C3M0065090D VDS 900 V ID @ 25˚C Silicon Carbide Power MOSFET TM C3M MOSFET Technology RDS(on) 36 A 65 mΩ N-Channel Enhancement Mode Features • • • • • Package New C3M SiC MOSFET technology High blocking voltage with low On-resistance High speed switching with low capacitances Fast intrinsic diode with low reverse recovery (Qrr) Halogen free, RoHS compliant Benefits • • • • Higher system efficiency Reduced cooling requirements Increased power density Increased system switching frequency Applications • • • • Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Part Number Package C3M0065090D TO-247-3 Maximum Ratings (TC = 25 ˚C unless otherwise specified) Symbol Value Unit Test Conditions VDSmax Drain - Source Voltage 900 V VGS = 0 V, ID = 100 μA VGSmax Gate - Source Voltage -8/+18 V Absolute maximum values VGSop Gate - Source Voltage -4/+15 V Recommended operational values ID Continuous Drain Current ID(pulse) 36 23 A VGS = 15 V, TC = 25˚C 90 A EAS Avalanche energy, Single pulse 110 mJ ID = 22A, VDD = 50V PD Power Dissipation 125 W TC=25˚C, TJ = 150 ˚C -55 to +150 ˚C 260 ˚C TL Operating Junction and Storage Temperature Solder Temperature C3M0065090D Rev. - Note Fig. 19 VGS = 15 V, TC = 100˚C Pulsed Drain Current TJ , Tstg 1 Parameter Pulse width tP limited by Tjmax 1.6mm (0.063”) from case for 10s Fig. 22 Fig. 20 Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol Parameter V(BR)DSS Drain-Source Breakdown Voltage VGS(th) Gate Threshold Voltage Min. Typ. Max. 900 1.8 Unit Test Conditions V VGS = 0 V, ID = 100 μA 2.1 V VDS = 10V, ID = 5 mA 1.6 V VDS = 10V, ID = 5 mA, TJ = 150ºC IDSS Zero Gate Voltage Drain Current 1 100 μA VDS = 900 V, VGS = 0 V IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V 65 78 RDS(on) Drain-Source On-State Resistance 90 13.6 gfs Transconductance Ciss Input Capacitance 660 Coss Output Capacitance 60 Crss Reverse Transfer Capacitance 4.0 Eoss Coss Stored Energy 16 EON Turn-On Switching Energy 225 EOFF Turn Off Switching Energy 91 td(on) Turn-On Delay Time 21 Rise Time 36 Turn-Off Delay Time 28 Fall Time 25 Internal Gate Resistance 4.7 tr td(off) tf RG(int) Note Qgs Gate to Source Charge 7.5 Gate to Drain Charge 12 Qg Total Gate Charge VGS = 15 V, ID = 20A, TJ = 150ºC VDS= 15 V, IDS= 20 A S 11.6 Qgd VGS = 15 V, ID = 20 A mΩ VDS= 15 V, IDS= 20 A, TJ = 150ºC f = 1 MHz VAC = 25 mV μJ Fig. 4, 5, 6 Fig. 7 Fig. 17, 18 VGS = 0 V, VDS = 600 V pF Fig. 11 Fig. 16 μJ VDS = 400 V, VGS = -4 V/15 V, ID = 20A, RG(ext) = 2.5Ω, L= 77 μH, TJ = 150ºC Fig. 26 ns VDD = 400 V, VGS = -4 V/15 V ID = 20 A, RG(ext) = 2.5 Ω, Timing relative to VDS Per IEC60747-8-4 pg 83 Resistive load Fig. 27 Ω f = 1 MHz, VAC = 25 mV nC VDS = 400 V, VGS = -4 V/15 V ID = 20 A Per IEC60747-8-4 pg 21 30.4 Fig. 12 Reverse Diode Characteristics (TC = 25˚C unless otherwise specified) Symbol VSD IS IS, pulse Parameter Diode Forward Voltage Typ. Max. Unit Test Conditions 4.8 V VGS = -4 V, ISD = 10 A 4.4 V VGS = -4 V, ISD = 10 A, TJ = 150 °C Note Fig. 8, 9, 10 Continuous Diode Forward Current 21 A VGS = -4 V Note 1 Diode pulse Current 90 A VGS = -4 V, pulse width tP limited by Tjmax Note 1 VGS = -4 V, ISD = 20 A, VR = 400 V dif/dt = 600 A/µs Note 1 trr Reverse Recover time 30 ns Qrr Reverse Recovery Charge 134 nC Irrm Peak Reverse Recovery Current 7.5 A Note (1): When using SiC Body Diode the maximum recommended VGS = -4V Thermal Characteristics Symbol 2 Parameter Max. RθJC Thermal Resistance from Junction to Case 1.0 RθJA Thermal Resistance From Junction to Ambient 40 C3M0065090D Rev. - Unit °C/W Test Conditions Note Fig. 21 Typical Performance 70 Drain-Source Current, IDS (A) 80 Conditions: TJ = -55 °C tp < 200 µs Conditions: TJ = 25 °C tp < 200 µs VGS = 15 V 70 VGS = 13 V 60 Drain-Source Current, IDS (A) 80 VGS = 11 V 50 40 VGS = 9 V 30 20 10 VGS = 15 V VGS = 13 V VGS = 11 V 60 50 VGS = 9 V 40 30 20 VGS = 7 V 10 VGS = 7 V 0 0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 Drain-Source Voltage, VDS (V) Figure 1. Output Characteristics TJ = -55 ºC 80 Conditions: TJ = 150 °C tp < 200 µs 2.0 VGS = 15 V VGS = 11 V 1.6 60 VGS = 9 V 50 40 30 VGS = 7 V 20 10 1.4 1.2 1.0 0.8 0.6 0.4 0.0 0.0 2.5 5.0 7.5 10.0 12.5 -50 15.0 -25 0 Figure 3. Output Characteristics TJ = 150 ºC Conditions: VGS = 20 V tp < 200 µs TJ = 150 °C 80 TJ = -55 °C 60 75 100 125 150 Conditions: IDS = 20 A tp < 200 µs 120 On Resistance, RDS On (mOhms) 100 50 Figure 4. Normalized On-Resistance vs. Temperature 140 120 25 Junction Temperature, TJ (°C) Drain-Source Voltage, VDS (V) On Resistance, RDS On (Ohms) 15.0 0.2 0 TJ = 25 °C 40 20 100 VGS = 11 V 80 VGS = 13 V 60 VGS = 15 V 40 20 0 0 0 10 20 30 40 Drain-Source Current, IDS (A) Figure 5. On-Resistance vs. Drain Current For Various Temperatures 3 12.5 Conditions: IDS = 20 A VGS = 20 V tp < 200 µs 1.8 VGS = 13 V 10.0 Figure 2. Output Characteristics TJ = 25 ºC On Resistance, RDS On (P.U.) Drain-Source Current, IDS (A) 70 7.5 Drain-Source Voltage, VDS (V) C3M0065090D Rev. - 50 60 -50 -25 0 25 50 75 100 Junction Temperature, TJ (°C) Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 125 150 Typical Performance -10 Conditions: VDS = 20 V tp < 200 µs -8 -6 -4 -2 0 0 40 TJ = 150 °C VGS = -4 V Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 50 30 TJ = 25 °C 20 TJ = -55 °C 10 VGS = 0 V -20 VGS = -2 V -40 -60 Conditions: TJ = -55°C tp < 200 µs 0 0 2 4 6 8 10 Gate-Source Voltage, VGS (V) Figure 7. Transfer Characteristic for Various Junction Temperatures -10 -8 -6 -4 -80 Drain-Source Voltage VDS (V) Figure 8. Body Diode Characteristic at -55 ºC -2 0 -10 -8 -6 -4 -2 0 Drain-Source Current, IDS (A) VGS = -4 V -20 VGS = 0 V VGS = -2 V -40 0 Drain-Source Current, IDS (A) 0 VGS = -4 V -20 VGS = 0 V VGS = -2 V -40 -60 Conditions: TJ = 25°C tp < 200 µs Drain-Source Voltage VDS (V) -60 Conditions: TJ = 150°C tp < 200 µs -80 Drain-Source Voltage VDS (V) Figure 9. Body Diode Characteristic at 25 ºC Figure 10. Body Diode Characteristic at 150 ºC 3.0 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 125 Junction Temperature TJ (°C) Figure 11. Threshold Voltage vs. Temperature 4 Conditions: IDS = 20 A IGS = 100 mA VDS = 400 V TJ = 25 °C 12 Gate-Source Voltage, VGS (V) Threshold Voltage, Vth (V) 16 Conditons VDS = 10 V IDS = 5 mA 2.5 C3M0065090D Rev. - -80 150 8 4 0 -4 0 5 10 15 20 25 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 30 35 Typical Performance -8 -7 -6 -5 -4 -3 -2 -1 0 -8 -7 -6 -5 -4 -3 -2 -1 0 0 0 VGS = 0 V VGS = 5 V -20 VGS = 10 V -40 VGS = 15 V Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) VGS = 0 V VGS = 5 V -20 VGS = 10 V -40 VGS = 15 V -60 -60 Conditions: TJ = -55 °C tp < 200 µs Conditions: TJ = 25 °C tp < 200 µs -80 Drain-Source Voltage VDS (V) Figure 13. 3rd Quadrant Characteristic at -55 ºC -7 -8 -6 -5 -4 -3 -2 Figure 14. 3rd Quadrant Characteristic at 25 ºC 30 0 -1 -80 Drain-Source Voltage VDS (V) 0 25 -20 VGS = 5 V -40 VGS = 10 V VGS = 15 V Stored Energy, EOSS (µJ) Drain-Source Current, IDS (A) VGS = 0 V 20 15 10 5 -60 Conditions: TJ = 150 °C tp < 200 µs Drain-Source Voltage VDS (V) 0 0 -80 100 600 700 800 900 1000 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz 1000 Capacitance (pF) Capacitance (pF) 500 10000 Ciss Coss 100 Crss 10 400 Figure 16. Output Capacitor Stored Energy Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz 1000 300 Drain to Source Voltage, VDS (V) Figure 15. 3rd Quadrant Characteristic at 150 ºC 10000 200 Ciss 100 Coss 10 Crss 1 1 0 50 100 Drain-Source Voltage, VDS (V) 150 Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 5 C3M0065090D Rev. - 200 0 100 200 300 400 500 600 Drain-Source Voltage, VDS (V) 700 Figure 18. Capacitances vs. Drain-Source Voltage (0 - 900V) 800 900 Typical Performance 140 Conditions: TJ ≤ 150 °C 35 Maximum Dissipated Power, Ptot (W) Drain-Source Continous Current, IDS (DC) (A) 40 30 25 20 15 10 5 0 -55 -30 -5 20 45 70 95 120 Conditions: TJ ≤ 150 °C 120 100 80 60 40 20 0 145 -55 Case Temperature, TC (°C) -30 -5 20 45 70 95 120 145 Case Temperature, TC (°C) Figure 19. Continuous Drain Current Derating vs. Case Temperature Figure 20. Maximum Power Dissipation Derating vs. Case Temperature 1 10 µs Limited by RDS On 0.5 Drain-Source Current, IDS (A) Junction To Case Impedance, ZthJC (oC/W) 100.00 0.3 100E-3 0.1 0.05 0.02 10E-3 0.01 SinglePulse 10.00 1 ms 100 ms 1.00 0.10 Conditions: TC = 25 °C D = 0, Parameter: tp 0.01 1E-3 1E-6 10E-6 100E-6 1E-3 10E-3 Time, tp (s) 100E-3 0.1 1 Switching Energy (uJ) 1200 1000 800 700 ETotal 800 EOn 600 EOff 400 200 100 1000 ETotal 600 500 EOn 400 300 EOff 200 100 0 0 0 10 20 30 40 Drain to Source Current, IDS (A) Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 600V) 6 Conditions: TJ = 25 °C VDD = 400 V RG(ext) = 2.5 Ω VGS = -4V/+15 V FWD = C3D10060A L = 77 μH 900 Switching Energy (uJ) 1400 10 Figure 22. Safe Operating Area 1000 Conditions: TJ = 25 °C VDD = 600 V RG(ext) = 2.5 Ω VGS = -4V/+15 V FWD = C3D10060A L = 77 μH 1 Drain-Source Voltage, VDS (V) Figure 21. Transient Thermal Impedance (Junction - Case) 1600 100 µs C3M0065090D Rev. - 50 0 10 20 30 40 Drain to Source Current, IDS (A) Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDD = 400V) 50 Typical Performance 1000 Switching Loss (uJ) 600 Conditions: TJ = 25 °C VDD = 400 V IDS = 20 A VGS = -4V/+15 V FWD = C3D10060A L = 77 μH 800 Conditions: IDS = 20 A VDD = 400 V RG(ext) = 2.5 Ω VGS = -4V/+15 V FWD = C3D10060A L = 77 μH 500 ETotal 600 Switching Loss (uJ) 1200 EOn 400 EOff 200 400 ETotal 300 EOn 200 EOff 100 0 0 0 5 10 15 20 25 External Gate Resistor RG(ext) (Ohms) -50 -25 0 25 50 75 100 Figure 26. Clamped Inductive Switching Energy vs. Temperature Figure 25. Clamped Inductive Switching Energy vs. RG(ext) 140 Conditions: TJ = 25 °C VDD = 400 V IDS = 20 A VGS = -4V/+15 V 120 100 td (off) tf Time (ns) tr 80 td (on) 60 40 20 0 0 5 10 15 20 25 External Gate Resistor, RG(ext) (Ohms) Figure 27. Switching Times vs. RG(ext) 7 C3M0065090D Rev. - 125 Junction Temperature, TJ (°C) Figure 28. Switching Times Definition 150 Test Circuit Schematic D1 L=77 uH VDC C3D08060G 8A, 60V SiC Schottky CDC=42.3 uF Q2 RG D.U.T C3M0065090D Figure 30. Clamped Inductive Switching Waveform Test Circuit Q1 RG L=77 uH VDC CDC=42.3 uF D.U.T C3M0065090D VGS= - 3 V RG Q2 C3M0065090D Figure 31. Body Diode Recovery Test Circuit 8 C3M0065090D Rev. - Package Dimensions POS Package TO-247-3 A T V U W Pinout Information: • • • Pin 1 = Gate Pin 2, 4 = Drain Pin 3 = Source Recommended Solder Pad Layout TO-247-3 9 C3M0065090D Rev. - Inches Millimeters Min Max Min Max .190 .205 4.83 5.21 A1 .090 .100 2.29 2.54 A2 .075 .085 1.91 2.16 b .042 .052 1.07 1.33 b1 .075 .095 1.91 2.41 b2 .075 .085 1.91 2.16 b3 .113 .133 2.87 3.38 b4 .113 .123 2.87 3.13 c .022 .027 0.55 0.68 D .819 .831 20.80 21.10 D1 .640 .695 16.25 17.65 D2 .037 .049 0.95 1.25 E .620 .635 15.75 16.13 E1 .516 .557 13.10 14.15 E2 .145 .201 3.68 5.10 E3 .039 .075 1.00 1.90 E4 .487 .529 12.38 13.43 e .214 BSC N 3 5.44 BSC 3 L .780 .800 19.81 20.32 L1 .161 .173 4.10 4.40 ØP .138 .144 3.51 3.65 Q .216 .236 5.49 6.00 S .238 .248 6.04 6.30 T 9˚ 11˚ 9˚ 11˚ U 9˚ 11˚ 9˚ 11˚ V 2˚ 8˚ 2˚ 8˚ W 2˚ 8˚ 2˚ 8˚ Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links • • SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power/Tools-and-Support Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power/Tools-and-Support Copyright © 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10 C3M0065090D Rev - 05-2015 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power