SHARP PC929

PC929
Shortcircuit Protector Circuit
Built-in Photocoupler Suitable
for Inverter-Driving MOS-FET/IGBT
PC929
❈ TÜV ( VDE 0884 ) approved type is also available as an option.
■ Features
■ Outline Dimensions
1. Built-in IGBT shortcircuit protector circuit
2. Built-in direct drive circuit for IGBT drive
14 13 12 11 10
(Peak output current ... IO1P, IO2P : MAX. 0.4A)
3. High speed response (tPLH, tPHL : MAX. 0.5 µ s)
(Unit : mm)
9
8
6
7
6.5
PC929
4. High isolation voltage (Viso : 4000Vrms)
5. Half lead pin pitch (p=1.27 mm) package type
6. Recognized by UL, file NO. E64380
Primary
side mark
1
2
3
■ Application
4
5
9.22
7.62
12 - 1.27
0.35
14 - 0.6
0.26
3.5
1. IGBT control for inverter drive
1.0
1.0
10.0
Internal connection diagram
14
12
11
10
9 8
(Ta=Topr unless otherwise specified)
Parameter
Symbol
Rating
*1
IF
20
Forward current
Input
Reverse voltage
VR 6 (Ta = 25˚C)
Supply voltage
VCC
35
O1 output current
0.1
IO1
*4
IO1P
0.4
O1 peak output current
O2 output current
0.1
IO2
*4
IO2P
0.4
O2 peak output current
Output O1 output voltage
35
VO1
*2
PO
500
Power dissipation
Overcurrent detecting voltage
VC
VCC
Overcurrent detecting current
IC
30
Error signal output voltage VFS
VCC
Error signal output current
IFS
20
*3
550
Total power dissipation Ptot
*5
Viso
4 000
Isolation voltage
- 25 to + 80
Operating temperature
Topr
- 55 to + 125
Storage temperature
Tstg
Soldering temperature
Tsol 260 (for 10 sec)
Unit
mA
V
V
A
A
A
A
V
mW
V
mA
V
mA
mW
Vrms
˚C
˚C
˚C
Constant
voltage circuit
■ Absolute Maximum Ratings
13
1
2
IGBT protector
circuit
Interface
Amp.
3
4
5
1
2
3
4
5
6
7
Cathode
Cathode
Anode
NC
NC
NC
NC
8
9
10
11
12
13
14
FS
C
GND
O2
O1
VCC
GND
Terminals 4 to 7 :
Shortcircuit in element
6
7
* "OPIC" (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal processing circuit
integrated onto a single chip.
Operation truth table is shown on the next page.
*1, 2, 3 Decrease in the ambient temperature range of the Absolute Max. Rating : Shown in Figs 1 and 2.
*4
Pulse width <=0.15 µs, Duty ratio=0.01
*5
40 to 60% RH, AC for 1 minute, Ta=25˚C
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
PC929
■ Electro-optical Characteristics (1)
Parameter
Operating supply voltage
VCC
O1 low level output voltage
VO1L
O2 high level output voltage
VO2H
O2 low level output voltage
O leak current
VO2L
VO1L
High level supply current
ICCH
Low level supply current
ICCL
"Low→High"
threshold input current
IFLH
Output
Input
Forward voltage
*7
Isolation resistance
"Low→High" propagation delay time
"High→Low" propagation delay time
Rise time
Fall time
Instantaneous common mode rejection
voltage "Output : High level"
Instantaneous common mode rejection
voltage "Output : Low level"
Response time
Transfer characteristics
Reverse current
Terminal capacitance
Symbol
VF1
VF2
IR
Ct
RISO
tPLH
tPHL
tr
tf
CMH
CML
(Ta=Topr unless otherwise specified)
Conditions
MIN.
TYP.
Ta = 25˚C, IF = 10mA
1.6
Ta = 25˚C, I F = 0.2mA
1.2
1.5
T a = 25˚C, V R = 5V
Ta = 25˚C, V = 0, f = 1kHz
30
Ta = - 10 to 60 ˚C
15
15
VCC1 = 12V, VCC2 = - 12V
0.2
IO1 = 0.1A, IF = 5mA
*8
VCC = VO1 = 24V, IO2 = - 0.1A
20
22
IF = 5mA
*8
VCC = VO1 = 24V, IO2 = 0.1A, IF = 0mA *8
1.2
Ta = 25˚C, VCC = VO1 = 35V, IF = 0mA *8
Ta = 25˚C, VCC = VO1 = 24V, IF = 5mA *8
10
VCC = VO1 = 24V, IF = 5mA
*8
Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA *8
11
VCC = VO1 = 24V, IF = 0mA
*8
0.3
1.5
Ta = 25˚C, VCC = VO1 = 24V
*8
0.2
VCC = VO1 = 24V
*8
Ta = 25˚C, DC500V, 40 to60% RH
5 x 1010 1 x 1011
0.3
Ta = 25˚C, VCC = VO1 = 24V
0.3
RG = 47Ω , CG = 3 000pF, I F = 5mA
0.2
*8
0.2
Ta = 25˚C, VCC = VO1 = 24V, IF = 5mA
- 1 500
VCM = 600V( peak ) , ∆ VO2H = 2.0V *8
Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA
1 500
VCM = 600V( peak ) , ∆ VO2L = 2.0V *8
MAX.
1.75
10
250
30
24
Unit
V
V
µA
pF
V
V
Measuring
circuit
0.4
V
(1)
-
V
(2)
2.0
500
17
19
18
20
3.0
5.0
0.5
0.5
0.5
0.5
V
µA
mA
mA
mA
mA
mA
mA
Ω
µs
µs
µs
µs
(3)
(4)
-
V/ µ s
-
V/ µ s
*6 When measuring output and transfer characteristics, connect a bypass capacitor (0.01 µ F or more) between VCC 13 and GND 14 near the device.
*7 I FLH represents forward current when output goes from "Low" to "High".
*8 FS=OPEN, VC =0V
■ Truth Table
Input
ON
OFF
C Input/Output
Low level
High level
Low level
High level
O2 Output
High level
Low level
Low level
Low level
FS Output
High level
Low level
High level
High level
For protective operation
-
(6)
(5)
-
(8)
(7)
PC929
*9
*9
Protective output Overcurrent
detection
■ Electro-optical Characteristics (2)
*10
(Ta=Topr unless otherwise specified)
Parameter
Overcurrent detecting voltage
Symbol
VCTH
Overcurrent detecting voltage
hysteresis width
VCHIS
O2 "High→Low" delay time
at protection from overcurrent
O2 fall time at protection
from overcurrent
O2 output voltage at protection
from overcurrent
tPCOHL
tPCOtf
VOE
Error signal output
*9
Conditions
Ta = 25˚C, IF = 5mA
VCC = V01 = 24V, RG = 47Ω
CG = 3 000pF, FS = OPEN
MIN. TYP. MAX.
VCC - VCC - VCC 6.5
6.0
5.5
1
2
3
Unit
Test circuit
V
(9)
V
Ta = 25˚C
VCC = V01 = 24V, IF = 5mA
CG = 3 000pF, RG = 47Ω
CP = 1 000pF, RC = 1kΩ
FS = OPEN
-
4
10
µs
2
5
-
µs
-
-
2
V
(10)
(13)
Low level error
signal voltage
VFSL
Ta = 25˚C, IF = 5mA, IFS = 10mA
VCC = VO1 = 24V, RG = 47Ω , C G = 3 000pF,
C = OPEN
-
0.2
0.4
V
(11)
High level error
signal current
IFSH
Ta = 25˚C, IF = 5mA, VFS = 24V
VCC = VO1 = 24V, RG = 47Ω , C G = 3 000pF,
VC = 0V
-
-
100
µA
(12)
-
1
5
µs
20
35
-
µs
Error signal "High→Low"
delay time
tPCFHL
Error signal output pulse width
∆ tFS
Ta = 25˚C, RFS = 1.8kΩ
VCC = VO1 = 24V, IF = 5mA
CG = 3 000pF, RG = 47Ω
CP = 1 000pF, RC = 1kΩ
(14)
*9 When measuring overcurrent, protective output and error signal output characteristics, connect a bypass capacitor (0.01 µ F or more) between VCC 13 and GND 14 near the device.
*10 VCTH represents C-terminal voltage when O 2 output goes from "High" to "Low".
Fig. 1 Forward Current vs. Ambient
Temperature
Fig. 2 Power Dissipation vs. Ambient
Temperature
60
600
Power dissipation Ptot, Po (mW)
550
Forward current IF (mA)
50
40
30
20
10
0
- 25
0
25
50
75 80
100
Ambient temperature Ta (˚C)
125
500
400
300
200
100
0
- 25
0
25
50
75 80
100
Ambient temperature Ta (˚C)
125
PC929
■ Test Circuit Diagram
(2)
13
3
12
11
↑ IF
V VO1L ↑
13
3
IO1 V
CC1
PC929
14 10
8
(4)
13
3
12
11
↑ IF
PC929
14 10
13
3
VCC
↑ IF
V VO2L ↑ IO2
12
9
1 2
8
(6)
13
3
12
11
PC929
14 10
↑ IF
variable
A
I CC
13
3
VCC
12
VCC
11
PC929
14 10
↑ IF
V VO2
9
1 2
VCC
PC929
14 10
8
(5)
A I O1L
11
9
1 2
VCC
9
1 2
8
(3)
I O2
V VO2H
PC929
14 10
9
1 2
12
11
↑ IF
VCC2
↑
(1)
9
1 2
8
8
13
(7)
A
SW
B
3
12
11
PC929
14 10
VCC
13
3
V VO2
t r = tf = 0.01 µ s
VIN Pulse width : 5 µ s
Duty ratio=50%
9
1 2
(8)
8
+
12
RG
11
PC929
14 10
VCC
CG
VOUT
9
1 2
8
VCM
VCM (Peak)
50%
V IN waveform
tpHL
tpLH
GND
VCM waveform
90%
VO2H
CMH, VO2 waveform
SW at A, IF = 5mA
∆ VO2H
∆ VO2L
tf
tr
VO2L
GND
CM L, VO2 waveform
SW at B, IF = 0mA
(9)
(10)
13
3
↑ IF
50%
10%
VOUT waveform
12
11
PC929
14 10
1 2
9
8
RG
V VOUT
13
3
VCC
CG
V VCTH
↑ IF
12
11
PC929
14 10
1 2
9
8
RG
VCC
V VOE
CG
CF
VC
RL
PC929
■ Test Circuit Diagram
(11)
(12)
13
3
13
3
12
RG
↑ IF
PC929
9
2
RG
V VFSL
11
↑ IF
CG
14 10
1
12
VCC
11
↓ IFS
PC929
14 10
1
IFSH
8
VOUT
(13)
13
3
12
tr = tf = 0.01 µs
VIN Pulse width : 25 µ s
Duty ratio=25%
RG
VCC
11
PC929
CG
V
14 10
1
2
9
A
(14)
13
3
VFS
9
2
8
RC
CP
12
tr = tf = 0.01µ s
VIN Pulse width : 25 µ s
Duty ratio=25%
RC
RG
11
PC929
2
9
8
IF
(Input current)
tpCOTF
90%
50%
t pCOHL
VOE
10%
VO2
(O2 output voltage)
90%
Error detecting threshold voltage (VCTH)
10%
∆ t FS
t pCFHL
FS
(Error signal output)
50%
VCC
CG
14 10
1
8
C
(Detecting terminal)
VCC
CG
50%
V
RFS
PC929
■ Operations of Shortcircuit Protector Circuit
Anode
PC929
Light emitting diode
3
Constant voltage circuit
Cathode
11
1
TTL, microcomputer, etc.
14 GND
V
13 CC
O1
12
VCC
O2
RG
Amp.
Photodiode
IGBT protector circuit
IGBT
RC
Interface
9
8
10
C
FS
CP
GND
VEE
Feedback to primary side
1. Detection of increase in VCE (sat) of IGBT due to overcurrent by means of C-terminal 9 terminal)
2. Reduction of the IGBT gate voltage, and suppression of the collector current.
3. Simultaneous output of signals to indicate the shortcircuit condition (FS signal) from FS terminal to the microcomputer
In the case of instantaneous shortcircuit, run continues.
4. Judgement and processing by the microcomputer
At fault, input to the photocoupler is cut off, and IGBT is turned OFF.
Precautions for Operation
1. It is recommended that a capacitor of about 1000pF is added between C-terminal and GND in order to prevent
malfunction of C-terminal due to noise. In the case of capacitor added, rise of the detecting voltage is delayed.
Thus, use together a resistance of about 1kΩ set between Vcc and C-terminal.
The C-terminal rise time varies with the time constant of CR added. Check sufficiently before use.
2. The light-detecting element used for this product is provided with a parasitic diode between each terminal and GND.
When a terminal happens to reach electric potential lower than GND potential even in a moment, malfunction
or rupture may result. Design the circuit so that each terminal will be kept at electric potential lower than the
GND potential at all times.