VDS 1200 V ID @ 25˚C 31.6 A C2M0080120D Silicon Carbide Power MOSFET TM Z-FET MOSFET RDS(on) 80 mΩ N-Channel Enhancement Mode Features • • • • • • Package High Speed Switching with Low Capacitances High Blocking Voltage with Low RDS(on) Easy to Parallel and Simple to Drive Avalanche Ruggedness Resistant to Latch-Up Halogen Free, RoHS Compliant TO-247-3 Benefits • • • Higher System Efficiency Reduced Cooling Requirements Increased System Switching Frequency Applications • • • • • Solar Inverters High Voltage DC/DC Converters Motor Drives Switch Mode Power Supplies UPS Part Number Package C2M0080120D TO-247-3 Maximum Ratings (TC = 25 ˚C unless otherwise specified) Symbol IDS (DC) Parameter Continuous Drain Current IDS (pulse) Pulsed Drain Current VGS Gate Source Voltage Ptot Power Dissipation TJ , Tstg 1 Operating Junction and Storage Temperature Value 31.6 20 A A -10/+25 V 208 W -55 to +150 ˚C ˚C Solder Temperature 260 Md Mounting Torque 1 8.8 Test Conditions VGS@20 V, TC = 25˚C Note Fig. 16 VGS@20 V, TC = 100˚C 80 TL C2M0080120D Rev. A Unit Pulse width tP = 50 μs duty limited by Tjmax, TC = 25˚C TC=25˚C 1.6mm (0.063”) from case for 10s Nm M3 or 6-32 screw lbf-in Fig. 15 Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol V(BR)DSS Parameter Drain-Source Breakdown Voltage Min. Max. Unit 1200 1.7 VGS(th) Typ. V 2.2 V 3.2 Gate Threshold Voltage 1.2 1.7 V TBD 1 IDSS Zero Gate Voltage Drain Current IGSS Gate-Source Leakage Current RDS(on) 10 Drain-Source On-State Resistance 80 98 150 208 9.8 Transconductance Ciss Input Capacitance Coss Output Capacitance 80 Crss Reverse Transfer Capacitance 6.5 Eoss Coss Stored Energy 40 Fall Time 18.4 Turn-Off Delay Time 23.2 trv Rise Time 13.6 RG Internal Gate Resistance td(off)v VDS = 10V, ID = 1 mA VDS = 10V, ID = 10 mA VDS = 10V, ID = 1 mA, TJ = 150ºC Fig. 8 VDS = 10V, ID = 10 mA, TJ = 150ºC VDS = 1200 V, VGS = 0 V VDS = 1200 V, VGS = 0 V TJ = 150ºC μA VGS = 20 V, VDS = 0 V mΩ 950 12.0 Note VGS = 0 V, ID = 100 μA μA S 8.5 Turn-On Delay Time tfv 250 0.25 gfs td(on)v 100 Test Conditions VGS = 20 V, ID = 20 A VGS = 20 V, ID = 20A, TJ = 150ºC VDS= 20 V, IDS= 20 A VDS= 20 V, IDS= 20 A, TJ = 150ºC VGS = 0 V pF VDS = 1000 V Fig. 6 Fig. 4 Fig. 13, 14 f = 1 MHz μJ VAC = 25 mV Fig. 12 VDD = 800 V, VGS = 0/20 V ID = 20 A ns RG(ext) = 0 Ω, RL = 40 Ω Fig. 20 Timing relative to VDS 4.6 Ω f = 1 MHz, VAC = 25 mV Built-in SiC Body Diode Characteristics Symbol Parameter VSD Diode Forward Voltage trr Reverse Recovery Time Qrr Irrm Typ. Max. Unit 3.3 V 3.1 40 ns Reverse Recovery Charge 165 nC Peak Reverse Recovery Current 6.4 A Test Conditions Note VGS = -5 V, IF=10 A, TJ = 25 ºC VGS = -2 V, IF=10 A, TJ = 25 ºC VGS = -5 V, IF=20 A, TJ = 25 ºC VR = 800 V, diF/dt= 350 A/μs Thermal Characteristics Symbol Parameter Typ. Max. RθJC Thermal Resistance from Junction to Case 0.60 0.65 RθCS Case to Sink, w/ Thermal Compound TBD RθJA Thermal Resistance From Junction to Ambient Unit Test Conditions K/W Note Fig. 17 40 Gate Charge Characteristics Symbol 2 Parameter Typ. Qgs Gate to Source Charge 10.8 Qgd Gate to Drain Charge 18.0 Qg Gate Charge Total 49.2 C2M0080120D Rev. A Max. Unit nC Test Conditions Note VDS = 800 V, VGS = 0/20 V ID =20 A Per JEDEC24 pg 27 Fig. 28 Typical Performance 100 VGS = 18 V 80 VGS = 16 V 60 VGS = 14 V 40 VGS = 12 V 20 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 100 VGS = 20 V Conditions: TJ = -55 °C tp = 50 µs VGS = 10 V 0 VGS = 20 V Conditions: TJ = 25 °C tp = 50 µs VGS = 18 V 80 VGS = 16 V VGS = 14 V 60 VGS = 12 V 40 VGS = 10 V 20 0 0 3 6 9 12 15 18 0 3 6 Drain-Source Voltage VDS (V) Figure 1. Typical Output Characteristics TJ = -55 ºC Conditions: TJ = 150 °C tp = 50 µs VGS = 18 V 18 Parameters: VDS = 20 V VGS = 20 V VGS = 16 V 60 VGS = 14 V VGS = 12 V 40 VGS = 10 V 20 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 15 Figure 2. Typical Output Characteristics TJ = 25 ºC 0 0 3 6 9 12 15 30 150 °C 20 25 °C 10 0 18 0 Drain-Source Voltage VDS (V) 2 Figure 3. Typical Output Characteristics TJ = 150 ºC 0.20 6 8 10 12 Gate-Source Voltage, VGS (V) Parameters: VGS = 20 V Parameters: VGS = 20 V IDS = 20 A 2.0 4 150 °C 125 °C 0.16 On Resistance, RDS On (Ω) 1.8 1.5 1.3 1.0 14 Figure 4. Typical Transfer Characteristics 2.3 On Resistance, RDS On (pu) 12 40 80 100 °C 0.12 75 °C 25 °C 0 °C 0.08 -55 °C 0.8 0.5 0.04 -50 -25 0 25 50 75 100 125 150 Junction Temperature, TJ (°C) Figure 5. Normalized On-Resistance vs. Temperature 3 9 Drain-Source Voltage VDS (V) C2M0080120D Rev. A 0 10 20 30 Drain-Source Current, IDS (A) Figure 6. On-Resistance vs. Drain Current 40 Typical Performance 0.30 3.5 Parameters: IDS = 20 A 0.25 Threshold Voltage, Vth (V) On Resistance, RDS On (Ω) -55 °C 0.20 150 °C 0.15 0.10 Conditions: VDS = 10 V IDS = 1 mA 3.0 25 °C 0.05 2.5 Typical 2.0 1.5 Minimum 1.0 0.5 0.00 0.0 10 12 14 16 18 20 -50 -25 0 25 Gate-Source Voltage, VGS (V) -4 -3 -2 -1 0 -5 -4 150 -3 -2 -1 0 0 -20 VGS = 5 V VGS = 0 V -30 VGS = 10 V VGS = 15 V VGS = 20 V -40 -10 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 125 Conditions: TJ = 25 °C -10 -20 VGS = 10 V VGS = 15 V VGS = 20 V -3 -2 -1 -30 -40 -50 Drain-Source Voltage, VDS (V) Figure 9. Typical 3rd Quadrant Characteristics TJ = -55 ºC -4 VGS = 5 V VGS = 0 V -50 Drain-Source Voltage, VDS (V) Conditions: TJ = 150 °C 100 0 Conditions: TJ = -55 °C -5 75 Figure 8. Typical and Minimum Threshold Voltage vs. Temperature Figure 7. On-Resistance vs. Gate Voltage -5 50 Junction Temperature, TJ (°C) Figure 10. Typical 3rd Quadrant Characteristics TJ = 25 ºC 0 60 0 VGS = 0 V VGS = 5 V 50 VGS = 10 V VGS = 15 V VGS = 20 V -20 -30 -40 Stored Energy, EOSS (µJ) Drain-Source Current, IDS (A) -10 40 30 20 10 0 Drain-Source Voltage, VDS (V) -50 Figure 11. Typical 3rd Quadrant Characteristics TJ = 150 ºC 4 C2M0080120D Rev. A 0 200 400 600 800 1000 Drain-Source Voltage, VDS (V) Figure 12. Typical transfer Characteristics 1200 Typical Performance 10000 10000 CISS CISS 1000 Capacitance (pF) Capacitance (pF) 1000 COSS 100 COSS 100 CRSS 10 10 1 0 50 100 150 200 Figure 13. Typical Typical Capacitances vs. Drain-Source Voltage (0 - 200V) CRSS 1 0 Drain-Source Voltage, VDS (V) 200 Continuous Drain-Source Current, IDS (A) 200 150 100 50 0 1000 30 25 20 15 10 5 -25 0 25 50 75 100 125 150 -50 -25 Case Temperature, TC (°C) 25 50 75 100 125 Figure 16. Continuous Current Derating Curve 1.000 100 DC: Limited by RDS(on) 0.5 Drain-Source Current, IDS (A) 0.3 0.1 0.05 0.02 0.010 0.01 tp SinglePulse 0.001 0.000001 0 Case Temperatrue, TC (oC) Figure 15. Power Dissipation Derating Curve Junctino-Case Thermal Impedance, ZthJC (oC/W) 800 0 -50 0.00001 0.001 0.01 Pulse Time, tp (s) C2M0080120D Rev. A 1 0.1 T 0.0001 10 D = tp / T 0.1 Figure 17. Typical Transient Thermal Impedance (Junction - Case) with Duty Cycle 5 600 35 Condition: TJ = 150 °C 0.100 400 Drain-Source Voltage, VDS (V) Figure 14. Typical Typical Capacitances vs. Drain-Source Voltage (0 - 1000V) 250 Dissipated Power, PD (W) Conditions VGS = 0 V ftest = 1 MHz Conditions: VGS = 0 V ftest = 1 MHz 1 1 10 100 Drain-Source Voltage, VDS (V) Figure 18. Safe Operating Area 1000 150 Typical Performance 20 80 Conditions: VDS = 800 V IDS = 20 A IGS = 10 mA TJ = 25 C 60 tD(off) tr 50 12 Time (ns) Gate-Source Voltage, VGS (V) 16 Conditions: VGS = 0 / 20 V VDS = 800 V RL = 40 Ω IDS = 20 A TJ = 25 °C 70 8 tf 40 30 20 4 tD(on) 10 0 0 0 10 20 30 40 50 0 Gate-Source Charge, QGS (nC) Figure 19. Typical Gate Characteristic 25 ºC 15 20 25 600 Conditions: VGS = 0 / 20 V RG = 2.5 Ω VDS = 800 V L = 856 µH FWD = C4D10120 TJ = 25 °C ETOT,SW 500 ETOT,SW Switching Energy (µJ) 400 Switching Energy (µJ) 10 External Gate Resistor (Ω) Figure 20. Resistive Switching Times vs. RG 500 300 EON 200 EOFF 100 400 EON 300 EOFF 200 Conditions: VGS = 0 / 20 V RG = 6.8 Ω VDS = 800 V L = 856 µH FWD = C4D10120 IDS = 20 A 100 0 0 0 5 10 15 Peak Drain-Source Current, IDS (A) Figure 21. Clamped Inductive Switching Energy vs. Drain Current (Fig. 24) 6 5 C2M0080120D Rev. A 20 25 50 75 100 Junction Temperature, TJ (°C) 125 Figure 22. Clamped Inductive Switching Energy vs. Junction Temperature (Fig. 24) 150 Clamped Inductive Switch Testing Fixture and Waveforms C4D10120D 10A, 1200V SiC Schottky L = 856 µH V = 800 V C = 42.3 µF D.U.T. C2M0080120D Figure 23. Clamped Inductive Switching Waveform Test Circuit t On VDS td (On) t Off tr td (Off) tf VDS On 90% 90% 10% VDS Off 10% VGS On 90% VGS 10% VGS Off Figure 24. Switching Test Waveforms for Transition Times D.U.T. C2M0080120D L = 856 µH V = 800 V C = 42.3 µF C2M0080120D Figure 25. Body Diode Recovery Test Circuit 7 C2M0080120D Rev. A Test Circuit Diagrams and Waveforms trr Qrr= id dt tx ∫ trr Ic tx 10% Irr 10% Vcc Vcc Vpk Irr Diode Recovery Waveforms t2 Erec= id dt t1 ∫ Diode Reverse Recovery Energy t1 t2 Figure 26. Body Diode Recovery Waveform EA = 1/2L x ID2 FOR OFFICIAL USE ONLY – Not Cleared for Open Release FOR OFFICIAL USE ONLY – Not Cleared for Open Release Figure 27. Unclamped Inductive Switching Test Circuit Figure 28. Unclamped Inductive Switching waveform for Avalanche Energy ESD Ratings 8 ESD Test Total Devices Sampled Resulting Classification ESD-HBM All Devices Passed 1000V 2 (>2000V) ESD-MM All Devices Passed 400V C (>400V) ESD-CDM All Devices Passed 1000V IV (>1000V) C2M0080120D Rev. A Package Dimensions Package TO-247-3 POS A (2) (1) (3) Inches Millimeters Min Max Min Max .190 .205 4.83 5.21 A1 .090 .100 2.29 2.54 A2 .075 .085 1.91 2.16 b .042 .052 1.07 1.33 b1 .075 .095 1.91 2.41 b2 .075 .085 1.91 2.16 b3 .113 .133 2.87 3.38 b4 .113 .123 2.87 3.13 c .022 .027 0.55 0.68 D .819 .831 20.80 21.10 D1 .640 .695 16.25 17.65 D2 .037 .049 0.95 1.25 E .620 .635 15.75 16.13 E1 .516 .557 13.10 14.15 E2 .145 .201 3.68 5.10 E3 .039 .075 1.00 1.90 E4 .487 .529 12.38 13.43 e .214 BSC 5.44 BSC N 3 3 L .780 .800 19.81 20.32 L1 .161 .173 4.10 4.40 ØP .138 .144 3.51 3.65 Q .216 .236 5.49 6.00 S .238 .248 6.04 6.30 Recommended Solder Pad Layout Part Number Package Marking C2M0080120D TO-247-3 C2M0080120 TO-247-3 This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems. Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks and Z-REC and Z-FET are trademarks of Cree, Inc. 9 C2M0080120D Rev. A Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power