Cree C2M0280120D SiC Power MOSFET

VDS
1200 V
ID @ 25˚C 10 A
C2M0280120D
Silicon Carbide Power MOSFET
TM
C2M MOSFET Technology
RDS(on)
280 mΩ
N-Channel Enhancement Mode
Features
•
•
•
•
•
•
•
Package
New C2M SiC MOSFET technlogy
High Blocking Voltage with Low On-Resistance
High Speed Switching with Low Capacitances
Easy to Parallel and Simple to Drive
Avalanche Ruggedness
Resistant to Latch-Up
Halogen Free, RoHS Compliant
TO-247-3
Benefits
•
•
•
•
Higher System Efficiency
Reduced Cooling Requirements
Increased Power Density
Increased System Switching Frequency
Applications
•
•
•
•
LED Lighting Power Supplies
High Voltage DC/DC Converters
Industrial Power Supplies
HVAC
Part Number
Package
C2M0280120D
TO-247-3
Maximum Ratings (TC = 25 ˚C unless otherwise specified)
Symbol
Value
Unit
Test Conditions
VDSmax
Drain - Source Voltage
1200
V
VGS = 0 V, ID = 100 μA
VGSmax
Gate - Source Voltage
-10/+25
V
Absolute maximum values
VGSop
Gate - Source Voltage
-5/+20
V
Recommended operational values
ID
Continuous Drain Current
ID(pulse)
Pulsed Drain Current
PD
Power Dissipation
TJ , Tstg
1
Parameter
Operating Junction and Storage Temperature
10
6
VGS = 20 V, TC = 25 °C
VGS = 20 V, TC = 100 °C
Fig. 19
20
A
Pulse width tP limited by Tjmax
Fig. 22
62.5
W
TC=25 °C, TJ = 150 °C
Fig. 20
-55 to
+150
˚C
˚C
TL
Solder Temperature
260
Md
Mounting Torque
1
8.8
C2M0280120D Rev. A
A
Note
1.6 mm (0.063”) from case for 10s
Nm
M3 or 6-32 screw
lbf-in
Electrical Characteristics (TC = 25˚C unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-Source Breakdown Voltage
VGS(th)
Gate Threshold Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate-Source Leakage Current
RDS(on)
Min.
Typ.
Max. Unit
1200
Test Conditions
V
VGS = 0 V, ID = 100 μA
2.4
2.8
V
VDS = 10 V, ID = 1.25mA
1.8
2.1
V
VDS = 10 V, ID = 1.25mA,TJ = 150 °C
100
μA
VDS = 1200 V, VGS = 0 V
250
nA
VGS = 20 V, VDS = 0 V
1
280
Drain-Source On-State Resistance
370
530
2.8
mΩ
VGS = 20 V, ID = 6 A, TJ = 150 °C
VDS= 20 V, IDS= 6 A
Fig. 11
Fig.
4,5,6
gfs
Transconductance
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Eoss
Coss Stored Energy
12.5
μJ
VAC = 25 mV
Fig 16
EAS
Avalanche Energy, Single Pluse
280
mJ
ID = 6A, VDD = 50V
Fig. 29
EON
Turn-On Switching Energy
32
EOFF
Turn Off Switching Energy
37
μJ
VDS = 800 V, VGS = -5/20 V,
ID = 6A, RG(ext) = 2.5Ω, L= 412 μH
Fig. 25
td(on)
Turn-On Delay Time
5.2
Rise Time
7.6
ns
VDD = 800 V, VGS = -5/20 V
ID = 6 A,
RG(ext) = 2.5 Ω, RL = 133 Ω
Timing relative to VDS
Per IEC60747-8-4 pg 83
Fig. 27
Ω
f = 1 MHz, VAC = 25 mV, ESR of CISS
nC
VDS = 800 V, VGS = -5/20 V
ID = 6 A
Per IEC60747-8-4 pg 21
tr
td(off)
tf
RG(int)
S
VGS = 20 V, ID = 6 A
Note
2.4
259
VGS = 0 V
23
pF
3
Turn-Off Delay Time
9.9
Internal Gate Resistance
VDS = 1000 V
Fig. 7
Fig.
17,18
f = 1 MHz
10.8
Fall Time
VDS= 20 V, IDS= 6 A, TJ = 150 °C
11.4
Qgs
Gate to Source Charge
5.6
Qgd
Gate to Drain Charge
7.6
Qg
Gate Charge Total
20.4
Fig. 12
Reverse Diode Characteristics
Symbol
VSD
Parameter
Diode Forward Voltage
Typ.
Max.
Unit
Test Conditions
Note
3.3
V
VGS = - 5 V, ISD = 3 A
3.1
V
VGS = - 5 V, ISD = 3 A, TJ = 150 °C
A
TC = 25˚C
Note 1
VGS = - 5 V, ISD = 6 A, VR = 800 V
dif/dt = 1000 A/µs
Note 1
IS
Continuous Diode Forward Current
10
trr
Reverse Recovery time
24
ns
Qrr
Reverse Recovery Charge
70
nC
Irrm
Peak Reverse Recovery Current
4
A
Fig. 8,
9, 10
Note (1): When using SiC Body Diode the maximum recommended VGS = -5V
Thermal Characteristics
Symbol
2
Parameter
RθJC
Thermal Resistance from Junction to Case
RθJC
Thermal Resistance from Junction to Ambient
C2M0280120D Rev. A
Typ.
Max.
1.8
2.0
40
Unit
°C/W
Test Conditions
Note
Fig. 21
Typical Performance
14
Drain-Source Current, IDS (A)
16
Conditions:
TJ = -55 °C
tp < 200 µs
12
14
VGS = 16 V
VGS = 18 V
VGS = 14 V
10
8
VGS = 12 V
6
4
VGS = 10 V
2
2.5
5.0
7.5
10.0
12
VGS = 20 V
VGS = 18 V
10
VGS = 12 V
8
6
VGS = 10 V
4
0
12.5
0.0
2.5
5.0
Drain-Source Voltage, VDS (V)
VGS = 18 V
12
Conditions:
IDS = 6 A
VGS = 20 V
tp < 200 µs
1.8
1.6
VGS = 20 V
On Resistance, RDS On (P.U.)
Drain-Source Current, IDS (A)
VGS = 16 V
VGS = 14 V
VGS = 12 V
10
VGS = 10 V
8
6
4
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
0.0
2.5
5.0
7.5
10.0
-50
12.5
-25
0
700
Conditions:
VGS = 20 V
tp < 200 µs
700
On Resistance, RDS On (mOhms)
600
TJ = 150 °C
500
400
TJ = 25 °C
TJ = -55 °C
200
75
100
125
150
Conditions:
IDS = 6 A
tp < 200 µs
600
300
50
Figure 4. Normalized On-Resistance vs. Temperature
Figure 3. Output Characteristics TJ = 150 °C
800
25
Junction Temperature, TJ (°C)
Drain-Source Voltage, VDS (V)
On Resistance, RDS On (mOhms)
12.5
Figure 2. Output Characteristics TJ = 25 °C
2
100
0
500
VGS = 14 V
400
VGS = 16 V
VGS = 18 V
300
VGS = 20 V
200
100
0
0
2
4
6
8
10
12
Drain-Source Current, IDS (A)
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
3
10.0
2.0
Conditions:
TJ = 150 °C
tp < 200 µs
14
7.5
Drain-Source Voltage, VDS (V)
Figure 1. Output Characteristics TJ = -55 °C
16
VGS = 14 V
VGS = 16 V
2
0
0.0
Conditions:
TJ = 25 °C
tp < 200 µs
VGS = 20 V
Drain-Source Current, IDS (A)
16
C2M0280120D Rev. A
14
-50
-25
0
25
50
75
100
125
Junction Temperature, TJ (°C)
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
150
Typical Performance
10
9
-5
-6
Conditions:
VDS = 20 V
tp < 200 µs
-2
-3
VGS = 0 V
TJ = 150 °C
6
TJ = 25 °C
5
4
3
TJ = -55 °C
2
1
0
0
-2
-4
Drain-Source Current, IDS (A)
7
-1
Condition:
TJ = -55 °C
tp < 200 µs
VGS = -5 V
8
Drain-Source Current, IDS (A)
-4
VGS = -2 V
-6
-8
-10
-12
-14
0
0
2
4
6
8
10
12
14
-16
Gate-Source Voltage, VGS (V)
Drain-Source Voltage, VDS (A)
Figure 7. Transfer Characteristic For
Various Junction Temperatures
-5
-4
-3
VGS = -5 V
-2
-1
0
Condition:
TJ = 25 °C
tp < 200 µs
VGS = 0 V
-6
-4
-3
-2
VGS = -2 V
-6
-8
-10
-12
-1
0
Condition:
TJ = 150 °C
tp < 200 µs
VGS = -5 V
-2
-4
Drain-Source Current, IDS (A)
-5
0
VGS = 0 V
VGS = -2 V
-8
-10
-12
-14
-16
-16
Drain-Source Voltage, VDS (A)
Drain-Source Voltage, VDS (A)
Figure 9. Body Diode Characteristic at 25 ºC
Figure 10. Body Diode Characteristic at 150 ºC
4.0
3.5
2.5
Min
1.5
1.0
0.0
-50
-25
0
25
50
75
100
125
Junction Temperature TJ (°C)
Figure 11. Threshold Voltage vs. Temperature
C2M0280120D Rev. A
150
Conditions:
IDS = 6 A
IGS = 100 mA
VDS = 800 V
TJ = 25 °C
20
Gate-Source Voltage, VGS (V)
Threshold Voltage, Vth (V)
Typ
0.5
4
25
Conditons
VDS = 10 V
IDS = 1.25 mA
2.0
-2
-6
-14
3.0
0
-4
Drain-Source Current, IDS (A)
-6
Figure 8. Body Diode Characteristic at -55 ºC
15
10
5
0
-5
0
5
10
15
20
Gate Charge, QG (nC)
Figure 12. Gate Charge Characteristics
25
Typical Performance
-6
-5
-4
-3
-2
-1
0
-6
-5
-4
-3
-2
-1
0
0
VGS = 0 V
0
Conditions:
TJ = 25 °C
tp < 200 µs
-2
Drain-Source Current, IDS (A)
VGS = 5 V
-4
-6
VGS = 10 V
-8
VGS = 15 V
-10
VGS = 20 V
-12
VGS = 0 V
-2
VGS = 5 V
Drain-Source Current, IDS (A)
Conditions:
TJ = -55 °C
tp < 200 µs
-4
VGS = 10 V
-6
VGS = 15 V
-8
-10
VGS = 20 V
-12
-14
-14
-16
Drain-Source Voltage, VDS (V)
Figure 13. 3rd Quadrant Characteristic at -55 ºC
-6
-5
-4
-3
-2
-1
Figure 14. 3rd Quadrant Characteristic at 25 ºC
0
14
0
VGS = 0 V
VGS = 15 V
VGS = 5 V
12
-2
VGS = 10 V
Drain-Source Current, IDS (A)
-4
VGS = 20 V
-6
-8
-10
Stored Energy, EOSS (µJ)
Conditions:
TJ = 150 °C
tp < 200 µs
-12
10
8
6
4
2
-14
0
0
-16
Drain-Source Voltage, VDS (V)
600
800
1000
1000
1200
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
100
Capacitance (pF)
Capacitance (pF)
400
Figure 16. Output Capacitor Stored Energy
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
200
Drain to Source Voltage, VDS (V)
Figure 15. 3rd Quadrant Characteristic at 150 ºC
1000
-16
Drain-Source Voltage, VDS (V)
Coss
10
100
Coss
10
Crss
Crss
1
0
50
100
Drain-Source Voltage, VDS (V)
150
Figure 17. Capacitances vs. Drain-Source
Voltage (0-200 V)
5
C2M0280120D Rev. A
200
1
0
200
400
600
Drain-Source Voltage, VDS (V)
800
Figure 18. Capacitances vs. Drain-Source
Voltage (0-1000 V)
1000
Typical Performance
70
Conditions:
TJ ≤ 150 °C
Maximum Dissipated Power, Ptot (W)
Drain-Source Continous Current, IDS (DC) (A)
12
10
8
6
4
2
0
Conditions:
TJ ≤ 150 °C
60
50
40
30
20
10
0
-55
-5
45
95
145
-55
-5
45
Case Temperature, TC (°C)
0.5
1
10.00
0.3
0.1
0.05
100E-3
0.02
0.01
SinglePulse
10E-3
1E-6
10E-6
100E-6
1E-3
Time, tp (s)
10E-3
100E-3
10 µs
Limited by RDS On
100 µs
1 ms
1.00
100 ms
0.10
Conditions:
TC = 25 °C
D = 0,
Parameter: tp
0.01
1E-3
0.1
1
1
10
100
1000
Drain-Source Voltage, VDS (V)
Figure 21. Transient Thermal Impedance
(Junction - Case)
Figure 22. Safe Operating Area
350
250
Conditions:
TJ = 25 °C
VDD = 800 V
RG(ext) = 2.5 Ω
VGS = -5/+20 V
FWD = C4D02120A
L = 412 μH
250
Conditions:
TJ = 25 °C
VDD = 600 V
RG(ext) = 2.5 Ω
VGS = -5/+20 V
FWD = C4D02120A
L = 412 μH
200
ETotal
Switching Energy (uJ)
300
Switching Energy (uJ)
145
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
Drain-Source Current, IDS (A)
Junction To Case Impedance, ZthJC (oC/W)
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
200
EOn
150
100
EOff
150
ETotal
EOn
100
EOff
50
50
0
0
2
4
6
8
10
12
14
16
Drain to Source Current, IDS (A)
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 800V)
6
95
Case Temperature, TC (°C)
C2M0280120D Rev. A
18
0
0
2
4
6
8
10
12
14
16
Drain to Source Current, IDS (A)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 600V)
18
Typical Performance
120
100
Switching Loss (uJ)
120
Conditions:
TJ = 25 °C
VDD = 800 V
IDS = 6 A
VGS = -5/+20 V
FWD = C4D02120A
L = 412 μH
80
EOn
60
EOff
40
80
ETotal
60
EOff
40
EOn
20
20
0
0
0
5
10
15
20
25
30
External Gate Resistor RG(ext) (Ohms)
20
-50
-25
0
25
50
75
100
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
Conditions:
TJ = 25 °C
VDD = 800 V
RL = 133 Ω
VGS = -5/+20 V
18
16
14
td (off)
12
tf
10
tr
8
6
td (on)
4
2
0
0
5
10
15
20
25
External Gate Resistor, RG(ext) (Ohms)
Figure 28. Switching Time Definition
Figure 27. Switching Times vs. RG(ext)
12
Conditons:
VDD = 50 V
Avalanche Current (A)
10
8
6
4
2
0
0
25
50
75
100
125
Time in Avalanche TAV (us)
Figure 29. Single Avalanche SOA curve
7
C2M0280120D Rev. A
125
Junction Temperature, TJ (°C)
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
Time (ns)
Conditions:
IDS = 6 A
VDD = 800 V
RG(ext) = 2.5 Ω
VGS = -5/+20 V
FWD = C4D02120A
L = 412 µH
100
ETotal
Swithcing Loss (uJ)
140
150
150
Test Circuit Schematic
VDC
C4D02120A
2A, 1200V
SiC Schottky
D1
L=412 uH
CDC=42.3 uF
D.U.T
C2M0280120D
Q1
Figure 30. Clamped Inductive Switching
Waveform Test Circuit
Q1
RG
L=412 uH
VDC
CDC=42.3 uF
D.U.T
C2M0280120D
VGS= - 5V
RG
Q2
C2M0280120D
Figure 31. Body Diode Recovery Test Circuit
ESD Ratings
8
ESD Test
Total Devices Sampled
Resulting Classification
ESD-HBM
All Devices Passed 1000V
2 (>2000V)
ESD-MM
All Devices Passed 400V
C (>400V)
ESD-CDM
All Devices Passed 1000V
IV (>1000V)
C2M0280120D Rev. A
Package Dimensions
POS
Package TO-247-3
T
V
U
W
Pinout Information:
•
•
•
Pin 1 = Gate
Pin 2, 4 = Drain
Pin 3 = Source
Inches
Millimeters
Min
Max
Min
A
.190
.205
4.83
5.21
A1
.090
.100
2.29
2.54
A2
.075
.085
1.91
2.16
b
.042
.052
1.07
1.33
b1
.075
.095
1.91
2.41
b2
.075
.085
1.91
2.16
b3
.113
.133
2.87
3.38
b4
.113
.123
2.87
3.13
c
.022
.027
0.55
0.68
D
.819
.831
20.80
21.10
D1
.640
.695
16.25
17.65
D2
.037
.049
0.95
1.25
E
.620
.635
15.75
16.13
E1
.516
.557
13.10
14.15
5.10
E2
.145
.201
3.68
E3
.039
.075
1.00
1.90
E4
.487
.529
12.38
13.43
e
.214 BSC
N
3
5.44 BSC
3
L
.780
.800
19.81
20.32
L1
.161
.173
4.10
4.40
ØP
.138
.144
3.51
3.65
Q
.216
.236
5.49
6.00
S
.238
.248
6.04
6.30
T
9˚
11˚
9˚
11˚
U
9˚
11˚
9˚
11˚
V
2˚
8˚
2˚
8˚
W
2˚
8˚
2˚
8˚
Recommended Solder Pad Layout
TO-247-3
9
C2M0280120D Rev. A
Max
Part Number
Package
Marking
C2M0280120D
TO-247-3
C2M0280120
Notes
• RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred
to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance
with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can
be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.
• REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable
future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration.
REACh banned substance information (REACh Article 67) is also available upon request.
•
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into
the human body nor in applications in which failure of the product could lead to death, personal injury or property
damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines,
cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control
systems, air traffic control systems.
Copyright © 2014 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
10
C2M0280120D Rev. A
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power