PC929 Shortcircuit Protector Circuit Built-in Photocoupler Suitable for Inverter-Driving MOS-FET/IGBT PC929 ❈ TÜV ( VDE 0884 ) approved type is also available as an option. ■ Features ■ Outline Dimensions 1. Built-in IGBT shortcircuit protector circuit 2. Built-in direct drive circuit for IGBT drive 14 13 12 11 10 (Peak output current ... IO1P, IO2P : MAX. 0.4A) 3. High speed response (tPLH, tPHL : MAX. 0.5 µ s) (Unit : mm) 9 8 6 7 6.5 PC929 4. High isolation voltage (Viso : 4000Vrms) 5. Half lead pin pitch (p=1.27 mm) package type 6. Recognized by UL, file NO. E64380 Primary side mark 1 2 3 ■ Application 4 5 9.22 7.62 12 - 1.27 0.35 14 - 0.6 0.26 3.5 1. IGBT control for inverter drive 1.0 1.0 10.0 Internal connection diagram 14 12 11 10 9 8 (Ta=Topr unless otherwise specified) Parameter Symbol Rating *1 IF 20 Forward current Input Reverse voltage VR 6 (Ta = 25˚C) Supply voltage VCC 35 O1 output current 0.1 IO1 *4 IO1P 0.4 O1 peak output current O2 output current 0.1 IO2 *4 IO2P 0.4 O2 peak output current Output O1 output voltage 35 VO1 *2 PO 500 Power dissipation Overcurrent detecting voltage VC VCC Overcurrent detecting current IC 30 Error signal output voltage VFS VCC Error signal output current IFS 20 *3 550 Total power dissipation Ptot *5 Viso 4 000 Isolation voltage - 25 to + 80 Operating temperature Topr - 55 to + 125 Storage temperature Tstg Soldering temperature Tsol 260 (for 10 sec) Unit mA V V A A A A V mW V mA V mA mW Vrms ˚C ˚C ˚C Constant voltage circuit ■ Absolute Maximum Ratings 13 1 2 IGBT protector circuit Interface Amp. 3 4 5 1 2 3 4 5 6 7 Cathode Cathode Anode NC NC NC NC 8 9 10 11 12 13 14 FS C GND O2 O1 VCC GND Terminals 4 to 7 : Shortcircuit in element 6 7 * "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal processing circuit integrated onto a single chip. Operation truth table is shown on the next page. *1, 2, 3 Decrease in the ambient temperature range of the Absolute Max. Rating : Shown in Figs 1 and 2. *4 Pulse width <=0.15 µs, Duty ratio=0.01 *5 40 to 60% RH, AC for 1 minute, Ta=25˚C “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” PC929 ■ Electro-optical Characteristics (1) Parameter Operating supply voltage VCC O1 low level output voltage VO1L O2 high level output voltage VO2H O2 low level output voltage O leak current VO2L VO1L High level supply current ICCH Low level supply current ICCL "Low→High" threshold input current IFLH Output Input Forward voltage *7 Isolation resistance "Low→High" propagation delay time "High→Low" propagation delay time Rise time Fall time Instantaneous common mode rejection voltage "Output : High level" Instantaneous common mode rejection voltage "Output : Low level" Response time Transfer characteristics Reverse current Terminal capacitance Symbol VF1 VF2 IR Ct RISO tPLH tPHL tr tf CMH CML (Ta=Topr unless otherwise specified) Conditions MIN. TYP. Ta = 25˚C, IF = 10mA 1.6 Ta = 25˚C, I F = 0.2mA 1.2 1.5 T a = 25˚C, V R = 5V Ta = 25˚C, V = 0, f = 1kHz 30 Ta = - 10 to 60 ˚C 15 15 VCC1 = 12V, VCC2 = - 12V 0.2 IO1 = 0.1A, IF = 5mA *8 VCC = VO1 = 24V, IO2 = - 0.1A 20 22 IF = 5mA *8 VCC = VO1 = 24V, IO2 = 0.1A, IF = 0mA *8 1.2 Ta = 25˚C, VCC = VO1 = 35V, IF = 0mA *8 Ta = 25˚C, VCC = VO1 = 24V, IF = 5mA *8 10 VCC = VO1 = 24V, IF = 5mA *8 Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA *8 11 VCC = VO1 = 24V, IF = 0mA *8 0.3 1.5 Ta = 25˚C, VCC = VO1 = 24V *8 0.2 VCC = VO1 = 24V *8 Ta = 25˚C, DC500V, 40 to60% RH 5 x 1010 1 x 1011 0.3 Ta = 25˚C, VCC = VO1 = 24V 0.3 RG = 47Ω , CG = 3 000pF, I F = 5mA 0.2 *8 0.2 Ta = 25˚C, VCC = VO1 = 24V, IF = 5mA - 1 500 VCM = 600V( peak ) , ∆ VO2H = 2.0V *8 Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA 1 500 VCM = 600V( peak ) , ∆ VO2L = 2.0V *8 MAX. 1.75 10 250 30 24 Unit V V µA pF V V Measuring circuit 0.4 V (1) - V (2) 2.0 500 17 19 18 20 3.0 5.0 0.5 0.5 0.5 0.5 V µA mA mA mA mA mA mA Ω µs µs µs µs (3) (4) - V/ µ s - V/ µ s *6 When measuring output and transfer characteristics, connect a bypass capacitor (0.01 µ F or more) between VCC 13 and GND 14 near the device. *7 I FLH represents forward current when output goes from "Low" to "High". *8 FS=OPEN, VC =0V ■ Truth Table Input ON OFF C Input/Output Low level High level Low level High level O2 Output High level Low level Low level Low level FS Output High level Low level High level High level For protective operation - (6) (5) - (8) (7) PC929 *9 *9 Protective output Overcurrent detection ■ Electro-optical Characteristics (2) *10 (Ta=Topr unless otherwise specified) Parameter Overcurrent detecting voltage Symbol VCTH Overcurrent detecting voltage hysteresis width VCHIS O2 "High→Low" delay time at protection from overcurrent O2 fall time at protection from overcurrent O2 output voltage at protection from overcurrent tPCOHL tPCOtf VOE Error signal output *9 Conditions Ta = 25˚C, IF = 5mA VCC = V01 = 24V, RG = 47Ω CG = 3 000pF, FS = OPEN MIN. TYP. MAX. VCC - VCC - VCC 6.5 6.0 5.5 1 2 3 Unit Test circuit V (9) V Ta = 25˚C VCC = V01 = 24V, IF = 5mA CG = 3 000pF, RG = 47Ω CP = 1 000pF, RC = 1kΩ FS = OPEN - 4 10 µs 2 5 - µs - - 2 V (10) (13) Low level error signal voltage VFSL Ta = 25˚C, IF = 5mA, IFS = 10mA VCC = VO1 = 24V, RG = 47Ω , C G = 3 000pF, C = OPEN - 0.2 0.4 V (11) High level error signal current IFSH Ta = 25˚C, IF = 5mA, VFS = 24V VCC = VO1 = 24V, RG = 47Ω , C G = 3 000pF, VC = 0V - - 100 µA (12) - 1 5 µs 20 35 - µs Error signal "High→Low" delay time tPCFHL Error signal output pulse width ∆ tFS Ta = 25˚C, RFS = 1.8kΩ VCC = VO1 = 24V, IF = 5mA CG = 3 000pF, RG = 47Ω CP = 1 000pF, RC = 1kΩ (14) *9 When measuring overcurrent, protective output and error signal output characteristics, connect a bypass capacitor (0.01 µ F or more) between VCC 13 and GND 14 near the device. *10 VCTH represents C-terminal voltage when O 2 output goes from "High" to "Low". Fig. 1 Forward Current vs. Ambient Temperature Fig. 2 Power Dissipation vs. Ambient Temperature 60 600 Power dissipation Ptot, Po (mW) 550 Forward current IF (mA) 50 40 30 20 10 0 - 25 0 25 50 75 80 100 Ambient temperature Ta (˚C) 125 500 400 300 200 100 0 - 25 0 25 50 75 80 100 Ambient temperature Ta (˚C) 125 PC929 ■ Test Circuit Diagram (2) 13 3 12 11 ↑ IF V VO1L ↑ 13 3 IO1 V CC1 PC929 14 10 8 (4) 13 3 12 11 ↑ IF PC929 14 10 13 3 VCC ↑ IF V VO2L ↑ IO2 12 9 1 2 8 (6) 13 3 12 11 PC929 14 10 ↑ IF variable A I CC 13 3 VCC 12 VCC 11 PC929 14 10 ↑ IF V VO2 9 1 2 VCC PC929 14 10 8 (5) A I O1L 11 9 1 2 VCC 9 1 2 8 (3) I O2 V VO2H PC929 14 10 9 1 2 12 11 ↑ IF VCC2 ↑ (1) 9 1 2 8 8 13 (7) A SW B 3 12 11 PC929 14 10 VCC 13 3 V VO2 t r = tf = 0.01 µ s VIN Pulse width : 5 µ s Duty ratio=50% 9 1 2 (8) 8 + 12 RG 11 PC929 14 10 VCC CG VOUT 9 1 2 8 VCM VCM (Peak) 50% V IN waveform tpHL tpLH GND VCM waveform 90% VO2H CMH, VO2 waveform SW at A, IF = 5mA ∆ VO2H ∆ VO2L tf tr VO2L GND CM L, VO2 waveform SW at B, IF = 0mA (9) (10) 13 3 ↑ IF 50% 10% VOUT waveform 12 11 PC929 14 10 1 2 9 8 RG V VOUT 13 3 VCC CG V VCTH ↑ IF 12 11 PC929 14 10 1 2 9 8 RG VCC V VOE CG CF VC RL PC929 ■ Test Circuit Diagram (11) (12) 13 3 13 3 12 RG ↑ IF PC929 9 2 RG V VFSL 11 ↑ IF CG 14 10 1 12 VCC 11 ↓ IFS PC929 14 10 1 IFSH 8 VOUT (13) 13 3 12 tr = tf = 0.01 µs VIN Pulse width : 25 µ s Duty ratio=25% RG VCC 11 PC929 CG V 14 10 1 2 9 A (14) 13 3 VFS 9 2 8 RC CP 12 tr = tf = 0.01µ s VIN Pulse width : 25 µ s Duty ratio=25% RC RG 11 PC929 2 9 8 IF (Input current) tpCOTF 90% 50% t pCOHL VOE 10% VO2 (O2 output voltage) 90% Error detecting threshold voltage (VCTH) 10% ∆ t FS t pCFHL FS (Error signal output) 50% VCC CG 14 10 1 8 C (Detecting terminal) VCC CG 50% V RFS PC929 ■ Operations of Shortcircuit Protector Circuit Anode PC929 Light emitting diode 3 Constant voltage circuit Cathode 11 1 TTL, microcomputer, etc. 14 GND V 13 CC O1 12 VCC O2 RG Amp. Photodiode IGBT protector circuit IGBT RC Interface 9 8 10 C FS CP GND VEE Feedback to primary side 1. Detection of increase in VCE (sat) of IGBT due to overcurrent by means of C-terminal 9 terminal) 2. Reduction of the IGBT gate voltage, and suppression of the collector current. 3. Simultaneous output of signals to indicate the shortcircuit condition (FS signal) from FS terminal to the microcomputer In the case of instantaneous shortcircuit, run continues. 4. Judgement and processing by the microcomputer At fault, input to the photocoupler is cut off, and IGBT is turned OFF. Precautions for Operation 1. It is recommended that a capacitor of about 1000pF is added between C-terminal and GND in order to prevent malfunction of C-terminal due to noise. In the case of capacitor added, rise of the detecting voltage is delayed. Thus, use together a resistance of about 1kΩ set between Vcc and C-terminal. The C-terminal rise time varies with the time constant of CR added. Check sufficiently before use. 2. The light-detecting element used for this product is provided with a parasitic diode between each terminal and GND. When a terminal happens to reach electric potential lower than GND potential even in a moment, malfunction or rupture may result. Design the circuit so that each terminal will be kept at electric potential lower than the GND potential at all times.