Cree C2M0160120D SiC Power MOSFET

VDS
ID @ 25˚C
C2M0160120D
Silicon Carbide Power MOSFET
TM
C2M MOSFET Technology
RDS(on)
1200 V
19 A
160 mΩ
N-Channel Enhancement Mode
Features
•
•
•
•
•
•
•
Package
New C2M SiC MOSFET technlogy
High Blocking Voltage with Low On-Resistance
High Speed Switching with Low Capacitances
Easy to Parallel and Simple to Drive
Avalanche Ruggedness
Resistant to Latch-Up
Halogen Free, RoHS Compliant
TO-247-3
Benefits
•
•
•
•
Higher System Efficiency
Reduced Cooling Requirements
Increased Power Density
Increased System Switching Frequency
Applications
•
•
•
•
Solar Inverters
Switch Mode Power Supplies
High Voltage DC/DC Converters
LED Lighting Power Supplies
Part Number
Package
C2M0160120D
TO-247-3
Maximum Ratings (TC = 25 ˚C unless otherwise specified)
Symbol
Value
Unit
Test Conditions
VDSmax
Drain - Source Voltage
1200
V
VGS = 0 V, ID = 100 μA
VGSmax
Gate - Source Voltage
-10/+25
V
Absolute maximum values
VGSop
Gate - Source Voltage
-5/+20
V
Recommended operational values
ID
Continuous Drain Current
ID(pulse)
PD
Pulsed Drain Current
Power Dissipation
TJ , Tstg
1
Parameter
Operating Junction and Storage Temperature
19
12.5
VGS = 20 V, TC = 25˚C
Fig. 19
VGS = 20 V, TC = 100˚C
40
A
Pulse width tP limited by Tjmax
Fig. 22
125
W
TC=25˚C , TJ = 150 ˚C
Fig. 20
-55 to
+150
˚C
˚C
TL
Solder Temperature
260
Md
Mounting Torque
1
8.8
C2M0160120D Rev. B
A
Note
1.6mm (0.063”) from case for 10s
Nm
M3 or 6-32 screw
lbf-in
Electrical Characteristics (TC = 25˚C unless otherwise specified)
Symbol
V(BR)DSS
VGS(th)
Parameter
Drain-Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
Gate-Source Leakage Current
Typ.
V
VGS = 0 V, ID = 100 μA
2.5
V
VDS = 10V, IDS = 2.5 mA
1.8
1.9
V
VDS = 10V, IDS = 2.5 mA, TJ = 150ºC
100
μA
VDS = 1200 V, VGS = 0 V
250
nA
VGS = 20 V, VDS = 0 V
1
160
Drain-Source On-State Resistance
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Eoss
Coss Stored Energy
EAS
Avalanche Energy, Single Pluse
EON
Turn-On Switching Energy
79
EOFF
Turn Off Switching Energy
57
td(on)
Turn-On Delay Time
RG(int)
mΩ
4.8
Ciss
tf
196
290
Transconductance
td(off)
Test Conditions
2.4
gfs
tr
Max. Unit
1200
Gate Threshold Voltage
IGSS
RDS(on)
Min.
VGS = 20 V, ID = 10A, TJ = 150ºC
VDS= 20 V, IDS= 10 A
S
4.3
VGS = 20 V, ID = 10 A
VDS= 20 V, IDS= 10 A, TJ = 150ºC
525
VGS = 0 V
47
pF
4
VDS = 1000 V
Note
Fig. 11
Fig. 4,
5, 6
Fig. 7
Fig. 17,
18
f = 1 MHz
25
μJ
VAC = 25 mV
Fig. 16
600
mJ
ID = 10A, VDD = 50V
Fig. 29
μJ
VDS = 800 V, VGS = -5/20 V, ID = 10A,
RG(ext) = 2.5Ω, L= 256 μH
Fig. 25
ns
VDD = 800 V, VGS = -5/20 V
ID = 10 A
RG(ext) = 2.5 Ω, RL = 80 Ω
Timing relative to VDS
Per IEC60747-8-4 pg 83
Fig. 27
Ω
f = 1 MHz, VAC = 25 mV
nC
VDS = 800 V, VGS = -5/20 V
ID = 10 A
Per IEC60747-8-4 pg 21
9
Rise Time
11
Turn-Off Delay Time
16
Fall Time
10
Internal Gate Resistance
6.5
Qgs
Gate to Source Charge
7
Qgd
Gate to Drain Charge
14
Qg
Total Gate Charge
34
Fig. 12
Reverse Diode Characteristics
Symbol
VSD
Parameter
Diode Forward Voltage
IS
Continuous Diode Forward Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Irrm
Peak Reverse Recovery Current
Typ.
Max.
Unit
3.3
V
3.1
19
A
23
ns
105
nC
9
A
Test Conditions
VGS = -5 V, IF=5 A
Note
VGS = -5V, IF=5 A, TJ = 150 ºC
Fig. 8,9,
10
TC = 25˚C
Note 1
VGS = - 5 V, ISD = 10 A, VR = 800 V
dif/dt = 3200 A/µs
Note 1
Note (1): When using SiC Body Diode the maximum recommended VGS = -5V
Thermal Characteristics
Symbol
2
Parameter
RθJC
Thermal Resistance from Junction to Case
RθJA
Thermal Resistance From Junction to Ambient
C2M0160120D Rev. B
Typ.
Max.
0.9
1.0
40
Unit
K/W
Test Conditions
Note
Fig. 21
Typical Performance
40
35
Conditions:
TJ = 25 °C
tp < 200 µs
VGS = 20 V
35
VGS = 18 V
30
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
40
Conditions:
TJ = -55 °C
tp < 200 µs
VGS = 16 V
25
VGS = 14 V
20
15
VGS = 12 V
10
VGS = 10 V
5
VGS = 20 V
VGS = 18 V
30
VGS = 16 V
25
VGS = 14 V
20
VGS = 12 V
15
VGS = 10 V
10
5
0
0
0.0
2.5
5.0
7.5
10.0
12.5
0.0
2.5
5.0
Drain-Source Voltage, VDS (V)
Figure 1. Output Characteristics TJ = -55 ºC
40
VGS = 16 V
25
VGS = 14 V
20
12.5
VGS = 12 V
VGS = 10 V
15
Conditions:
IDS = 10 A
VGS = 20 V
tp < 200 µs
2.0
VGS = 18 V
On Resistance, RDS On (P.U.)
Drain-Source Current, IDS (A)
VGS = 20 V
30
10.0
Figure 2. Output Characteristics TJ = 25 ºC
2.5
Conditions:
TJ = 150 °C
tp < 200 µs
35
7.5
Drain-Source Voltage, VDS (V)
10
1.5
1.0
0.5
5
0
0.0
2.5
5.0
7.5
10.0
0.0
12.5
-50
-25
0
Drain-Source Voltage, VDS (V)
TJ = 150 °C
320
240
TJ = 25 °C
160
TJ = -55 °C
80
0
100
125
150
280
240
VGS = 14 V
200
VGS = 16 V
160
VGS = 18 V
VGS = 20 V
120
80
40
0
0
5
10
15
20
25
30
Drain-Source Current, IDS (A)
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
3
75
Conditions:
IDS = 10 A
tp < 200 µs
320
On Resistance, RDS On (mOhms)
On Resistance, RDS On (mOhms)
360
Conditions:
VGS = 20 V
tp < 200 µs
400
50
Figure 4. Normalized On-Resistance vs. Temperature
Figure 3. Output Characteristics TJ = 150 ºC
480
25
Junction Temperature, TJ (°C)
C2M0160120D Rev. B
35
-50
-25
0
25
50
75
100
125
Junction Temperature, TJ (°C)
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
150
Typical Performance
Drain-Source Current, IDS (A)
20
-4
-5
Conditions:
VDS = 20 V
tp < 200 µs
-3
-2
-1
0
Condition:
TJ = -55 °C
tp < 200 µs
VGS = -5 V
TJ = 150 °C
0
15
-5
Drain-Source Current, IDS (A)
VGS = 0 V
TJ = 25 °C
10
TJ = -55 °C
5
-10
VGS = -2 V
-15
-20
-25
-30
0
0
2
4
6
8
10
12
14
-35
Gate-Source Voltage, VGS (V)
Drain-Source Voltage, VDS (A)
Figure 7. Transfer Characteristic for
Various Junction Temperatures
-4
-3
-2
-1
Condition:
TJ = 25 °C
tp < 200 µs
VGS = -5 V
VGS = 0 V
Drain-Source Current, IDS (A)
0
-5
-4
-3
-2
-1
0
-5
-10
VGS = -2 V
-15
-20
-25
0
Condition:
TJ = 150 °C
tp < 200 µs
VGS = 0 V
-15
-20
-25
-30
-35
-35
Drain-Source Voltage, VDS (A)
Drain-Source Voltage, VDS (A)
Figure 9. Body Diode Characteristic at 25 ºC
3.5
3.0
25
2.0
1.5
1.0
0.5
0.0
-25
0
25
50
75
100
125
Junction Temperature TJ (°C)
Figure 11. Threshold Voltage vs. Temperature
4
C2M0160120D Rev. B
Conditions:
IDS = 10 A
IGS = 100 mA
VDS = 800 V
TJ = 25 °C
20
Typ
Gate-Source Voltage, VGS (V)
Threshold Voltage, Vth (V)
Figure 10. Body Diode Characteristic at 150 ºC
Conditons
VDS = 10 V
IDS = 2.5 mA
-50
-5
-10
-30
2.5
0
VGS = -2 V
VGS = -5 V
Drain-Source Current, IDS (A)
-5
Figure 8. Body Diode Characteristic at -55 ºC
150
15
10
5
0
-5
0
5
10
15
20
25
30
Gate Charge, QG (nC)
Figure 12. Gate Charge Characteristics
35
40
Typical Performance
-5
-4
-3
-2
-1
0
-5
-4
-3
-2
-1
0
0
Conditions:
TJ = -55 °C
tp < 200 µs
0
Conditions:
TJ = 25 °C
tp < 200 µs
VGS = 0 V
Drain-Source Current, IDS (A)
-10
VGS = 10 V
-15
VGS = 15 V
-20
VGS = 20 V
-25
-5
VGS = 5 V
Drain-Source Current, IDS (A)
-5
VGS = 5 V
VGS = 0 V
-10
VGS = 10 V
-15
VGS = 15 V
-20
VGS = 20 V
-25
-30
-35
Drain-Source Voltage, VDS (V)
Figure 13. 3rd Quadrant Characteristic at -55 ºC
-5
-4
-3
-30
-2
-1
Figure 14. 3rd Quadrant Characteristic at 25 ºC
0
30
0
VGS = 5 V
Drain-Source Current, IDS (A)
VGS = 0 V
25
-5
VGS = 10 V
-10
VGS = 15 V
-15
VGS = 20 V
-20
-25
Stored Energy, EOSS (µJ)
Conditions:
TJ = 150 °C
tp < 200 µs
-35
Drain-Source Voltage, VDS (V)
20
15
10
5
-30
0
Drain-Source Voltage, VDS (V)
0
-35
Capacitance (pF)
Capacitance (pF)
1000
Coss
100
10
800
1000
1200
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
100
Coss
10
Crss
Crss
1
1
0
50
100
Drain-Source Voltage, VDS (V)
150
Figure 17. Capacitances vs. Drain-Source
Voltage (0 - 200V)
5
600
Figure 16. Output Capacitor Stored Energy
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
400
Drain to Source Voltage, VDS (V)
Figure 15. 3rd Quadrant Characteristic at 150 ºC
1000
200
C2M0160120D Rev. B
200
0
200
400
600
Drain-Source Voltage, VDS (V)
800
Figure 18. Capacitances vs. Drain-Source
Voltage (0 - 1000V)
1000
Typical Performance
20
16
14
12
10
8
6
4
2
100
80
60
40
20
0
-55
-30
-5
20
45
70
95
120
0
145
-55
Case Temperature, TC (°C)
-30
20
45
70
95
120
1
10 µs
0.5
Drain-Source Current, IDS (A)
0.1
0.05
0.02
SinglePulse
10E-3
Limited by RDS On
10.00
0.3
100E-3
0.01
10E-6
100E-6
1E-3
10E-3
Time, tp (s)
100E-3
100 ms
1.00
0.10
Conditions:
TC = 25 °C
D = 0,
Parameter: tp
0.1
1
Switching Energy (uJ)
350
300
ETotal
250
250
EOn
200
150
EOff
100
100
Conditions:
TJ = 25 °C
VDD = 600 V
RG(ext) = 2.5 Ω
VGS = -5/+20 V
FWD = C4D05120A
L = 256 μH
300
Switching Energy (uJ)
400
10
1000
Figure 22. Safe Operating Area
350
Conditions:
TJ = 25 °C
VDD = 800 V
RG(ext) = 2.5 Ω
VGS = -5/+20 V
FWD = C4D05120A
L = 256 μH
1
Drain-Source Voltage, VDS (V)
Figure 21. Transient Thermal Impedance
(Junction - Case)
450
100 µs
1 ms
0.01
1E-6
145
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
1E-3
ETotal
200
EOn
150
EOff
100
50
50
0
0
0
5
10
15
20
Drain to Source Current, IDS (A)
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDS = 800 V)
6
-5
Case Temperature, TC (°C)
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Junction To Case Impedance, ZthJC (oC/W)
Conditions:
TJ ≤ 150 °C
120
Maximum Dissipated Power, Ptot (W)
Drain-Source Continous Current, IDS (DC) (A)
140
Conditions:
TJ ≤ 150 °C
18
C2M0160120D Rev. B
25
0
5
10
15
20
25
Drain to Source Current, IDS (A)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDS = 600 V)
Typical Performance
350
240
Conditions:
TJ = 25 °C
VDD = 800 V
IDS = 10 A
VGS = -5/+20 V
FWD = C4D05120A
L = 256 μH
Switching Loss (uJ)
250
Conditions:
IDS = 10 A
VDD = 800 V
RG(ext) = 2.5 Ω
VGS = -5/+20 V
FWD = C4D10120A
L = 256 µH
200
ETotal
Swithcing Loss (uJ)
300
200
EOn
150
EOff
100
160
ETotal
120
EOn
80
EOff
40
50
0
0
0
5
10
15
20
25
30
External Gate Resistor RG(ext) (Ohms)
-50
-25
0
25
50
75
100
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
35
Conditions:
TJ = 25 °C
VDD = 800 V
RL = 80 Ω
VGS = -5/+20 V
30
Time (ns)
25
td (off)
tf
tr
20
15
td (on)
10
5
0
0
5
10
15
20
25
30
External Gate Resistor, RG(ext) (Ohms)
Figure 28. Switching Times Definition
Figure 27. Switching Times vs. RG(ext)
18
Conditons:
VDD = 50 V
16
Avalanche Current (A)
14
12
10
8
6
4
2
0
0
25
50
75
100
125
150
Time in Avalanche TAV (us)
Figure 29. Single Avalanche SOA curve
7
C2M0160120D Rev. B
125
Junction Temperature, TJ (°C)
175
200
150
Test Circuit Schematic
D1
L=256 uH
VDC
C4D05120A
5A, 1200V
SiC Schottky
CDC=42.3 uF
Q2
RG
D.U.T
C2M0160120D
Figure 30. Clamped Inductive Switching
Waveform Test Circuit
Q1
RG
L=256 uH
VDC
CDC=42.3 uF
D.U.T
C2M0160120D
VGS= - 5V
RG
Q2
C2M0160120D
Figure 31. Body Diode Recovery Test Circuit
ESD Ratings
8
ESD Test
Total Devices Sampled
Resulting Classification
ESD-HBM
All Devices Passed 1000V
2 (>2000V)
ESD-MM
All Devices Passed 400V
C (>400V)
ESD-CDM
All Devices Passed 1000V
IV (>1000V)
C2M0160120D Rev. B
Package Dimensions
POS
Package TO-247-3
T
V
U
W
Pinout Information:
•
•
•
Pin 1 = Gate
Pin 2, 4 = Drain
Pin 3 = Source
Inches
Millimeters
Min
Max
Min
A
.190
.205
4.83
5.21
A1
.090
.100
2.29
2.54
A2
.075
.085
1.91
2.16
b
.042
.052
1.07
1.33
b1
.075
.095
1.91
2.41
b2
.075
.085
1.91
2.16
b3
.113
.133
2.87
3.38
b4
.113
.123
2.87
3.13
c
.022
.027
0.55
0.68
D
.819
.831
20.80
21.10
D1
.640
.695
16.25
17.65
D2
.037
.049
0.95
1.25
E
.620
.635
15.75
16.13
E1
.516
.557
13.10
14.15
5.10
E2
.145
.201
3.68
E3
.039
.075
1.00
1.90
E4
.487
.529
12.38
13.43
e
.214 BSC
N
3
5.44 BSC
3
L
.780
.800
19.81
20.32
L1
.161
.173
4.10
4.40
ØP
.138
.144
3.51
3.65
Q
.216
.236
5.49
6.00
S
.238
.248
6.04
6.30
T
9˚
11˚
9˚
11˚
U
9˚
11˚
9˚
11˚
V
2˚
8˚
2˚
8˚
W
2˚
8˚
2˚
8˚
Recommended Solder Pad Layout
TO-247-3
9
C2M0160120D Rev. B
Max
Part Number
Package
Marking
C2M0160120D
TO-247-3
C2M0160120
Notes
• RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred
to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance
with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can
be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.
• REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable
future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration.
REACh banned substance information (REACh Article 67) is also available upon request.
•
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into
the human body nor in applications in which failure of the product could lead to death, personal injury or property
damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines,
cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control
systems, air traffic control systems.
Related Links
•
•
•
C2M PSPICE Models: www.cree.com/power
SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power
Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power
Copyright © 2014 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
10
C2M0160120D Rev. B
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power