PC924X - Sharp

PC924X
PC924X
∗OPIC Photocoupler for IGBT
Drive of Inverter
❇ Lead forming type (I type) and taping reel type (P type) are also available. (PC924XI/PC924XP)
❇❇ TÜV (VDE0884) approved type is also available as an option.
■ Outline Dimensions
2.54
8
7
6
5
PC924
Anode mark
1
2
3
4
1.2±0.3
7.62±0.3
3.4±0.5
0.5±0.1
0.26±0.1
θ:0 to 13˚
θ
Internal connection diagram
8
7
Tr1
6
5
Tr2
Interface
Amp.
Output
Input
(Ta=Topr unless otherwise specified)
Parameter
Symbol
Rating
Unit
IF
Forward current
25
mA
*1
Reverse voltage
6
V
VR
35
Supply voltage
VCC
V
0.1
O1 output current
IO1
A
*2
0.4
A
O1 peak output current
IO1P
0.1
O2 output current
IO2
A
*2
0.4
A
O2 peak output current
IO2P
35
O1 output voltage
VO1
V
500
Power dissipation
mW
PO
550
Total power dissipation
mW
Ptot
*3
kV
5.0
Isolation voltage
Viso (rms)
−25 to +80
Operating temperature
˚C
Topr
−55 to +125
Storage temperature
˚C
Tstg
*4
260
Tsol
˚C
Soldering temperature
3.05±0.5
■ Absolute Maximum Ratings
0.85±0.2
9.66±0.3
■ Applications
1. IGBT drive for inverter control
(Unit : mm)
±0.25
6.5±0.5
1. Built-in direct drive circuit for IGBT drive (IO1P, IO2P:0.4A)
2. High speed response (tPLH, tPHL:MAX. 2.0µs)
3. Wide operating supply voltage range
(VCC:15 to 30V at Ta=−10 to 60˚C)
4. High noise resistance type
CMH:MIN.−1.5kV/µs
CML:MIN.1.5kV/µs
5. High isolation voltage (Viso (rms):5.0kV)
0.5TYP. 3.5±0.5
■ Features
1
1
2
3
4
2
Anode
Cathode
NC
NC
3
4
5
6
7
8
O1
O2
GND
VCC
∗ “OPIC”(Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
*1 Ta=25˚C
*2 Pulse width≤0.15µs, Duty ratio:0.01
*3 40 to 60%RH, AC for 1minute, Ta=25˚C
*4 For 10s
Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/
PC924X
■ Electro-optical Characteristics
Parameter
Symbol
VF1
VF2
IR
Ct
Input
Forward voltage
Reverse current
Terminal capacitance
Operating supply voltage
VCC
O1 low level output voltage
VO1L
O2 high level output voltage
O2 low level output voltage
*9
O1 leak current
*10
O2 leak current
VO2H
VO2L
IO1L
IO2L
*11
High level supply current
ICCH
*11
Low level supply current
ICCL
*12
"Low→High" threshold input current
IFLH
Isolation resistance
*13
"Low→High" propagation delay time
*13
"High→Low" propagation delay time
*13
Rise time
*13
Fall time
RISO
tPLH
tPHL
tr
tf
Instantaneous common mode rejection
voltage "Output:High level"
CMH
Instantaneous common mode rejection
voltage "Output:Low level"
CML
*6
*8
Transfer characteristics
Response time
Output
*7
*14
*14
(Ta=Topr unless otherwise specified)
Conditions
MIN.
TYP. MAX.
Unit
1.4
−
V
1.2
Ta=25˚C, IF=20mA
V
0.9
0.6
−
Ta=25˚C, IF=0.2mA
−
µA
Ta=25˚C, VR=4V
−
10
−
pF
30
Ta=25˚C, V=0, f=1kHz
250
15
V
−
30
Ta=−10 to 60˚C
15
V
−
24
−
VCC1=12V, VCC2=−12V
−
V
0.2
0.4
IO1=0.1A, IF=10mA
18
V
21
−
VCC=VO1=24V, IO2=−0.1A, IF=10mA
−
V
1.2
2.0
VCC=24V, IO2=0.1A, IF=0
−
µA
−
500
Ta=25˚C, VCC=VO1=35V, IF=0
−
µA
−
500
Ta=25˚C, VCC=VO2=35V, IF=10mA
−
mA
6
10
Ta=25˚C, VCC=24V, IF=10mA
−
mA
−
14
VCC=24V, IF=10mA
−
mA
8
13
Ta=25˚C, VCC=24V, IF=0
−
mA
−
17
VCC=24V, IF=0
mA
7.0
Ta=25˚C, VCC=24V
4.0
1.0
mA
−
10.0
VCC=24V
0.6
Ω
1011
−
Ta=25˚C, DC=500V, 40 to 60%RH 5×1010
µs
2.0
−
1.0
µs
2.0
−
1.0
Ta=25˚C, VCC=24V, IF=10mA
µs
0.5
−
RC=47Ω, CG=3 000pF
0.2
µs
0.5
−
0.2
Ta=25˚C, VCM=600V(peak)
kV/µs
−
−1.5
−
IF=10mA, VCC=24V, ∆VO2H=2.0V
Ta=25˚C, VCM=600V (peak)
kV/µs
−
1.5
−
IF=0, VCC=24V, ∆VO2L=2.0V
*5
*5 When measuring output and transfer characteristics, connect a by-pass capacitor (0.01µF or more) between VCC and GND near the device
*6 Refer to Fig.1
*7 Refer to Fig.2
*8 Refer to Fig.3
*9 Refer to Fig.4
*10 Refer to Fig.5
*11 Refer to Fig.6
*12 IFLH represents forward current when output goes from "Low" to "High", Refer to Fig.7
*13 Refer to Fig.8
*14 Refer to Fig.9
■ Truth Table
Input
ON
OFF
O2 Output
High level
Low level
Tr.1
ON
OFF
Tr.2
OFF
ON
PC924X
■ Test Circuit
Fig.1
Fig.2
8
1
VCC1
5
IF
PC924X
6
V VO1L
IO2
5
IF
IO1
VCC
PC924X
6
VCC2
2
8
1
2
VO2H
7
7
Fig.3
V
Fig.4
8
8
1
A IO1L
1
5
IF
5
VCC
PC924X
IF
PC924X
6
VCC
6
V VO2L
2
IO2L
2
7
7
Fig.5
Fig.6
8
1
5
IF
A
8
1
ICC
A IO2L
PC924X
5
IF
VCC
PC924X
6
VCC
6
2
2
7
7
Fig.7
Fig.8
8
8
1
1
5
IF
Variable
VIN
VCC
PC924X
6
tr=tf=0.01µs
Pulse width 5µs
Duty ratio 50%
V
2
5
PC924X
VCC
RG
6
VOUT
2
7
CG
7
Fig.9
50%
8
A
SW
B
VIN wave form
1
5
VCC
PC924X
tPHL
tPLH
6
V VO2
2
90%
7
+
tr
VCM
VCM
(Peak)
VCM wave form
GND
CMH, VO2 wave form
SW at A, IF=10mA
VO2H
∆VO2H
CML, VO2 wave form
SW at B, IF=0mA
50%
10%
VOUT wave form
−
∆VO2L
VO2L
GND
tf
PC924X
Fig.10 Forward Current vs. Ambient
Temperature
Fig.11 Power Dissipation vs. Ambient
Temperature
600
550
Power dissipation Po, Ptot (mW)
Forward current IF (mA)
50
40
30
25
20
500
Ptot
400
PO
300
200
100
10
0
−25
0
25
75 80
50
0
−25
100
0
25
50
75 80
Ambient temperature Ta (˚C)
Fig.12 Forward Current vs. Forward
Voltage
1.2
Ta=25˚C
Ta=75˚C
25˚C
50˚C
100
0˚C
50
−20˚C
Relative threshold input current
200
Forward current IF (mA)
125
Fig.13 Relative Threshold Input Current vs.
Supply Voltage
500
20
10
5
2
1.1
1.0
0.9
0.8
IFLH=1 at VCC=24V
1
0
0.5
1.0
1.5
2.0
2.5
3.0
0.7
15
3.5
18
Fig.14 Relative Threshold Input Current vs.
Ambient Temperature
24
27
30
Fig.15 O1 Low Level Output Voltage vs.
O1 Output Current
1.6
0.4
1.4
1.2
1.0
0.8
IFLH=1 at Ta=25˚C
O1 low level output voltage VO1L (V)
VCC=24V
0.6
−25
21
Supply voltage VCC (V)
Forward voltage VF (V)
Relative threshold input current
100
Ambient temperature Ta (˚C)
0.2
VCC1=12V
VCC2=−12V
Ta=25˚C
IF=10mA
0.1
0.05
0.02
0.01
0.005
0
25
50
75
Ambient temperature Ta (˚C)
100
0.01
0.02
0.05
0.1
0.2
O1 output current IO1 (A)
0.5
1
PC924X
Fig.16 O1 Low Level Output Voltage vs.
Ambient Temperature
30
VCC1=12V
VCC2=−12V
IF=10mA
0.4
O2 high level output voltage VO2H (V)
O1 low level output voltage VO1L (V)
0.5
0.3
IO1=0.1A
0.2
0.1
0
−25
0
25
50
75
Fig.17 O2 High Level Output Voltage vs.
Supply Voltage
Ta=25˚C
IF=10mA
27
24
21
18
15
12
15
100
18
Ambient temperature Ta (˚C)
Fig.18 O2 High Level Output Voltage vs.
Ambient Temperature
4
VCC=24V
IF=10mA
23
IO2 Nearly=0A
22
−0.1A
21
20
19
18
−25
2
30
1
0.5
0.2
0.1
0.05
0
25
50
75
100
0.01
0.02
0.05
0.1
0.2
0.5
1
O2 output current IO2 (A)
Fig.20 O2 Low Level Output Voltage vs.
Ambient Temperature
Fig.21 High Level Supply Current vs.
Supply Voltage
1.5
12
VCC=24V
IF=0
High level supply current ICCH (mA)
O2 low level output voltage VO2L (V)
27
VCC=6V
Ta=25˚C
Ambient temperature Ta (˚C)
1.4
1.3
IO2=0.1A
1.2
1.1
1.0
−25
24
Fig.19 O2 Low Level Output Voltage vs.
O2 Output Current
O2 low level output voltage VO2L (V)
O2 high level output voltage VO2H (V)
24
21
Supply voltage VCC (V)
0
25
50
75
Ambient temperature Ta (˚C)
100
10
8
Ta=−25˚C
25˚C
6
80˚C
4
2
15
18
21
24
Supply voltage VCC (V)
27
30
PC924X
Fig.22 Low Level Supply Current vs.
Supply Voltage
Fig.23 Propagation Delay Time vs. Forward
Current
2.5
Propagation delay time tPHL, tPLH (µs)
Low level supply current ICCL (mA)
14
12
10
Ta=−25˚C
25˚C
8
80˚C
6
VCC=24V
RG=47Ω
CG=3 000pF
2.0
1.5
Ta=75˚C
tPHL
tPLH
1.0
25˚C
−25˚C
0.5
Ta=70˚C 25˚C
4
15
−25˚C
0
18
21
24
27
30
0
5
Supply voltage VCC (V)
10
15
20
25
Forward current IF (mA)
Fig.24 Propagation Delay Time vs. Ambient
Temperature
Propagation delay time tPHL, tPLH (µs)
2.5
VCC=24V
RG=47Ω
CG=3 000pF
IF=10mA
2.0
1.5
1.0
tPLH
tPHL
0.5
0
−25
0
25
50
75
100
Ambient temperature Ta (˚C)
■ Application Circuit (IGBT Drive for Inverter)
VCC
Cathode
PC924X
Anode
O1
+
O2
(+)
VCC1=
12V
IGBT
GND
+
TTL, Microcomputer etc.
VCC2=
12V
U
V
W
Power supply
(−)
NOTICE
●
The circuit application examples in this publication are provided to explain representative applications of SHARP
devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
SHARP's devices.
●
Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
also subject to change without notice.
●
Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
specified in the relevant specification sheet nor meet the following conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
- - - Personal computers
- -- Office automation equipment
- -- Telecommunication equipment [terminal]
- - - Test and measurement equipment
- - - Industrial control
- -- Audio visual equipment
- -- Consumer electronics
(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when
SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- - - Traffic signals
- - - Gas leakage sensor breakers
- - - Alarm equipment
- -- Various safety devices, etc.
(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of
reliability and safety such as:
- - - Space applications
- -- Telecommunication equipment [trunk lines]
- -- Nuclear power control equipment
- -- Medical and other life support equipment (e.g., scuba).
●
If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign
Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
●
This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright
laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written
permission is also required before any use of this publication may be made by a third party.
●
Contact and consult with a SHARP representative if there are any questions about the contents of this publication.