PC924X PC924X ∗OPIC Photocoupler for IGBT Drive of Inverter ❇ Lead forming type (I type) and taping reel type (P type) are also available. (PC924XI/PC924XP) ❇❇ TÜV (VDE0884) approved type is also available as an option. ■ Outline Dimensions 2.54 8 7 6 5 PC924 Anode mark 1 2 3 4 1.2±0.3 7.62±0.3 3.4±0.5 0.5±0.1 0.26±0.1 θ:0 to 13˚ θ Internal connection diagram 8 7 Tr1 6 5 Tr2 Interface Amp. Output Input (Ta=Topr unless otherwise specified) Parameter Symbol Rating Unit IF Forward current 25 mA *1 Reverse voltage 6 V VR 35 Supply voltage VCC V 0.1 O1 output current IO1 A *2 0.4 A O1 peak output current IO1P 0.1 O2 output current IO2 A *2 0.4 A O2 peak output current IO2P 35 O1 output voltage VO1 V 500 Power dissipation mW PO 550 Total power dissipation mW Ptot *3 kV 5.0 Isolation voltage Viso (rms) −25 to +80 Operating temperature ˚C Topr −55 to +125 Storage temperature ˚C Tstg *4 260 Tsol ˚C Soldering temperature 3.05±0.5 ■ Absolute Maximum Ratings 0.85±0.2 9.66±0.3 ■ Applications 1. IGBT drive for inverter control (Unit : mm) ±0.25 6.5±0.5 1. Built-in direct drive circuit for IGBT drive (IO1P, IO2P:0.4A) 2. High speed response (tPLH, tPHL:MAX. 2.0µs) 3. Wide operating supply voltage range (VCC:15 to 30V at Ta=−10 to 60˚C) 4. High noise resistance type CMH:MIN.−1.5kV/µs CML:MIN.1.5kV/µs 5. High isolation voltage (Viso (rms):5.0kV) 0.5TYP. 3.5±0.5 ■ Features 1 1 2 3 4 2 Anode Cathode NC NC 3 4 5 6 7 8 O1 O2 GND VCC ∗ “OPIC”(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. *1 Ta=25˚C *2 Pulse width≤0.15µs, Duty ratio:0.01 *3 40 to 60%RH, AC for 1minute, Ta=25˚C *4 For 10s Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/ PC924X ■ Electro-optical Characteristics Parameter Symbol VF1 VF2 IR Ct Input Forward voltage Reverse current Terminal capacitance Operating supply voltage VCC O1 low level output voltage VO1L O2 high level output voltage O2 low level output voltage *9 O1 leak current *10 O2 leak current VO2H VO2L IO1L IO2L *11 High level supply current ICCH *11 Low level supply current ICCL *12 "Low→High" threshold input current IFLH Isolation resistance *13 "Low→High" propagation delay time *13 "High→Low" propagation delay time *13 Rise time *13 Fall time RISO tPLH tPHL tr tf Instantaneous common mode rejection voltage "Output:High level" CMH Instantaneous common mode rejection voltage "Output:Low level" CML *6 *8 Transfer characteristics Response time Output *7 *14 *14 (Ta=Topr unless otherwise specified) Conditions MIN. TYP. MAX. Unit 1.4 − V 1.2 Ta=25˚C, IF=20mA V 0.9 0.6 − Ta=25˚C, IF=0.2mA − µA Ta=25˚C, VR=4V − 10 − pF 30 Ta=25˚C, V=0, f=1kHz 250 15 V − 30 Ta=−10 to 60˚C 15 V − 24 − VCC1=12V, VCC2=−12V − V 0.2 0.4 IO1=0.1A, IF=10mA 18 V 21 − VCC=VO1=24V, IO2=−0.1A, IF=10mA − V 1.2 2.0 VCC=24V, IO2=0.1A, IF=0 − µA − 500 Ta=25˚C, VCC=VO1=35V, IF=0 − µA − 500 Ta=25˚C, VCC=VO2=35V, IF=10mA − mA 6 10 Ta=25˚C, VCC=24V, IF=10mA − mA − 14 VCC=24V, IF=10mA − mA 8 13 Ta=25˚C, VCC=24V, IF=0 − mA − 17 VCC=24V, IF=0 mA 7.0 Ta=25˚C, VCC=24V 4.0 1.0 mA − 10.0 VCC=24V 0.6 Ω 1011 − Ta=25˚C, DC=500V, 40 to 60%RH 5×1010 µs 2.0 − 1.0 µs 2.0 − 1.0 Ta=25˚C, VCC=24V, IF=10mA µs 0.5 − RC=47Ω, CG=3 000pF 0.2 µs 0.5 − 0.2 Ta=25˚C, VCM=600V(peak) kV/µs − −1.5 − IF=10mA, VCC=24V, ∆VO2H=2.0V Ta=25˚C, VCM=600V (peak) kV/µs − 1.5 − IF=0, VCC=24V, ∆VO2L=2.0V *5 *5 When measuring output and transfer characteristics, connect a by-pass capacitor (0.01µF or more) between VCC and GND near the device *6 Refer to Fig.1 *7 Refer to Fig.2 *8 Refer to Fig.3 *9 Refer to Fig.4 *10 Refer to Fig.5 *11 Refer to Fig.6 *12 IFLH represents forward current when output goes from "Low" to "High", Refer to Fig.7 *13 Refer to Fig.8 *14 Refer to Fig.9 ■ Truth Table Input ON OFF O2 Output High level Low level Tr.1 ON OFF Tr.2 OFF ON PC924X ■ Test Circuit Fig.1 Fig.2 8 1 VCC1 5 IF PC924X 6 V VO1L IO2 5 IF IO1 VCC PC924X 6 VCC2 2 8 1 2 VO2H 7 7 Fig.3 V Fig.4 8 8 1 A IO1L 1 5 IF 5 VCC PC924X IF PC924X 6 VCC 6 V VO2L 2 IO2L 2 7 7 Fig.5 Fig.6 8 1 5 IF A 8 1 ICC A IO2L PC924X 5 IF VCC PC924X 6 VCC 6 2 2 7 7 Fig.7 Fig.8 8 8 1 1 5 IF Variable VIN VCC PC924X 6 tr=tf=0.01µs Pulse width 5µs Duty ratio 50% V 2 5 PC924X VCC RG 6 VOUT 2 7 CG 7 Fig.9 50% 8 A SW B VIN wave form 1 5 VCC PC924X tPHL tPLH 6 V VO2 2 90% 7 + tr VCM VCM (Peak) VCM wave form GND CMH, VO2 wave form SW at A, IF=10mA VO2H ∆VO2H CML, VO2 wave form SW at B, IF=0mA 50% 10% VOUT wave form − ∆VO2L VO2L GND tf PC924X Fig.10 Forward Current vs. Ambient Temperature Fig.11 Power Dissipation vs. Ambient Temperature 600 550 Power dissipation Po, Ptot (mW) Forward current IF (mA) 50 40 30 25 20 500 Ptot 400 PO 300 200 100 10 0 −25 0 25 75 80 50 0 −25 100 0 25 50 75 80 Ambient temperature Ta (˚C) Fig.12 Forward Current vs. Forward Voltage 1.2 Ta=25˚C Ta=75˚C 25˚C 50˚C 100 0˚C 50 −20˚C Relative threshold input current 200 Forward current IF (mA) 125 Fig.13 Relative Threshold Input Current vs. Supply Voltage 500 20 10 5 2 1.1 1.0 0.9 0.8 IFLH=1 at VCC=24V 1 0 0.5 1.0 1.5 2.0 2.5 3.0 0.7 15 3.5 18 Fig.14 Relative Threshold Input Current vs. Ambient Temperature 24 27 30 Fig.15 O1 Low Level Output Voltage vs. O1 Output Current 1.6 0.4 1.4 1.2 1.0 0.8 IFLH=1 at Ta=25˚C O1 low level output voltage VO1L (V) VCC=24V 0.6 −25 21 Supply voltage VCC (V) Forward voltage VF (V) Relative threshold input current 100 Ambient temperature Ta (˚C) 0.2 VCC1=12V VCC2=−12V Ta=25˚C IF=10mA 0.1 0.05 0.02 0.01 0.005 0 25 50 75 Ambient temperature Ta (˚C) 100 0.01 0.02 0.05 0.1 0.2 O1 output current IO1 (A) 0.5 1 PC924X Fig.16 O1 Low Level Output Voltage vs. Ambient Temperature 30 VCC1=12V VCC2=−12V IF=10mA 0.4 O2 high level output voltage VO2H (V) O1 low level output voltage VO1L (V) 0.5 0.3 IO1=0.1A 0.2 0.1 0 −25 0 25 50 75 Fig.17 O2 High Level Output Voltage vs. Supply Voltage Ta=25˚C IF=10mA 27 24 21 18 15 12 15 100 18 Ambient temperature Ta (˚C) Fig.18 O2 High Level Output Voltage vs. Ambient Temperature 4 VCC=24V IF=10mA 23 IO2 Nearly=0A 22 −0.1A 21 20 19 18 −25 2 30 1 0.5 0.2 0.1 0.05 0 25 50 75 100 0.01 0.02 0.05 0.1 0.2 0.5 1 O2 output current IO2 (A) Fig.20 O2 Low Level Output Voltage vs. Ambient Temperature Fig.21 High Level Supply Current vs. Supply Voltage 1.5 12 VCC=24V IF=0 High level supply current ICCH (mA) O2 low level output voltage VO2L (V) 27 VCC=6V Ta=25˚C Ambient temperature Ta (˚C) 1.4 1.3 IO2=0.1A 1.2 1.1 1.0 −25 24 Fig.19 O2 Low Level Output Voltage vs. O2 Output Current O2 low level output voltage VO2L (V) O2 high level output voltage VO2H (V) 24 21 Supply voltage VCC (V) 0 25 50 75 Ambient temperature Ta (˚C) 100 10 8 Ta=−25˚C 25˚C 6 80˚C 4 2 15 18 21 24 Supply voltage VCC (V) 27 30 PC924X Fig.22 Low Level Supply Current vs. Supply Voltage Fig.23 Propagation Delay Time vs. Forward Current 2.5 Propagation delay time tPHL, tPLH (µs) Low level supply current ICCL (mA) 14 12 10 Ta=−25˚C 25˚C 8 80˚C 6 VCC=24V RG=47Ω CG=3 000pF 2.0 1.5 Ta=75˚C tPHL tPLH 1.0 25˚C −25˚C 0.5 Ta=70˚C 25˚C 4 15 −25˚C 0 18 21 24 27 30 0 5 Supply voltage VCC (V) 10 15 20 25 Forward current IF (mA) Fig.24 Propagation Delay Time vs. Ambient Temperature Propagation delay time tPHL, tPLH (µs) 2.5 VCC=24V RG=47Ω CG=3 000pF IF=10mA 2.0 1.5 1.0 tPLH tPHL 0.5 0 −25 0 25 50 75 100 Ambient temperature Ta (˚C) ■ Application Circuit (IGBT Drive for Inverter) VCC Cathode PC924X Anode O1 + O2 (+) VCC1= 12V IGBT GND + TTL, Microcomputer etc. VCC2= 12V U V W Power supply (−) NOTICE ● The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices. ● Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice. ● Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions: (i) The devices in this publication are designed for use in general electronic equipment designs such as: - - - Personal computers - -- Office automation equipment - -- Telecommunication equipment [terminal] - - - Test and measurement equipment - - - Industrial control - -- Audio visual equipment - -- Consumer electronics (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as: - -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.) - - - Traffic signals - - - Gas leakage sensor breakers - - - Alarm equipment - -- Various safety devices, etc. (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as: - - - Space applications - -- Telecommunication equipment [trunk lines] - -- Nuclear power control equipment - -- Medical and other life support equipment (e.g., scuba). ● If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices. ● This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party. ● Contact and consult with a SHARP representative if there are any questions about the contents of this publication.