0%
D=1.0%
0.01
D=0.5%
D=0.2%
tp
Single Pulse
10 µ s
10E-6
T
100 µs
100E-6
1 ms
1E-3
10 ms
10E-3
1 ms
1.00
100 ms
0.10
Conditions:
TC = 25 °C
D = 0,
Parameter: tp
D = tp / T
0.01
0.001
1 µs
1E-6
Limited by RDS On
100 ms
100E-3
0.1
1 s1
1
10
Figure 15. Typical Transient Thermal Impedance
(Junction - Case) with Duty Cycle
20
Conditions:
IDS = 1 A
IGS = 1 mA
VDS = 1000 V
TJ = 25 °C
trv
50
Conditions:
VGS = 0/20 V
VDD = 1000 V
RL = 160 Ω
ID = 2.0 A
TJ= 25°C
30
Gate-Source Voltage, VGS (V)
15
40
Time (ns)
1000
Figure 16. Safe Operating Area, TJ = 25 °C
60
tD(off)V
20
10
tD(on)V
10
5
0
-5
0
0
5
10
15
External Gate Resistor, RG (Ω)
20
Figure 17. Resistive Switching Times vs. RG
5
100
Drain-Source Voltage, VDS (V)
Time
C2M1000170D Rev. A
25
0
2
4
6
8
10
Gate Charge, QG (nC)
Figure 18. Typical Gate Charge
12
14
Typical Performance
C4D10120D
10A, 1200V
SiC Schottky
L = 856 µH
V = 800 V
C = 42.3 µF
D.U.T.
C2M0080120D
Figure 24. Clamped Inductive Switching
Waveform Test Circuit
Figure 25. Switching Test Waveforms for Transition Times
ESD Ratings
6
ESD Test
Total Devices Sampled
Resulting Classification
ESD-HBM
All Devices Passed 1000V
2 (>2000V)
ESD-MM
All Devices Passed 400V
C (>400V)
ESD-CDM
All Devices Passed 1000V
IV (>1000V)
C2M1000170D Rev. A
Package Dimensions
Package TO-247-3
POS
A
(2)
(1)
(3)
Inches
Millimeters
Min
Max
Min
Max
.190
.205
4.83
5.21
A1
.090
.100
2.29
2.54
A2
.075
.085
1.91
2.16
b
.042
.052
1.07
1.33
b1
.075
.095
1.91
2.41
b2
.075
.085
1.91
2.16
b3
.113
.133
2.87
3.38
b4
.113
.123
2.87
3.13
c
.022
.027
0.55
0.68
D
.819
.831
20.80
21.10
D1
.640
.695
16.25
17.65
D2
.037
.049
0.95
1.25
E
.620
.635
15.75
16.13
E1
.516
.557
13.10
14.15
E2
.145
.201
3.68
5.10
E3
.039
.075
1.00
1.90
E4
.487
.529
12.38
13.43
e
.214 BSC
5.44 BSC
N
3
3
L
.780
.800
19.81
20.32
L1
.161
.173
4.10
4.40
ØP
.138
.144
3.51
3.65
Q
.216
.236
5.49
6.00
S
.238
.248
6.04
6.30
Recommended Solder Pad Layout
Part Number
Package
Marking
C2M1000170D
TO-247-3
C2M1000170D
TO-247-3
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems.
Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the
Cree logo are registered trademarks and Z-REC and Z-FET are trademarks of Cree, Inc.
7
C2M1000170D Rev. A
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power