VDS ID @ 25˚C C2M0160120D Silicon Carbide Power MOSFET TM C2M MOSFET Technology RDS(on) 1200 V 19 A 160 mΩ N-Channel Enhancement Mode Features • • • • • • • Package New C2M SiC MOSFET technlogy High Blocking Voltage with Low On-Resistance High Speed Switching with Low Capacitances Easy to Parallel and Simple to Drive Avalanche Ruggedness Resistant to Latch-Up Halogen Free, RoHS Compliant TO-247-3 Benefits • • • • Higher System Efficiency Reduced Cooling Requirements Increased Power Density Increased System Switching Frequency Applications • • • • Solar Inverters Switch Mode Power Supplies High Voltage DC/DC Converters LED Lighting Power Supplies Part Number Package C2M0160120D TO-247-3 Maximum Ratings (TC = 25 ˚C unless otherwise specified) Symbol Value Unit Test Conditions VDSmax Drain - Source Voltage 1200 V VGS = 0 V, ID = 100 μA VGSmax Gate - Source Voltage -10/+25 V Absolute maximum values VGSop Gate - Source Voltage -5/+20 V Recommended operational values ID Continuous Drain Current ID(pulse) PD Pulsed Drain Current Power Dissipation TJ , Tstg 1 Parameter Operating Junction and Storage Temperature 19 12.5 VGS = 20 V, TC = 25˚C Fig. 19 VGS = 20 V, TC = 100˚C 40 A Pulse width tP limited by Tjmax Fig. 22 125 W TC=25˚C , TJ = 150 ˚C Fig. 20 -55 to +150 ˚C ˚C TL Solder Temperature 260 Md Mounting Torque 1 8.8 C2M0160120D Rev. B A Note 1.6mm (0.063”) from case for 10s Nm M3 or 6-32 screw lbf-in Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol V(BR)DSS VGS(th) Parameter Drain-Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current Gate-Source Leakage Current Typ. V VGS = 0 V, ID = 100 μA 2.5 V VDS = 10V, IDS = 2.5 mA 1.8 1.9 V VDS = 10V, IDS = 2.5 mA, TJ = 150ºC 100 μA VDS = 1200 V, VGS = 0 V 250 nA VGS = 20 V, VDS = 0 V 1 160 Drain-Source On-State Resistance Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Eoss Coss Stored Energy EAS Avalanche Energy, Single Pluse EON Turn-On Switching Energy 79 EOFF Turn Off Switching Energy 57 td(on) Turn-On Delay Time RG(int) mΩ 4.8 Ciss tf 196 290 Transconductance td(off) Test Conditions 2.4 gfs tr Max. Unit 1200 Gate Threshold Voltage IGSS RDS(on) Min. VGS = 20 V, ID = 10A, TJ = 150ºC VDS= 20 V, IDS= 10 A S 4.3 VGS = 20 V, ID = 10 A VDS= 20 V, IDS= 10 A, TJ = 150ºC 525 VGS = 0 V 47 pF 4 VDS = 1000 V Note Fig. 11 Fig. 4, 5, 6 Fig. 7 Fig. 17, 18 f = 1 MHz 25 μJ VAC = 25 mV Fig. 16 600 mJ ID = 10A, VDD = 50V Fig. 29 μJ VDS = 800 V, VGS = -5/20 V, ID = 10A, RG(ext) = 2.5Ω, L= 256 μH Fig. 25 ns VDD = 800 V, VGS = -5/20 V ID = 10 A RG(ext) = 2.5 Ω, RL = 80 Ω Timing relative to VDS Per IEC60747-8-4 pg 83 Fig. 27 Ω f = 1 MHz, VAC = 25 mV nC VDS = 800 V, VGS = -5/20 V ID = 10 A Per IEC60747-8-4 pg 21 9 Rise Time 11 Turn-Off Delay Time 16 Fall Time 10 Internal Gate Resistance 6.5 Qgs Gate to Source Charge 7 Qgd Gate to Drain Charge 14 Qg Total Gate Charge 34 Fig. 12 Reverse Diode Characteristics Symbol VSD Parameter Diode Forward Voltage IS Continuous Diode Forward Current trr Reverse Recovery Time Qrr Reverse Recovery Charge Irrm Peak Reverse Recovery Current Typ. Max. Unit 3.3 V 3.1 19 A 23 ns 105 nC 9 A Test Conditions VGS = -5 V, IF=5 A Note VGS = -5V, IF=5 A, TJ = 150 ºC Fig. 8,9, 10 TC = 25˚C Note 1 VGS = - 5 V, ISD = 10 A, VR = 800 V dif/dt = 3200 A/µs Note 1 Note (1): When using SiC Body Diode the maximum recommended VGS = -5V Thermal Characteristics Symbol 2 Parameter RθJC Thermal Resistance from Junction to Case RθJA Thermal Resistance From Junction to Ambient C2M0160120D Rev. B Typ. Max. 0.9 1.0 40 Unit K/W Test Conditions Note Fig. 21 Typical Performance 40 35 Conditions: TJ = 25 °C tp < 200 µs VGS = 20 V 35 VGS = 18 V 30 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 40 Conditions: TJ = -55 °C tp < 200 µs VGS = 16 V 25 VGS = 14 V 20 15 VGS = 12 V 10 VGS = 10 V 5 VGS = 20 V VGS = 18 V 30 VGS = 16 V 25 VGS = 14 V 20 VGS = 12 V 15 VGS = 10 V 10 5 0 0 0.0 2.5 5.0 7.5 10.0 12.5 0.0 2.5 5.0 Drain-Source Voltage, VDS (V) Figure 1. Output Characteristics TJ = -55 ºC 40 VGS = 16 V 25 VGS = 14 V 20 12.5 VGS = 12 V VGS = 10 V 15 Conditions: IDS = 10 A VGS = 20 V tp < 200 µs 2.0 VGS = 18 V On Resistance, RDS On (P.U.) Drain-Source Current, IDS (A) VGS = 20 V 30 10.0 Figure 2. Output Characteristics TJ = 25 ºC 2.5 Conditions: TJ = 150 °C tp < 200 µs 35 7.5 Drain-Source Voltage, VDS (V) 10 1.5 1.0 0.5 5 0 0.0 2.5 5.0 7.5 10.0 0.0 12.5 -50 -25 0 Drain-Source Voltage, VDS (V) TJ = 150 °C 320 240 TJ = 25 °C 160 TJ = -55 °C 80 0 100 125 150 280 240 VGS = 14 V 200 VGS = 16 V 160 VGS = 18 V VGS = 20 V 120 80 40 0 0 5 10 15 20 25 30 Drain-Source Current, IDS (A) Figure 5. On-Resistance vs. Drain Current For Various Temperatures 3 75 Conditions: IDS = 10 A tp < 200 µs 320 On Resistance, RDS On (mOhms) On Resistance, RDS On (mOhms) 360 Conditions: VGS = 20 V tp < 200 µs 400 50 Figure 4. Normalized On-Resistance vs. Temperature Figure 3. Output Characteristics TJ = 150 ºC 480 25 Junction Temperature, TJ (°C) C2M0160120D Rev. B 35 -50 -25 0 25 50 75 100 125 Junction Temperature, TJ (°C) Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 150 Typical Performance Drain-Source Current, IDS (A) 20 -4 -5 Conditions: VDS = 20 V tp < 200 µs -3 -2 -1 0 Condition: TJ = -55 °C tp < 200 µs VGS = -5 V TJ = 150 °C 0 15 -5 Drain-Source Current, IDS (A) VGS = 0 V TJ = 25 °C 10 TJ = -55 °C 5 -10 VGS = -2 V -15 -20 -25 -30 0 0 2 4 6 8 10 12 14 -35 Gate-Source Voltage, VGS (V) Drain-Source Voltage, VDS (A) Figure 7. Transfer Characteristic for Various Junction Temperatures -4 -3 -2 -1 Condition: TJ = 25 °C tp < 200 µs VGS = -5 V VGS = 0 V Drain-Source Current, IDS (A) 0 -5 -4 -3 -2 -1 0 -5 -10 VGS = -2 V -15 -20 -25 0 Condition: TJ = 150 °C tp < 200 µs VGS = 0 V -15 -20 -25 -30 -35 -35 Drain-Source Voltage, VDS (A) Drain-Source Voltage, VDS (A) Figure 9. Body Diode Characteristic at 25 ºC 3.5 3.0 25 2.0 1.5 1.0 0.5 0.0 -25 0 25 50 75 100 125 Junction Temperature TJ (°C) Figure 11. Threshold Voltage vs. Temperature 4 C2M0160120D Rev. B Conditions: IDS = 10 A IGS = 100 mA VDS = 800 V TJ = 25 °C 20 Typ Gate-Source Voltage, VGS (V) Threshold Voltage, Vth (V) Figure 10. Body Diode Characteristic at 150 ºC Conditons VDS = 10 V IDS = 2.5 mA -50 -5 -10 -30 2.5 0 VGS = -2 V VGS = -5 V Drain-Source Current, IDS (A) -5 Figure 8. Body Diode Characteristic at -55 ºC 150 15 10 5 0 -5 0 5 10 15 20 25 30 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 35 40 Typical Performance -5 -4 -3 -2 -1 0 -5 -4 -3 -2 -1 0 0 Conditions: TJ = -55 °C tp < 200 µs 0 Conditions: TJ = 25 °C tp < 200 µs VGS = 0 V Drain-Source Current, IDS (A) -10 VGS = 10 V -15 VGS = 15 V -20 VGS = 20 V -25 -5 VGS = 5 V Drain-Source Current, IDS (A) -5 VGS = 5 V VGS = 0 V -10 VGS = 10 V -15 VGS = 15 V -20 VGS = 20 V -25 -30 -35 Drain-Source Voltage, VDS (V) Figure 13. 3rd Quadrant Characteristic at -55 ºC -5 -4 -3 -30 -2 -1 Figure 14. 3rd Quadrant Characteristic at 25 ºC 0 30 0 VGS = 5 V Drain-Source Current, IDS (A) VGS = 0 V 25 -5 VGS = 10 V -10 VGS = 15 V -15 VGS = 20 V -20 -25 Stored Energy, EOSS (µJ) Conditions: TJ = 150 °C tp < 200 µs -35 Drain-Source Voltage, VDS (V) 20 15 10 5 -30 0 Drain-Source Voltage, VDS (V) 0 -35 Capacitance (pF) Capacitance (pF) 1000 Coss 100 10 800 1000 1200 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz Ciss 100 Coss 10 Crss Crss 1 1 0 50 100 Drain-Source Voltage, VDS (V) 150 Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 5 600 Figure 16. Output Capacitor Stored Energy Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz Ciss 400 Drain to Source Voltage, VDS (V) Figure 15. 3rd Quadrant Characteristic at 150 ºC 1000 200 C2M0160120D Rev. B 200 0 200 400 600 Drain-Source Voltage, VDS (V) 800 Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V) 1000 Typical Performance 20 16 14 12 10 8 6 4 2 100 80 60 40 20 0 -55 -30 -5 20 45 70 95 120 0 145 -55 Case Temperature, TC (°C) -30 20 45 70 95 120 1 10 µs 0.5 Drain-Source Current, IDS (A) 0.1 0.05 0.02 SinglePulse 10E-3 Limited by RDS On 10.00 0.3 100E-3 0.01 10E-6 100E-6 1E-3 10E-3 Time, tp (s) 100E-3 100 ms 1.00 0.10 Conditions: TC = 25 °C D = 0, Parameter: tp 0.1 1 Switching Energy (uJ) 350 300 ETotal 250 250 EOn 200 150 EOff 100 100 Conditions: TJ = 25 °C VDD = 600 V RG(ext) = 2.5 Ω VGS = -5/+20 V FWD = C4D05120A L = 256 μH 300 Switching Energy (uJ) 400 10 1000 Figure 22. Safe Operating Area 350 Conditions: TJ = 25 °C VDD = 800 V RG(ext) = 2.5 Ω VGS = -5/+20 V FWD = C4D05120A L = 256 μH 1 Drain-Source Voltage, VDS (V) Figure 21. Transient Thermal Impedance (Junction - Case) 450 100 µs 1 ms 0.01 1E-6 145 Figure 20. Maximum Power Dissipation Derating vs. Case Temperature 1E-3 ETotal 200 EOn 150 EOff 100 50 50 0 0 0 5 10 15 20 Drain to Source Current, IDS (A) Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDS = 800 V) 6 -5 Case Temperature, TC (°C) Figure 19. Continuous Drain Current Derating vs. Case Temperature Junction To Case Impedance, ZthJC (oC/W) Conditions: TJ ≤ 150 °C 120 Maximum Dissipated Power, Ptot (W) Drain-Source Continous Current, IDS (DC) (A) 140 Conditions: TJ ≤ 150 °C 18 C2M0160120D Rev. B 25 0 5 10 15 20 25 Drain to Source Current, IDS (A) Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDS = 600 V) Typical Performance 350 240 Conditions: TJ = 25 °C VDD = 800 V IDS = 10 A VGS = -5/+20 V FWD = C4D05120A L = 256 μH Switching Loss (uJ) 250 Conditions: IDS = 10 A VDD = 800 V RG(ext) = 2.5 Ω VGS = -5/+20 V FWD = C4D10120A L = 256 µH 200 ETotal Swithcing Loss (uJ) 300 200 EOn 150 EOff 100 160 ETotal 120 EOn 80 EOff 40 50 0 0 0 5 10 15 20 25 30 External Gate Resistor RG(ext) (Ohms) -50 -25 0 25 50 75 100 Figure 25. Clamped Inductive Switching Energy vs. RG(ext) Figure 26. Clamped Inductive Switching Energy vs. Temperature 35 Conditions: TJ = 25 °C VDD = 800 V RL = 80 Ω VGS = -5/+20 V 30 Time (ns) 25 td (off) tf tr 20 15 td (on) 10 5 0 0 5 10 15 20 25 30 External Gate Resistor, RG(ext) (Ohms) Figure 28. Switching Times Definition Figure 27. Switching Times vs. RG(ext) 18 Conditons: VDD = 50 V 16 Avalanche Current (A) 14 12 10 8 6 4 2 0 0 25 50 75 100 125 150 Time in Avalanche TAV (us) Figure 29. Single Avalanche SOA curve 7 C2M0160120D Rev. B 125 Junction Temperature, TJ (°C) 175 200 150 Test Circuit Schematic D1 L=256 uH VDC C4D05120A 5A, 1200V SiC Schottky CDC=42.3 uF Q2 RG D.U.T C2M0160120D Figure 30. Clamped Inductive Switching Waveform Test Circuit Q1 RG L=256 uH VDC CDC=42.3 uF D.U.T C2M0160120D VGS= - 5V RG Q2 C2M0160120D Figure 31. Body Diode Recovery Test Circuit ESD Ratings 8 ESD Test Total Devices Sampled Resulting Classification ESD-HBM All Devices Passed 1000V 2 (>2000V) ESD-MM All Devices Passed 400V C (>400V) ESD-CDM All Devices Passed 1000V IV (>1000V) C2M0160120D Rev. B Package Dimensions POS Package TO-247-3 T V U W Pinout Information: • • • Pin 1 = Gate Pin 2, 4 = Drain Pin 3 = Source Inches Millimeters Min Max Min A .190 .205 4.83 5.21 A1 .090 .100 2.29 2.54 A2 .075 .085 1.91 2.16 b .042 .052 1.07 1.33 b1 .075 .095 1.91 2.41 b2 .075 .085 1.91 2.16 b3 .113 .133 2.87 3.38 b4 .113 .123 2.87 3.13 c .022 .027 0.55 0.68 D .819 .831 20.80 21.10 D1 .640 .695 16.25 17.65 D2 .037 .049 0.95 1.25 E .620 .635 15.75 16.13 E1 .516 .557 13.10 14.15 5.10 E2 .145 .201 3.68 E3 .039 .075 1.00 1.90 E4 .487 .529 12.38 13.43 e .214 BSC N 3 5.44 BSC 3 L .780 .800 19.81 20.32 L1 .161 .173 4.10 4.40 ØP .138 .144 3.51 3.65 Q .216 .236 5.49 6.00 S .238 .248 6.04 6.30 T 9˚ 11˚ 9˚ 11˚ U 9˚ 11˚ 9˚ 11˚ V 2˚ 8˚ 2˚ 8˚ W 2˚ 8˚ 2˚ 8˚ Recommended Solder Pad Layout TO-247-3 9 C2M0160120D Rev. B Max Part Number Package Marking C2M0160120D TO-247-3 C2M0160120 Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links • • • C2M PSPICE Models: www.cree.com/power SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10 C2M0160120D Rev. B Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power