10-FY06BIA050SG-M523E18 preliminary datasheet flowSOL 1 BI 600V/50A Features flow1 12mm housing ● Low inductive 12mm flow1 package ● Booster: ○ Dual boost topology ○ High-speed IGBT + ultrafast FWD ○ Bypass rectifier ● Inverter: ○ H-bridge topology ○ High-speed IGBT + ultrafast FWD ● Integrated DC-capacitors ● Temperature sensor Target Applications Schematic ● Solar Inverter: Transformer-less solar inverter with bipolar modulation with high efficiency/cost ratio Primary of a transformer based solar inverter with resonant switching Types ● 10-FY06BIA050SG-M523E18 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 39 53 A 370 A 370 A2s 46 69 W Tjmax 150 °C VCE 600 V 39 52 A 150 A 83 126 W ±20 V 5 400 µs V 175 °C Bypass Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature DC current Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Input Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 19 25 A 20 A 39 47 W 150 °C 600 V 23 27 A 120 A Input Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax Input Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax 40 60 W 150 °C 600 V 39 52 A 150 A 83 126 W ±20 V 5 400 µs V 175 °C 600 V 23 31 A 120 A 40 60 W 150 °C 630 V H-Bridge IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC Icpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax H-Bridge Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax DC link Capacitor Max.DC voltage Copyright by Vincotech VMAX Tc=25°C 2 Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 3 Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,16 1,11 0,90 0,76 0,01 0,01 1,21 Bypass Diode Forward voltage VF 35 Threshold voltage (for power loss calc. only) Vto 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 1600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V Ǒ 0,05 Thermal grease thickness≤50um λ = 1 W/mK V 1,53 mA K/W Input Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) 0,0008 VCE(sat) 15 Collector-emitter cut-off ICES 0 Gate-emitter leakage current IGES 20 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 50 600 tr td(off) tf Eon Turn-off energy loss per pulse Eoff 4,1 4,9 5,7 1,94 2,22 2 0,04 100 Rgoff=4 Ǒ Rgon=4 Ǒ Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate f=1MHz RthJH Thermal grease thickness≤50um λ = 1 W/mK ±15 400 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ǒ none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 23 21 13 14 185 207 5 7 0,62 0,96 0,47 0,71 ns mWs 3140 f=1MHz 25 0 Tj=25°C pF 200 93 25 0 Tj=25°C 310 nC 1,15 K/W Input Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 10 Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK 1,25 1,67 1,56 1,95 2,44 V K/W Input Boost Diode Forward voltage VF Reverse leakage current Irm Peak recovery current trr Reverse recovery charge Qrr Reverse recovered energy Erec Thermal resistance chip to heatsink per chip Copyright by Vincotech ±15 400 50 IRRM Reverse recovery time Peak rate of fall of recovery current 30 Rgon=4 Ǒ 400 ±15 di(rec)max /dt RthJH Thermal grease thickness≤50um λ = 1 W/mK 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,34 2,01 100 47 72 15 29 0,51 1,23 0,07 0,16 15400 10220 1,76 4 2,6 V µA A ns µC mWs A/µs K/W Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 4,1 4,9 5,7 1,94 2,22 2 H-Bridge IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 0 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time VGE=VCE 0,0008 50 td(on) tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Rgoff=4 Ǒ Rgon=4 Ǒ f=1MHz ±15 400 0 50 25 ±15 480 0,04 100 none 50 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK V mA nA Ǒ 22 22 13 14 182 204 4 7 0,61 0,89 0,42 0,67 Tj=25°C V ns ns ns ns mWs mWs 3140 pF 200 pF 93 pF 310 nC 1,15 K/W H-Bridge Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink per chip 50 Rgon=4 Ǒ 400 ±15 di(rec)max /dt Erec RthJH 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,33 2,01 51 75 16 29 0,49 1,24 14960 10600 0,06 0,18 Thermal grease thickness≤50um λ = 1 W/mK 2,6 V A ns µC A/µs mWs 1,76 K/W 47 nF 22000 Ǒ DC link Capacitor C value C Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P T=25°C R100=1486 Ǒ T=25°C Power dissipation constant -5 +5 T=25°C 200 mW Tj=25°C 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference Copyright by Vincotech % K B 5 Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet H-Bridge IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 200 IC (A) IC (A) 200 150 150 100 100 50 50 0 0 0 1 At tp = Tj = VGE from 2 3 4 VCE (V) 0 5 1 3 4 5 VCE (V) At tp = Tj = VGE from 250 ȑs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 ȑs 250 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IC (A) IF (A) 150 40 120 30 90 20 60 10 30 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 2 4 6 8 0 10 1 2 VGE (V) At tp = VCE = 250 10 4 5 VF (V) At tp = ȑs V Copyright by Vincotech 3 6 250 ȑs Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet H-Bridge IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 4 E (mWs) 3,5 E (mWs) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 3,0 Eon High T 3 Eon Low T 3 2,5 Eoff Low T 2 2,0 Eoff High T Eon High T 1,5 E Low T Eoff on High T 2 1,0 Eoff Low T 1 0,5 1 0,0 0 0 25 50 75 100 IC(A) 0 20 30 40 RG(Ω) With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 15 V Rgon = 4 Ǒ Rgoff = 4 Ǒ With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 15 V IC = 50 A FWD Figure 7 Typical reverse recovery energy loss FWD Figure 8 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) as a function of gate resistor Erec = f(RG) 0,30 0,25 Erec High T E (mWs) E (mWs) 10 0,25 0,20 0,20 0,15 0,15 0,10 Erec High T 0,10 Erec Low T 0,05 0,05 Erec Low T 0,00 0,00 0 25 50 75 IC(A) 0 100 20 30 40 RG(Ω) With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 15 V Rgon = 4 Ǒ Copyright by Vincotech 10 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 15 V IC = 50 A 7 Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet H-Bridge IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10,00 t (ms) t (ms) 10,00 tdoff 1,00 1,00 tdoff 0,10 0,10 tdon tr tf tdon tr 0,01 tf 0,01 0,00 0,00 0 25 50 75 100 IC(A) 0 8 16 24 32 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 15 V Rgon = 4 Ǒ Rgoff = 4 Ǒ With an inductive load at Tj = 125 °C VCE = 400 V VGE = 15 V IC = 50 A FWD Figure 11 Typical reverse recovery time as a FWD Figure 12 Typical reverse recovery time as a function of collector current trr = f(Ic) function of IGBT turn on gate resistor trr = f(Rgon) 0,10 trr High T t rr(ms) t rr(ms) 0,05 trr High T 0,04 0,08 0,03 0,06 0,02 0,04 trr Low T trr High T trr Low T 0,02 0,01 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 40 RG(Ω) 25 25/125 400 15 4 50 75 IC(A) 0 100 16 24 32 40 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ǒ Copyright by Vincotech 8 8 25/125 400 50 15 °C V A V Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet H-Bridge FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 2,0 Qrr (mC) Qrr (mC) 1,5 Qrr High T 1,6 1,2 1,2 0,9 Qrr High T 0,6 0,8 Qrr Low T 0,3 0,4 Qrr Low T 0 0,0 0 At Tj = VCE = VGE = Rgon = 25 50 75 0 100 IC(A) At Tj = VR = IF = VGE = °C V V Ǒ 25/125 400 15 4 FWD Figure 15 Typical reverse recovery current as a 10 25/125 400 50 15 20 30 °C V A V FWD Figure 16 Typical reverse recovery current as a function of collector current IRRM = f(IC) 40 Rgon(Ω) function of IGBT turn on gate resistor IRRM = f(Rgon) 100 60 IrrM (A) IrrM (A) 70 IRRM Low T 80 50 60 40 30 40 20 20 IRRM High T 10 IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 400 15 4 50 75 IC(A) 100 0 20 30 40 Rgon(Ω) At Tj = VR = IF = VGE = °C V V Ǒ Copyright by Vincotech 10 9 25/125 400 50 15 °C V A V Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet H-Bridge FWD dIorec dI /dt/dt T T 18000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 16000 14000 25000 dIrec/dt T dI0/dt T 20000 12000 15000 10000 8000 10000 6000 4000 5000 2000 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 400 15 4 50 75 IC(A) 0 100 0 At Tj = VR = IF = VGE = °C V V Ǒ IGBT Figure 19 IGBT transient thermal impedance 10 25/125 400 50 15 20 30 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 40 Rgon(Ω) as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 tp (s) 1012 10 10-5 At D= RthJH = tp / T 1,15 K/W 10-4 10-3 R (C/W) 0,09 0,33 0,51 0,16 0,05 R (C/W) 0,06 0,17 0,70 0,53 0,19 0,12 10 100 tp (s) 12 1010 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 1,76 IGBT thermal model values Tau (s) 2,0E+00 3,2E-01 9,4E-02 1,5E-02 2,3E-03 10-2 Tau (s) 4,8E+00 7,6E-01 1,6E-01 5,1E-02 1,1E-02 1,6E-03 Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet H-Bridge IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 160 Ptot (W) IC (A) 60 50 120 40 80 30 20 40 10 0 0 0 50 At Tj = 100 150 Th (oC) 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 Th (oC) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 100 200 80 30 60 20 40 10 20 0 0 0 At Tj = 50 150 100 150 Th (oC) 0 200 At Tj = °C Copyright by Vincotech 11 50 150 100 150 Th (oC) 200 °C Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet H-Bridge IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) IC (A) VGE (V) 103 16 14 120V 100uS 102 12 480V 1mS 10mS 100mS 10 DC 8 101 100 6 4 10-1 2 0 0 100 At D= Th = VGE = Tj = 101 102 At IC = single pulse 80 ºC 15 V Tjmax ºC Copyright by Vincotech 50 100 VCE(V) 12 50 150 200 250 300 Qg (nC) 350 A Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet INPUT BOOST BOOST IGBT Figure 1 Typical output characteristics ID = f(VDS) BOOST IGBT Figure 2 Typical output characteristics ID = f(VDS) 200 IC(A) IC (A) 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGS from 1 2 3 4 VCE (V) 0 5 2 3 4 5 VCE (V) At tp = Tj = VGS from ȑs 250 25 °C 7 V to 17 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics ID = f(VGS) 1 ȑs 250 125 °C 7 V to 17 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 IF (A) ID (A) 60 50 120 40 90 30 60 20 30 10 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VDS = 2 250 10 4 6 8 VGS (V) 0 10 2 3 4 5 VF (V) At tp = ȑs V Copyright by Vincotech 1 13 250 ȑs Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet INPUT BOOST BOOST IGBT BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 5 2 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(ID) Eon High T 1,8 4 1,6 Eon High T Eoff E on High Low T 1,4 Eon Low T 3 1,2 Eoff Low T 1 Eoff Low T 2 0,8 Eoff High T 0,6 1 0,4 0,2 0 0 0 25 50 75 IC(A) 0 100 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = 15 V Rgon = 4 Ǒ Rgoff = 4 Ǒ 10 20 30 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 15 V ID = 50 A BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,25 E (mWs) E (mWs) 0,25 0,2 0,2 0,15 0,15 0,1 0,1 Erec High T Erec Low T 0,05 0,05 0 0 Erec Low T 0 25 50 75 IC(A) 0 100 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = 15 V Rgon = 4 Ǒ Rgoff = 4 Ǒ Copyright by Vincotech 10 20 30 RG(Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 15 V ID = 50 A 14 Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet INPUT BOOST BOOST IGBT Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10 t (µs) t (µs) 10 tdoff 1 1 tdoff 0,1 0,1 tdon tdon 0,01 tf tr 0,01 tr tf 0,001 0,001 0 25 50 75 ID (A) 0 100 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 15 V Rgon = 4 Ǒ Rgoff = 4 Ǒ 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 15 V IC = 50 A BOOST FWD Figure 11 Typical reverse recovery time as a BOOST FWD Figure 12 Typical reverse recovery time as a function of collector current trr = f(Ic) function of IGBT turn on gate resistor trr = f(Rgon) 0,08 trr High T t rr(µs) t rr(µs) 0,1 0,08 0,06 0,06 0,04 trr High T 0,04 0,02 0,02 trr Low T trr Low T 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 400 15 4 50 75 IC (A) 0 100 At Tj = VR = IF = VGS = °C V V Ǒ Copyright by Vincotech 15 10 25/125 400 50 15 20 30 RGon(Ω ) 40 °C V A V Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1,5 Qrr (µC) Qrr (µC) 2 Qrr High T 1,6 1,2 1,2 0,9 0,8 0,6 Qrr High T Qrr Low T 0,3 0,4 0 0 0 At At Tj = VCE = VGE = Rgon = 25 50 75 0 100 IC (A) At Tj = VR = IF = VGS = °C V V Ǒ 25/125 400 15 4 BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 10 25/125 400 50 15 20 30 RGon(Ω) 40 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IRRM High T 100 IrrM (A) 90 IrrM (A) Qrr Low T 80 80 70 60 IRRM Low T 60 50 40 40 30 IRRM High T 20 20 IRRM Low T 10 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 400 15 4 50 75 IC (A) 0 100 16 24 32 40 RG on(Ω ) At Tj = VR = IF = VGS = °C V V Ǒ Copyright by Vincotech 8 16 25/125 400 50 15 °C V A V Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet INPUT BOOST BOOST FWD 18000 30000 dI0/dt dIrec/dt 16000 BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/µs) direc / dt (A/µs) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 14000 12000 dI0/dt dIrec/dt 25000 20000 10000 15000 8000 6000 10000 4000 5000 2000 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 400 15 4 50 75 IC (A) 0 100 0 At Tj = VR = IF = VGS = °C V V Ǒ BOOST IGBT Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 25/125 400 50 15 20 30 40 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 RGon(Ω) ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 tp (s) 1012 10 10-5 At D= RthJH = tp / T 1,15 K/W 10-4 10-3 R (C/W) 9,49E-02 3,34E-01 5,08E-01 1,62E-01 4,63E-02 0,00E+00 R (C/W) 5,96E-02 1,66E-01 6,99E-01 5,26E-01 1,89E-01 1,23E-01 17 100 tp (s) 1012 10 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 1,76 IGBT thermal model values Tau (s) 2,03E+00 3,24E-01 9,38E-02 1,49E-02 2,34E-03 0,00E+00 10-2 Tau (s) 4,76E+00 7,60E-01 1,60E-01 5,15E-02 1,12E-02 1,64E-03 Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet INPUT BOOST BOOST IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 160 Ptot (W) IC (A) 60 50 120 40 80 30 20 40 10 0 0 0 At Tj = 50 100 150 Th (oC) 200 0 At Tj = VGS = ºC 175 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 Ptot (W) IF (A) 100 Th (oC) 80 30 60 20 40 10 20 0 0 0 At Tj = 50 150 100 150 Th (oC) 200 0 At Tj = ºC Copyright by Vincotech 18 50 150 100 150 Th (oC) 200 ºC Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet INPUT BOOST BOOST IGBT Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) BOOST IGBT Figure 26 Gate voltage vs Gate charge VGS = f(Qg) ID (A) UGS (V) 103 1 16 14 120V 100uS 102 12 480V 10mS 10 1mS 100mS 8 101 6 DC 4 100 2 0 10-1 100 At D= Th = VGS = Tj = 101 102 103 0 100 150 200 250 300 350 Qg (nC) At ID = single pulse ºC 80 V 15 Tjmax ºC Copyright by Vincotech 50 VDS (V) 19 50 A Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Bypass Diode Bypass diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Bypass diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 70 60 50 100 40 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 10 Tj = Tjmax-25°C Tj = 25°C 0 0 0,3 0,6 0,9 1,2 1,5 10-2 10-5 VF (V) At tp = At D= RthJH = ȑs 250 10-4 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 102 tp / T 1,528 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 tp (s) 101 Ptot (W) IF (A) 70 60 80 50 60 40 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 Th (oC) 200 0 At Tj = ºC Copyright by Vincotech 20 50 150 100 150 Th (oC) 200 ºC Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet INP. BOOST INVERSE DIODE INP. BOOST INVERSE DIODE Figure 1 Typical thyristor forward current as a function of forward voltage IF= f(VF) INP. BOOST INVERSE DIODE Figure 2 Thyristor transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 40 30 100 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 Tj = Tjmax-25°C Tj = 25°C 0 0 0,5 1 1,5 2 2,5 10-2 3 10-5 VF (V) At tp = At D= RthJH = ȑs 250 INP. BOOST INVERSE DIODE Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 100 tp (s) 1012 10 tp / T 2,44 K/W INP. BOOST INVERSE DIODE Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 30 IF (A) Ptot (W) 75 10-1 25 60 20 45 15 30 10 15 5 0 0 0 50 100 150 200 0 Th (oC) At Tj = 175 At Tj = ºC Copyright by Vincotech 21 50 175 100 150 Th (oC) 200 ºC Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 75 100 125 T (°C) Copyright by Vincotech 22 Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Switching Definitions H-Bridge IGBT General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω H-Bridge IGBT Figure 1 H-Bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 150 % % IC tdoff 200 VCE 100 VGE 90% VCE 90% 150 IC VGE 50 100 VCE tEoff VGE tdon IC 1% 50 0 VCE 3% VGE 10% IC 10% 0 -50 -0,1 0 0,1 0,2 0,3 0,4 -50 3,95 0,5 4 tEon 4,05 4,1 4,15 4,2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 15 400 50 0,33 0,39 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A ȑs ȑs H-Bridge IGBT Figure 3 4,25 time(us) time (us) 0 15 400 50 0,03 0,19 V V V A ȑs ȑs H-Bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 250 fitted % % IC VCE IC 200 100 IC 90% 150 75 IC 60% 100 50 VCE IC 90% IC 40% tr 50 25 IC 10% 0 IC 10% 0 tf -25 0,26 VC (100%) = IC (100%) = tf = 0,28 0,3 400 50 0,01 Copyright by Vincotech 0,32 0,34 time (us) -50 3,95 0,36 4 4,05 4,1 4,15 time(us) VC (100%) = IC (100%) = tr = V A ȑs 23 400 50 0,02 V A ȑs Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Switching Definitions H-Bridge IGBT H-Bridge IGBT Figure 5 H-Bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 180 120 % IC 1% 100 % Pon Eoff 140 80 Eon 100 60 40 60 Poff 20 VGE 90% 20 VGE 10% VCE 3% 0 tEon tEoff -20 -20 -0,1 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,3 19,99 0,80 0,39 time (us) 3,9 0,5 4 4,2 4,3 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ ȑs H-Bridge IGBT Figure 7 Gate voltage vs Gate charge (measured) 4,1 19,99 1,20 0,19 kW mJ ȑs H-Bridge FWD Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 20 Id % 80 15 trr 40 10 Vd fitted 0 IRRM 10% 5 -40 0 -80 IRRM 90% IRRM 100% -120 -5 -50 0 50 100 150 200 250 4 300 4,04 4,08 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 15 400 50 270,72 Copyright by Vincotech 4,12 4,16 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 24 400 50 -56 0,03 V A A ȑs Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Switching Definitions H-Bridge IGBT H-Bridge FWD Figure 9 H-Bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Id Erec Qrr 100 100 tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -150 -25 4 4,05 4,1 4,15 4 4,2 4,05 4,1 time(us) Id (100%) = Qrr (100%) = tQrr = 50 1,16 0,10 Copyright by Vincotech 4,15 4,2 time(us) Prec (100%) = Erec (100%) = tErec = A ȑC ȑs 25 19,99 0,13 0,10 kW mJ ȑs Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FY06BIA050SG-M523E18 in DataMatrix as M523E18 in packaging barcode as M523E18 Outline Pinout Pins 3,4,7,14 are not connected. Pins 27 and 30 have to be connected together Pins 31 and 34 have to be connected together Copyright by Vincotech 26 Revision: 1 10-FY06BIA050SG-M523E18 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 27 Revision: 1